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Abstract. In this paper, we apply the fractional homotopy perturbation transform method (FHPTM) to deliver
an effective semi-analytical technique for determining fractional-order Kuramoto–Sivashinsky equations. The
project technique combines the Laplace transform with the Caputo–Fabrizio fractional derivative of order α where
α ∈ (0, 1]. Fractional-order Kuramoto–Sivashinsky equation is indeed important in the field of nonlinear physics
and mathematics. It is a fractional partial differential equation that describes the behaviour of waves in certain
dissipative media, such as flames and chemicals. The FHPTM is described to be fast and accurate. Illustrative
examples are included to demonstrate the efficiency and reliability of the presented techniques.
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1. Introduction

Fractional Calculus (FC) is a branch of mathematics that
deals with derivatives and integrals to arbitrary orders
(real or complex orders). It generalises the concepts
of classical calculus, which deals with integer-order
derivatives and integrals, to the case of fractional-order
derivatives and integrals. In fractional calculus, the
notion of a derivative is extended to derivatives of non-
integer order, such as 0.5, 1.7 or −2.3. This leads to the
introduction of new mathematical objects and concepts,
such as fractional derivatives (FD), fractional integrals
and fractional differential equations (FDEs). FC has a
wide range of applications in fields, such as physics,
engineering and finance, where it is used to model com-
plex phenomena that cannot be described by classical
calculus. For example, in physics, FC has been used to
describe anomalous diffusion, viscoelasticity and mem-
ory effects. In engineering, it has been used to model
control systems, electrical circuits and signal process-
ing. While FC is a relatively new area of mathematics,
it has been rapidly growing in recent years and has
received increasing attention from the research commu-
nity. This is due to its ability to provide new insights
and solutions to problems in a variety of fields and its
potential for further development and application in the

future [1,2]. An FDE is a type of mathematical equation
that involves derivatives of fractional order. In con-
trast to classical differential equations, which involve
derivatives of integer order, FDEs involve derivatives
of non-integer order, such as 0.5, 1.7 or −2.3. FDs are
often defined using the Riemann–Liouville or Caputo–
Fabrizio fractional derivative (CFFD). These operators
provide a way to generalise the notion of differenti-
ation to fractional order and they have a number of
interesting properties and applications in areas, such
as physics, engineering and finance. Solving FDEs can
be challenging, as FD introduces new complexities
and difficulties compared to integer-order derivatives.
Numerical methods, such as finite difference or spectral
methods and analytical methods, such as Laplace trans-
forms, can be used to find approximate or exact solutions
to FDEs, depending on the specific problem and desired
level of accuracy [3–6]. Researchers have been study-
ing semi-analytical solutions using nonlinear fractional
partial differential equations (NFPDEs) in recent years.
There are numerous established techniques for solving
NFPDEs, such as tanh function method [7], Poisson ran-
dom measures [8], He’s variational iteration method [9],
bifurcation theory analysis [10], Caputo–Fabrizio
operator [11], Riemann–Liouville [12], FHPTM [13],
extension of natural transform method [14], residual
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power series method [15], q-homotopy analysis trans-
form method [16], the fractional natural decomposition
method [17], the new iterative method [18], the Sumudu
transform method [19], the sine-Gordon expansion
method [20–22], the bvp4c method [23], the new travel-
ling wave solutions [24], the Chebyshev wavelet method
[25], the Atangana Baleanu–Caputo derivative [26], the
instability modulation [27], Sumudu transform [28],
the fixed point theorem [29], the pseudospectral col-
location method [30]. Some novel properties, as well
as numerical approximations of these new operators
are discussed, along with some real-world applica-
tions [31,32], the nonlinear least-squares fitting method
[33], the conformable derivatives [34], the fractional
Adams Bashforth method [35]. In both physical and
mathematical studies of capillary and nonlinear dis-
persive gravity waves, the Emden–Fowler equation has
gained significant importance [36]. The Laplace trans-
form [37], the Caputo fractional derivatives [38], the
Riccati substitution [39], the rational sine–cosine and
rational sinh–cosh methods [40], the extended ratio-
nal sine–cosine and sinh–cosh techniques [41], the
incomplete global GMERR algorithm [42], the opera-
tional method [43], the extended sinh-Gordon equation
expansion method [44], the new extension algebraic
method [45], the Chebyshev spectral collocation method
[46] and many others are available [47–53]. In this paper,
the Kuramoto–Sivashinsky equation is a partial differ-
ential equation that describes the behaviour of nonlinear
waves in a variety of physical systems, including fluid
dynamics, combustion and crystal growth. The equa-
tion was first derived by Yoshiki Kuramoto and Grigory
Sivashinsky in the late 1970s and has been used to study
the behaviour of a wide range of phenomena, including
pattern formation, turbulence and chaotic dynamics.

