
Pramana – J. Phys.            (2024) 98:1 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-023-02655-5

Soliton solutions, lump solutions, mixed interactional solutions
and their dynamical analysis of the (2+ 1)-dimensional
Calogero–Degasperis system

XIAO-QI CUI, XIAO-YONG WEN ∗ and ZHE LIN

School of Applied Science, Beijing Information Science and Technology University, Beijing 100192,
People’s Republic of China
∗Corresponding author. E-mail: xiaoyongwen@163.com

MS received 4 March 2023; accepted 8 June 2023

Abstract. This paper focusses on a class of non-isospectral (2 + 1)-dimensional Calogero–Degasperis system,
which is a more general form of the classical nonlinear Schrödinger equation. Primarily, according to the plane
wave seed solutions, we analyse the modulational instability of this system and obtain the formation mechanism
of different localised waves. Secondly, based on the known Lax pair, we construct the generalised (n, N − n)-fold
Darboux transformation of this system. As an application of the resulting Darboux transformation, we not only
show the interaction structures of the multisoliton solutions, but also analyse its long-time asymptotic behaviours
and list the relevant physical properties. In order to explore the relationship with differential geometry, we also
show the multisoliton surfaces. Subsequently, we give some higher-order lump solutions and analyse their large-
parameter asymptotic states. We also give some mixed interactional solutions to better understand the interaction
phenomena of different localised waves, whose propagation structures and characteristics are shown graphically.
These results and phenomena may be helpful to understand some physical phenomena in nonlinear optics, fluids
and Bose–Einstein condensates.
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1. Introduction

In 2011, using the inverse Miura mapping method,
Tsuchida has proposed the following Calogero–
Degasperis (CD) system [1]:

iQt + Qxy − f Q − Qg = O,

iRt − Rxy + gR + R f = O,

fx = (QR)y,

gx = (RQ)y,

(1)

which can describe many physical phenomena, such
as nonlinear optics, soliton propagation and interaction
in fluids and Bose–Einstein condensates [2–4]. In sys-
tem (1), Q and R are two matrices of order �1 × �2
and �2 × �1, respectively, O is a zero matrix, i is an
imaginary unit, x and y are space variables, t is the time
variable and the subscripts x, y and t denote the par-
tial derivative of the corresponding unknown functions.

Other unknown functions and their related meanings can
be learned from ref. [1]. If we consider three matrices
Q, R and O in system (1) as scalars q, r and 0, respec-
tively, system (1) has the following form:

iqt + qxy − f q − gq = 0,

irt − rxy + gr + f r = 0,

fx − (qr)y = 0,

fx − gx = 0,

(2)

whereq and r are potential functions containing x, y and
t in the complex field, whereas f and g are potential
functions containing x, y and t in the real field. It is
worth noting that f and g are not necessarily equal due
to the influence of integral constants. The Lax pair of
system (2) are as follows [1]:

ψx = Mψ, ψt = 2ζψy + Nψ, (3)
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where

M =
(−iζ q

r iζ

)
, N =

(−i f iqy
−iry ig

)
,

and ψ = ψ(x, y, t) = (ψ1(x, y, t), ψ2(x, y, t))T (T
stands for transpose) is the eigenfunction in the com-
plex field. Meanwhile, it must satisfy the compatibility
condition ψxt = ψt x and ψxy = ψyx , ζ ∈ C is a spec-
tral parameter and satisfies the relation ζt = 2ζ ζy . In
fact, system (2) can be viewed as a zero-curvature equa-
tion Mt − Nx + [M, N ] − 2ζMy = 0 with [M, N ] ≡
MN−NM . When choosing the reduction r = −q∗, the
superscript ∗ indicates complex conjugate. So from sys-
tem (2) the reduced CD system can be given as follows:

iqt + qxy − f q − gq = 0,

fx + |q|2y = 0,

fx − gx = 0.

(4)

The corresponding Lax expressions of system (4) are
still consistent with (3) except that r is replaced by −q∗.
We mainly investigate the reduction of non-isospectral
(2 + 1)-dimensional CD system (4).