The equation is given by [16]
CF
0 Dα

t φ + φφx + βφxx + τφxxx + θφxxxx = 0,

0 < α ≤ 1 (1)

with the initial condition

φ(x, 0) = h(x) (2)

with the boundary conditionφ(l, t) = ψ1(x), φ(m, t) =
ψ2(x), φx (x, t)=φx (m, t) and φxx (l, t) = φxx(m, t) =
0. Here τ, δ and θ are constants, h(x), ψ1(x) and ψ2(x)
are known functions. The equation has a wide range
of interesting behaviours, including the formation of
complex patterns, such as spirals and spatiotemporal
chaos. These patterns are the result of the interplay
between the nonlinear term (φφx ) and the linear damp-
ing term (βφxx) in the equation. The coefficient φxxxx
represents an additional nonlinear term that can lead to
further complexity in the behaviour of the system. The
Kuramoto–Sivashinsky equation has had a significant

impact on our understanding of nonlinear dynamics
and chaotic behaviour and continues to be an active
area of research. Its versatility and broad applicability
make it a valuable tool for researchers in different fields
and its simplicity makes it accessible to students and
researchers alike. Overall, the Kuramoto–Sivashinsky
equation is a testament to the power of mathematical
models to shed light on complex physical phenomena
and advance our understanding of the world around us.

The dynamics behaviour of the Kuramoto–Sivashinsky
equation can exhibit a wide range of complex and inter-
esting phenomena, including

• Chaos: The Kuramoto–Sivashinsky equation is one
of the early examples of a partial differential equa-
tion that exhibits chaotic behaviour. The chaotic
dynamics observed in the solutions make it an inter-
esting model for studying turbulence and pattern
formation in fluid systems.

• Pattern formation: The equation is well known for
its ability to produce a variety of pattern formations,
such as rolls, stripes and spirals. These patterns arise
from the interplay between nonlinear convection and
diffusion.

• Travelling waves: The equation supports travelling
wave solutions, where the height of the interface
moves in one direction without changing shape.
These solutions are important for understanding the
propagation of flame fronts and other types of fronts
in physical systems.

• Turbulence: The equation is also used to study tur-
bulence, a complex and chaotic flow behaviour that
occurs in many physical systems, including fluid
dynamics, combustion and atmospheric science.

• Stability: The equation can also exhibit stable solu-
tions, where the height of the interface remains
constant over time. However, these solutions are
often destabilised by small perturbations, leading to
more complex dynamic behaviours.

The rich variety of dynamic behaviours displayed by the
Kuramoto–Sivashinsky equation makes it an important
model for understanding complex physical systems and
has led to its widespread use in a variety of fields, includ-
ing combustion, fluid mechanics, material science and
nonlinear dynamics.

This paper is divided to six sections as follows: Defi-
nitions of fractional derivatives are discussed in §2, the
fractional homotopy perturbation method via CFFD is
discussed in §3 and in §4 the semi-analytical solution of
the fractional-order Kuramoto–Sivashinsky equation is
presented with four examples that show the efficiency
of the methods. The result and discussion are given in
§5. Finally, §6 concludes the present work.
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2. Preliminaries

Here, we will discuss some basic definitions and char-
acteristics of the theory of fractional calculus.

Definition 1

The Caputo derivative is defined for α ≥ 0 and n ∈ N∪0
as follows [13]:

C
0 D

α
t φ(t) = 1

	(n − α)

∫ t

0
(t − ξ)

dn

dtn
h(ξ)dξ, (3)

where C
0 D

α
t is a Caputo derivative with respect to t.

Definition 2

Let φ be a function φ ∈ H1(a1, b1), b1 > 0, 0 < α <

1. Define as Caputo–Fabrizio derivative [13]

CF
0 Dα

t φ(t) = M(α)

1 − α)

∫ t

0
exp

[
− α(1 − ξ)

1 − α

]
φ′(ξ)dξ,

t ≥ 0, 0 < α < 1. (4)

Definition 3

The Caputo–Fabrizio fractional integral operator of
order 0 < α < 1 is given as [13]

CF
0 Dα

t φ(t) = 2(1 − α)

M(α)(2 − α)
φ(t)

+ 2α

M(α)(2 − α)

∫ t

0
φ(ξ)dξ, t ≥ 0, (5)

where CF
0 Dα

t φ(t) = 0, if φ is a constant function.

Definition 4

For 0 < α < 1 and m ∈ N define as CFD [13]

L
[

CF
0 D(m+α)

t u(t)
]
(s)

= 1

1 − α
L [um+1(t)]L

[
exp

( −α

(1 − α)
t

)]

= sm+1L [u(t)]−smu(0)−sm−1u′(0) · · · −um(0)

s+α(1−s)
(6)

In particular, we have

L
[

CF
0 D(m+α)

t u(t)
]
(s) = sL (u(t))

s + α(1 − s)
,

m = 0,

L
[

CF
0 D(m+α)

t u(t)
]
(s)= s2L (u(t))−su(o)−u′(0)

s+α(1−s)
,

m = 1.

3. Methodology

Let us consider the following nonlinear partial differen-
tial equations (NPDEs) along with the Caputo–Fabrizio
fractional derivative:
CF
0 Dm+α

t φ(x, t) + βφ(x, t) + ϕφ(x, t) = k(x, t),

n − 1 < α + m ≤ n, (7)

for the initial conditions

∂kφ(x, 0)

∂tk
= fk(x), k = 0, 1, 2, . . . , n − 1. (8)

When we apply the Laplace transform’s derivative rule
to eqs (7)–(8), we get

L [φ(x, t)] = (x, s) −
(
s + α(1 − s)

sn+1

)

×L [βφ(x, t) + ϕφ(x, t)]. (9)

Here

(x, s) = 1

sm+1 [sm f0(x)+sm−1 f1(x)+ · · · + fm(x)]

+s + α(1 − s)

sn+1 k̃(x, s). (10)

Applying inverse Laplace transform on both sides of eq.
(9), we have

φ(x, t) = (x, s) − L −1
[ (

s + α(1 − s)

sn+1

)

×L [βφ(x, t) + ϕφ(x, t)]
]
, (11)

as a result of an infinite series

φ(x, t) =
∞∑

m=0

zmφm(x, t) (12)

and the nonlinear term is decomposable like

ϕφ(x, t) =
∞∑

m=0

zmHm(x, t). (13)

Hm(x, t) are He’s polynomials that can be evaluated
using the following formula [31]:

Hm(φ0, φ1, φ2, . . . , φn) = 1

n!
∂m

∂zm

[( ∞∑
m=0

piφi

)]

z=0

,

m = 0, 1, 2, . . . . (14)

We substitute (12) and (13) into (15), to get
∞∑

m=0

φm(x, t) = (x, s) − zL −1
[(

s + α(1 − s)

sm+1

)

×L

[
β

∞∑
m=0

zmφm(x, t) +
∞∑
n=0

zmHm

]]
. (15)
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The following approximations are obtained by equating
the terms with similar powers in z in eq. (15):

z0 : φ0(x, t) = (x, s)

z1 : φ1(x, t) = −L −1 ×
[(

s + α(1 − s)

sm+1

)

× L [βφ0(x, t) + H0(u)]
]

z2 : φ2(x, t) = −L −1 ×
[ (

s + α(1 − s)

sm+1

)

× L [βφ1(x, t) + H1(u)]
]

z3 : φ3(x, t) = −L −1
[ (

s + α(1 − s)

sm+1

)

× L [βφ2(x, t) + H2(u)]
]

...

zm+1 : φm+1(x, t) = −L −1
[ (

s + α(1 − s)

sm+1

)

× L [βum+1(x, t) + Hm+1(φ)]
]
.

In the same manner, one can evaluate other elements of
φm+1(x, t) and then find series solution.

We approximate numerical solution φ(x, t) as

φ(x, t) =
∞∑

m=0

φm(x, t). (16)

Equation (16) represents a series solution, which con-
verges very fast.