For system (4), many researchers have studied its
reduced form. A classic example is the (2 + 1)-
dimensional nonlinear Schrödinger (NLS) equation,
which can be obtained by making f = g in system (4).
Li et al [5] studied the variable coefficient (2 + 1)-
dimensional NLS equation. By using the Hirota method
with auxiliary functions, not only the multisoliton solu-
tions are obtained, but also the effects of coefficients and
wave numbers on the soliton interaction are revealed.
These multisolitons include parabolic, cubic, quasiperi-
odical and polyline solitons. Chen et al [6] mainly
discussed about the breathers and rogue wave solu-
tions of the (2 + 1)-dimensional NLS equation with
the help of the modified Darboux transformation (DT).
In addition, the dynamic characteristics of Akhmediev
breathers and Kuznetsov–Ma solitons are discussed in
graphical form. Zhang et al [7], with the help of clas-
sical and generalised N -fold DT, mainly studied the
elastic interaction between solitons and the related prop-
erties of higher-order rogue wave solution, while Peng
et al [8] studied the non-local PT symmetric rational
and semi-rational solutions using Hirota bilinear and
long wave limit methods for (2 + 1)-dimensional NLS
equation. Wang et al [9] proposed a simple and effective
method to establish the breather and rogue wave solu-
tions for the (2 + 1)-dimensional NLS equation. Zuo et
al [10], as a special case of the optical solitons, studied
the Hermite–Gaussian vortex solitons and displayed the
relevant images. However, as far as we know, the mod-
ulational instability (MI), multisoliton, soliton surfaces,
higher-order lump, mixed interaction solutions, dynam-
ics analysis of soliton and large-parameter asymptotic

of lump have not been studied using the generalised
(n, N−n)-fold DT for system (4). Generalised DT plays
an important role in solving nonlinear integrable equa-
tions [11–14]. However, the extension of the generalised
DT to higher-dimensional non-isospectral nonlinear
integrable equations including (2 + 1)-dimensional and
(3 + 1)-dimensional Lax integrable systems still needs
further research. Therefore, our next major task in this
paper is to extend the generalised (n, N −n)-fold DT to
solve the reduction non-isospectral (2+1)-dimensional
CD system (4).

This article is organised as follows: In §2, based on
the plane-wave background, we will not only divide the
MI region in detail and analyse the MI of system (4), but
also give the excitation principles of different localised
waves in different regions. In §3, we establish the gener-
alised (n, N − n)-fold DT. In §4, we establish abundant
multisoliton structures by using (N , 0)-fold DT and
show the related dynamic characteristics of multisoli-
tons by using asymptotic analysis technique. In order
to better understand the differential geometric proper-
ties of system (4), we also give the relevant structures
of soliton surface. In §5, according to the generalised
(1, N−1)-fold DT, we set up the position and shape con-
trollable higher-order lump and use the large-parameter
asymptotic analysis method to give the properties of the
higher-order lump at infinity as the parameters change
for system (4). In §6, with the help of the gener-
alised (2, N −2)-fold DT, we give mixed lump-breather
interactional structures. The relevant contents are sum-
marised in §7.

2. MI analysis for the reduced (2+ 1)-dimensional
CD system (4)

MI, also known as parametric instability, is an extremely
common and momentous physical phenomenon in
fluid mechanics, optics, plasma physics and condensed
matter physics. With the development of nonlinear
problems, researchers have found that the generation
mechanism of different localised waves can be deter-
mined by numerical analysis method [12–18]. We can
clearly understand the excitation principle of different
localised waves through the detailed division of modu-
lation stability (MS) and MI regions. Next, in order to
analyse the MI of system (4), we start from the following
plane-wave seed solutions:

q0 = cei(kx+my+μt), g0 = f0 = −km + μ

2
, (5)

where c, k, m and μ are arbitrary real constants. Sub-
sequently, we can reconstruct solutions (5) after adding
perturbations as follows:
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q=q0(1+τ1+ei�(−αx−βt+y)+τ ∗
1−e−i�(−α∗x−β∗t+y)),

g=g0(1+τ2+ei�(−αx−βt+y)+τ ∗
2−e−i�(−α∗x−β∗t+y)),

f = f0(1+τ3+ei�(−αx−βt+y)+τ ∗
3−e−i�(−α∗x−β∗t+y)),

(6)

where τ1±, τ2± and τ3± are the complex small pertur-
bations, � is the real modulational frequency and α and
β are the complex propagation parameters. Substituting
eq. (6) into system (4), we will establish the following
six linear algebraic equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

2

[
2�(�α + αm + β − k)τ1+

+(km + μ)τ2+ + (km + μ)τ3+
] = 0,

c

2

[
2�(�α − αm − β + k)τ1−

+(km + μ)τ2− + (km + μ)τ3−
] = 0,

i�[c2τ1+ + c2τ1− + 1
2α(km + μ)τ3+] = 0,

i�[c2τ1+ + c2τ1− + 1
2α(km + μ)τ3−] = 0,

i�α(km + μ)τ2+ − i�α(km + μ)τ3+ = 0,

i�α(km + μ)τ2− − i�α(km + μ)τ3− = 0.

(7)

According to eqs (7), we know that the necessary and
sufficient condition for it to have a non-zero solution is
that the relevant parameters α, β, �, c, k and m meet
the following relationship:

β± = −αm + k ± √
�2α2 − 4c2. (8)

To facilitate the analysis, we must restrict α in rela-
tion (8) to be a sufficiently small complex number.
However, it is inconvenient to give this sufficiently small
complex number and we use α = i

2 instead. When
α = i

2 , we take β+, where k = 1, m = 120. Next,
we specify the MI gain as G1 = |�(�β+)| where � rep-
resents the imaginary part. Thereby, we can obtain the
following conclusion: MI generation factor of G1 is the
other regions except the lines � = ±4

√
900 − c2 and

−30 ≤ c ≤ 30.
In order to avoid the restriction of α in relation (8),

the relevant parameters can still satisfy the following
conditions so that eqs (7) has a non-zero solution.

α = 2
√

(�2 − m2)c2

�2 − m2 ,

β = −�2k + km2 + 4m
√

(�2 − m2)c2

−�2 + m2 . (9)

From (9), we can redefine the MI gain G2 = |�(�β)|,
where k = 1 and m = 2, so that we can clearly under-
stand that the MI regions of G2 is the other regions
except c = 0 and �2 > 4.

In figures 1(a1) and 1(a2), for the MI gain G1, its sur-
face shape and density distribution can be clearly seen.
In figures 1(a2) and 1(a3), we also clearly mark the MI

and MS regions. It is worth noting that � = 0 for the
MI region and it can excite the breather or lump in fig-
ure 1(a2). In figure 1(a2), we can observe that the red
region is the MS areas, and solitons or plane waves can
be excited in this region. Figure 1(a3) is the enlarged
image of the MS areas of figure 1(a2). For the explana-
tion of why � = 0 for MI, please refer to refs [19,20].
For the MI gain G2, the relevant surface structure, den-
sity and MI, MS distributions are shown in figures 1(b1)
and 1(b2). Certainly, the relevant localised waves will
be excited in the corresponding region in figure 1(b2),
which will be described only a little here. By the above
analysis, we clearly know that the MI region can excite
breather and lump, and the MS region can excite the
soliton and the plane wave.

We have to emphasise that we have given the relevant
parameter values in advance, which is helpful for the
analysis. We can certainly assign other values to related
parameters and use the same analysis method to analyse
the MI gains. However, it will no longer be described.