4. Numerical examples

In this section, we apply the FHPTM method along
with CFFD to nonlinear Kuramoto–Sivashinsky equa-
tions (KSEs) of fractional order with the known exact
solution.

Example 1. Consider the following nonlinear fractional
Kuramoto–Sivashinsky equation (1) for τ = −1, δ =
0, θ = 1 [16]:

CF
0 Dα

t φ +φφx −φxx +φxxxx = 0, 0 < α ≤ 1. (17)

Then the initial conditions

φ(x, 0) = β + tanh3[k(x − λ)] − 45 tanh[k(x − λ)]
19

√
19

(18)

Figure 1. (a) The results of the FHPTM for fraction-
al-order KSE with the first initial condition (eq. (18)) for
α = 0.25, 0.5, 0.75 and 1 and (b) 3D graphs of exact solution
for Example 1.

and the boundary conditions

φ(l, t) = φ(m, t) = 0, (19)

where k and λ are arbitrary constants. Taking the
Laplace transform on both sides of eq. (17), we get

L [φ(x, t)]
= 1

s

β + tanh3[k(x − λ)] − 45 tanh[k(x − λ)]
19

√
19

−
(
s + α(1 − s)

s

)
L [φφx − φxx + φxxxx ] .

(20)

Applying the inverse Laplace transform for eq. (20)

φ(x, t) = β + tanh3[k(x − λ)] − 45 tanh[k(x − λ)]
19

√
19
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Figure 2. For the fractional-order KSE with the first initial condition (eq. (18)) of eq. (1), FHPTM result for φ(x, t) when
(a) α = 0.25, (b) α = 0.50, (c) α = 0.75 and (d) α = 1.

−L −1
[(

s+α(1 − s)

s

)
L [φφx − φxx+φxxxx ]

]
.

(21)

Now, we apply the FHPTM

∞∑
m=0

φm(x, t)=β+ tanh3[k(x − λ)]−45 tanh[k(x − λ)]
19

√
19

−zL −1

[(
s + α(1 − s)

s

)
L

[ ∞∑
m=0

zmHm(φ)

−
( ∞∑

m=0

zmφm(x, t)

)
xx

+
( ∞∑

m=0

zmφm(x, t)

)
xxxx

]]
. (22)

Here

∞∑
m=0

zmHm(u) = φ0(φ0)x .
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The first few components of a homotopy polynomial are
written as

H0(φ) = φ0(φ0)x

H1(φ) = ∂

∂z
[(φ0 + zφ1)(φ0 + zφ1)x ]z=0

= φ0(φ1)x + φ1(φ0)x

H2(φ) = 1

2

∂2

∂z2 [(φ0 + zφ1 + z2φ2)

×(φ0 + zφ1 + z2φ2)x ]z=0

= φ0(φ2)x + φ1(φ1)x + φ2(φ0)x

· · · . (23)

The result of comparing the coefficients of similar pow-
ers of z is

φ0(x, t) = β + tanh3[k(x − λ)] − 45 tanh[k(x − λ)]
19

√
19

.

(24)

By carrying on in this manner, we obtain the final
element of the iteration formulas. Consequently, the
approximate answer is

φ(x, t) =
∞∑

m=0

φm(x, t). (25)

Example 2. Consider the following nonlinear fractional
Kuramoto–Sivashinsky eq. (1) for τ = 1, δ = 0, θ = 1
[16]:

CF
0 Dα

t φ +φφx +φxx +φxxxx = 0, 0 < α ≤ 1. (26)

Then the initial conditions

φ(x, 0) = β + 15

19

√
11

19
(−9 tanh[k(x − λ)]

+11 tanh3[k(x − λ)]) , (27)

where k and λ are suitably chosen constants. Taking the
Laplace transform on both sides of eq. (26), we get

L [φ(x, t)] = β + 15

19

√
11

19
× (−9 tanh[k(x − λ)] + 11 tanh3[k(x − λ)])

−
(
s + α(1 − s)

s

)
L [φφx + φxx + φxxxx ] . (28)

Applying the inverse Laplace transform for eq. (28)

φ(x, t) = β + 15

19

√
11

19
(−9 tanh[k(x − λ)]

+11 tanh3[k(x − λ)])

Figure 3. (a) The results of the FHPTM for the fraction-
al-order KSE with the second initial condition (eq. (27)) for
α = 0.25, 0.5, 0.75 and 1 and (b) 3D graphs of exact solution
for Example 2.

−L −1
[(

s + α(1 − s)

s

)
L [φφx + φxx + φxxxx ]

]

(29)

Now, we apply the FHPTM

∞∑
m=0

φm(x, t) = β

+15

19

√
11

19

(−9 tanh[k(x−λ)]+11 tanh3[k(x−λ)])

−zL −1
[(

s + α(1 − s)

s

)

×L

[ ∞∑
m=0

zmHm(φ) −
( ∞∑

m=0

zmφm(x, t)

)
xx
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Figure 4. For the fractional-order KSE with the second initial condition (eq. (27)) of eq. (1), FHPTM result for φ(x, t) when
(a) α = 0.25, (b) α = 0.50, (c) α = 0.75 and (d) α = 1.

+
( ∞∑

m=0

zmφm(x, t)

)
xxxx

]]
, (30)

where
∞∑

m=0

zmHm(u) = φ0(φ0)x .

The first few components of a homotopy polynomial are
written as

H0(φ) = φ0(φ0)x

H1(φ) = ∂

∂z
[(φ0 + zφ1)(φ0 + zφ1)x ]z=0

= φ0(φ1)x + φ1(φ0)x

H2(φ) = 1

2

∂2

∂z2 [(φ0 + zφ1 + z2φ2)

×(φ0 + zφ1 + z2φ2)x ]z=0

= φ0(φ2)x + φ1(φ1)x + φ2(φ0)x

· · · . (31)

The result of comparing the coefficients of similar pow-
ers of z is

φ0(x, t) = β + 15

19

√
11

19
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Figure 5. (a) The results of the FHPTM for fractional-order
KSE with the third initial condition (eq. (35)) for α = 0.25,
0.5, 0.75 and 1 and (b) 3D graphs of exact solution for
Example 3.

× (−9 tanh[k(x − λ)] + 11 tanh3[k(x − λ)]) . (32)

By carrying on in this manner, we obtain the final
element of the iteration formulas. Consequently, the
approximate answer is

φ(x, t) =
∞∑

m=0

φm(x, t). (33)

Example 3. Consider the following nonlinear fractional
Kuramoto–Sivashinsky equation (1) for τ = 1, δ =
4, θ = 1 [16]:
CF
0 Dα

t φ + φφx + φxx + 4φxxx + φxxxx = 0,

0 < α ≤ 1. (34)

Then the initial conditions

φ(x, 0) = β + 9 − 15
(

tanh[k(x − λ)]
+tanh2[k(x−λ)]−tanh3[k(x−λ)]) , (35)

where k andλ are arbitrary constants. Taking the Laplace
transform on both sides of eq. (34), we get

L[φ(x, t)] = β + 9 − 15
(

tanh[k(x − λ)]
+ tanh2[k(x − λ)] − tanh3[k(x − λ)])

−
(
s + α(1 − s)

s

)

× L [φφx + φxx + 4φxxx + φxxxx ] . (36)

Applying the inverse Laplace transform for eq. (36)

φ(x, t) = β + 9 − 15
(

tanh[k(x − λ)]
+ tanh2[k(x − λ)] − tanh3[k(x − λ)])

−L −1
[(

s + α(1 − s)

s

)

× L [φφx + φxx + 4φxxx + φxxxx ]] .

(37)

Now, we apply the FHPTM

∞∑
m=0

φm(x, t) = β + 9 − 15
(

tanh[k(x − λ)]

+ tanh2[k(x − λ)] − tanh3[k(x − λ)])

−zL −1
[(

s + α(1 − s)

s

)

×L

[ ∞∑
m=0

zmHm(φ) −
( ∞∑

m=0

zmφm(x, t)

)
xx

+4

( ∞∑
m=0

zmφm(x, t)

)
xxx

+
( ∞∑

m=0

zmφm(x, t)

)
xxxx

]]
, (38)

where
∞∑

m=0

zmHm(u) = φ0(φ0)x .

For example, the first few components of He’s polyno-
mials are given by

H0(φ) = φ0(φ0)x

H1(φ) = ∂

∂z
[(φ0 + zφ1)(φ0 + zφ1)x ]z=0

= φ0(φ1)x + φ1(φ0)x
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Figure 6. For the fractional-order KSE with the second initial condition (eq. (35)) of eq. (1), FHPTM result for φ(x, t) when
(a) α = 0.25, (b) α = 0.50, (c) α = 0.75 and (d) α = 1.

H2(φ) = 1

2

∂2

∂z2 [(φ0 + zφ1 + z2φ2) (39)

×(φ0 + zφ1 + z2φ2)x ]z=0

= φ0(φ2)x + φ1(φ1)x + φ2(φ0)x

· · · .

When the coefficients of the same powers of z are com-
pared, we get

φ0(x, t) = β + 9 − 15
(

tanh[k(x − λ)]
+ tanh2[k(x − λ)] − tanh3[k(x − λ)]).

(40)

By carrying on in this manner, we obtain the final
element of the iteration formulas. Consequently, the
approximate answer is

φ(x, t) =
∞∑

m=0

φm(x, t). (41)

Example 4. Consider the following nonlinear fractional
Kuramoto–Sivashinsky eq. (1) for τ = 1, δ = 0, θ = 1
[16]:

CF
0 Dα

t φ + φφx + φxx + φxxxx = 0, 0 < α ≤ 1

(42)
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then the initial conditions

φ(x, 0) = e−x2
. (43)

Taking the Laplace transform on both sides of eq. (42),
we get

L [φ(x, t)] = e−x2 −
(
s + α(1 − s)

s

)

× L [φφx + φxx + φxxxx ] .

(44)

Applying the inverse Laplace transform for eq. (44)

φ(x, t) = e−x2 − L −1
[(

s + α(1 − s)

s

)

× L [φφx + φxx + φxxxx ]] . (45)

Now, we apply the FHPTM

∞∑
m=0

φm(x, t) = e−x2

−zL −1

[(
s + α(1 − s)

s

)
L

[ ∞∑
m=0

zmHm(φ)

−
( ∞∑

m=0

zmφm(x, t)

)
xx

+
( ∞∑

m=0

zmφm(x, t)

)
xxxx

]]
, (46)

where
∞∑

m=0

zmHm(x, t) = φ0(φ0)x .

For example, the first few components of He’s polyno-
mials are given by
H0(φ) = φ0(φ0)x

H1(φ) = ∂

∂z
[(φ0 + zφ1)(φ0 + zφ1)x ]z=0

= φ0(φ1)x + φ1(φ0)x

H2(φ) = 1

2

∂2

∂z2 [(φ0 + zφ1 + z2φ2)

×(φ0 + zφ1 + z2φ2)x ]z=0

= φ0(φ2)x + φ1(φ1)x + φ2(φ0)x

· · · . (47)

When we compare the coefficients of different powers
of z, we get

φ0(x, t) = e−x2
. (48)

By carrying on in this manner, we obtain the final
element of the iteration formulas. Consequently, the

Figure 7. The results of the FHPTM for fractional-order
KSE with the fourth initial condition (eq. (43)) for α = 0.25,
0.5, 0.75 and 1.

approximate answer is

φ(x, t) =
∞∑

m=0

φm(x, t). (49)

5. Results and discussion

In this section, the dynamics of the semi-analytical
solutions of the fractional-order Kuramoto–Sivashinsky
equation (1) are presented. We precisely determine the
values of arbitrary constants and parameters to char-
acterise the behaviour of the reported solutions. By
utilising the FHPTM on the fractional-order Kuramoto–
Sivashinsky equation we attain different sets of the well-
known and standard semi-analytical solutions, such as
the solitary wave solutions, hyperbolic function, tangent
hyperbolic function with a suitable choice of arbitrary
constants and parameters under the acceptable range
by using the symbolic computation tool Mathemat-
ica. Here, the fractional-order Kuramoto–Sivashinsky
equation is represented graphically with appropriate
parametric values as follows:

Figure 1a displays the 2D plot for solution represent-
ing a wave profile for different values of parameters and
fractional order α where α = 0.25, 0.50, 0.75, 1,

β = 5, k = 1/2
√

19 and x = 1, 0 ≤ t ≤ 10. Fig-
ure 1b displays the 3D graph of the exact solutions
φ(x, t) when β = 5, k = 1/2

√
19 and −1 ≤ x ≤

1, 0 ≤ t ≤ 1. Figures 2a–2d show the 3D plot of the
semi-analytical solutions for different values of param-
eters and fractional order α. Figure 3a shows the 2D plot
for the solution representing a wave profile for differ-
ent values of parameters and fractional order α where
α = 0.25, 0.50, 0.75, 1, β = 5, k = 0.5

√
11/19 and
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Figure 8. For the fractional-order KSE with the second initial condition (eq. (43)) of eq. (1), FHPTM result for φ(x, t) when
(a) α = 0.25, (b) α = 0.50, (c) α = 0.75 and (d) α = 1.

x = 1, 0 ≤ t ≤ 10. Figure 3b displays the 3D
analysis of the exact solutions φ(x, t) with paramet-
ric values β = 5, k = 0.5

√
11/19 and −1 ≤ x ≤

1, 0 ≤ t ≤ 1. Figures 4a–4d show the 3D plot of
the semi-analytical solutions for different values of
parameters and fractional order α. Figure 5a shows the
2D plot for the solution representing a wave profile for
different values of parameters and fractional order α

where α = 0.25, 0.50, 0.75, 1, β = 3, k = 0.5 and
x = 1, 0 ≤ t ≤ 1. Figure 5b displays the 3D
graph of the exact solutions φ(x, t) with parametric
values β = 5, k = 0.5 and −1 ≤ x ≤ 1, 0 ≤
t ≤ 1. Figures 6a–6d show the 3D plot of the semi-
analytical solutions for different values of parameters

and fractional order α. Figure 7 shows the 2D plot for
the solution representing a wave profile for different
values of parameters and fractional order α where α =
0.25, 0.50, 0.75, 1 and x = 1, 0 ≤ t ≤ 1. Fig-
ures 8a–8d show the 3D plot of the semi-analytical
solutions for different values of parameters and frac-
tional order α.

In the present work, FHPTM covers a wide range of
semi-analytic solutions of fractional-order Kuramoto–
Sivashinsky equation, which were not described earlier
in the literature. The obtained solutions exhibit richer
dynamical behaviour due to the presence of arbitrary
parameters. With respect to the time and space vari-
ables, the dynamic behaviour of the provided solutions
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is explained by the appropriate selection of arbitrary
parameters and range space.

6. Conclusion and applications

In this paper, we apply the fractional homotopy perturba-
tion transform method (FHPTM) to deliver an effective
semi-analytical technique for determining fractional-
order Kuramoto–Sivashinsky equations. The technique
combines the Laplace transform with the Caputo–
Fabrizio fractional derivative (CFFD) of order α where
α ∈ (0, 1]. We can discover the classical solution
to the above models’ four alternative initial circum-
stances. We found some new semi-analytical solutions
of the fractional-order KSEs. The KS equation is known
to exhibit various bifurcation phenomena, where the
behaviour of solutions changes qualitatively as parame-
ters such as β, k and λ are varied. In certain parameter
regimes, the KS equation supports soliton solutions.
Solitons are stable, localised wave packets that can
propagate through the system without changing their
shape. The KSE serves as a fundamental model for
exploring the intricate dynamics of spatially extended
systems. Its rich behaviour, including pattern forma-
tion, turbulence and chaos, makes it a valuable tool for
researchers studying nonlinear phenomena in physics
and engineering.

The KSE has a number of applications in various
fields, including:

• Combustion: The equation has been used to study the
behaviour of flame fronts in combustion processes,
including combustion-generated turbulence and the
formation of cellular patterns in flames.

• Fluid mechanics: The equation is used to study the
dynamics of fluid interfaces, including the formation
of turbulence in shear flows and the evolution of thin
liquid films.

• Material science: The equation has been used to
study the behaviour of solid–liquid interfaces in the
growth of dendritic structures and the formation of
patterns in phase-separation processes.

• Nonlinear dynamics: The equation is important for
understanding the basic principles of pattern forma-
tion, turbulence and chaos and is used in the study
of nonlinear dynamics and chaotic systems.

• Numerical methods: In addition, the equation is used
to test and develop numerical methods for solving
partial differential equations, such as finite differ-
ence and spectral methods.

These applications highlight the versatility and broad
applicability of the KSE, which has proven to be a
valuable tool for studying a wide range of complex
phenomena.
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