3. Generalised (n, N − n)-fold DT of CD system (4)

As per our knowledge of DT, we can easily give the
following gauge transformation:

ψ̃ = T (ζ )ψ (10)

where ψ satisfies Lax pair (3) and the form of T (ζ )

will be given below. Meanwhile, ψ̃ = (ψ̃1, ψ̃2)
T needs

to satisfy the same form of the Lax pair as (3). And ψ̃

should be subjected to ψ̃x = M̃ψ̃, ψ̃t = 2ζ ψ̃y + Ñ ψ̃ ,
where M̃, Ñ have the same forms as M, N , respec-
tively, except that q, r, f, g are replaced by q̃, r̃ , f̃ , g̃.
Similarly, as per our knowledge of DT, we can also
obtain the following relationships:

Tx + T M − M̃T = 0,

Tt + T N − Ñ T − 2ζTy = 0. (11)

By symbolic computation, the following DT matrix T
can be obtained:

T (ζ ) =

⎛
⎜⎜⎜⎜⎝

ζ N +
N−1∑
j=0

A( j)ζ j
N−1∑
j=0

B( j)ζ j

N−1∑
j=0

C ( j)ζ j ζ N +
N−1∑
j=0

D( j)ζ j

⎞
⎟⎟⎟⎟⎠ ,

(12)

where N is a positive integer, A( j), B( j), C ( j) and
D( j) ( j = 0, 1, . . . , N − 1) are unknown functions
containing x, y and t , and their specific forms will be
given later. In terms of (11) and conventional N -fold
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Figure 1. Surface (a1) and density (a2) distribution of the MI gain G1 when k = 1, m = 120, α = i
2 ; (a3) enlarged image

of the MS areas of (a2); (b1) Surface (top) and density (below) distribution of the MI gain G2 when k = 1, m = 2; (b2) MI
and MS distribution areas of G2.

DT knowledge, the potential function transformations
of system (2) will be obtained as follows:

q̃N = q0 + 2iB(N−1), r̃N = r0 − 2iC (N−1),

f̃ = f0 − 2iA(N−1)
y , g̃ = g0 + 2iD(N−1)

y .
(13)

According to our research, the structures of the
new solution generated are extremely unsatisfactory by
transformation (13). Based on r = −q∗, we will con-
struct the generalised (n, N−n)-fold DT for system (4).
In terms of DT matrix (12), we can obtain the following
reduced DT matrix:

T (ζ ) =

⎛
⎜⎜⎜⎜⎝

ζ N +
N−1∑
j=0

A( j)ζ j
N−1∑
j=0

B( j)ζ j

−
N−1∑
j=0

B( j)∗ζ j ζ N +
N−1∑
j=0

A( j)∗ζ j

⎞
⎟⎟⎟⎟⎠ .

(14)

According to (10), (11) and (14), we have the following
potential function transformations for system (4):

q̃N = q0 + 2iB(N−1), f̃N = f0 − 2iA(N−1)
y ,

g̃N = g0 + 2iA(N−1)∗
y ,

(15)

where q0, f0 and g0 are the seed solutions. To obtain
the new form solutions for system (4), we have to deter-
mine A(N−1), B(N−1) in (15). However, determination
of these unknown functions will be our next research
focus. According to ζ = ζi (i = 1, 2, . . . , n), let
ψ(ζi ) = (ψ1(ζi ), ψ2(ζi ))

T be n linearly independent
solutions for Lax pair (3), in which 1 ≤ n ≤ N . Then the
unknown functions A( j) and B( j) ( j = 0, 1, . . . , N−1)

are determined from T (ζi )ψ(ζi ) = 0, that is, they can
be given in the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (0)(ζi )ψ
(0)(ζi ) = 0,

T (0)(ζi )ψ
(1)(ζi ) + T (1)(ζi )ψ

(0)(ζi ) = 0,

T (0)(ζi )ψ
(2)(ζi ) + T (1)(ζi )ψ

(1)(ζi )

+T (2)(ζi )ψ
(0)(ζi ) = 0,

. . . ,
ri∑
j=0

T ( j)(ζi )ψ
(ri− j)(ζi ) = 0,

(16)

where N = ∑n
i=1(n + ri ) (i = 1, 2, . . . , n), T ( j) ( j =

0, 1, 2, . . .) is obtained by

T (ζi + ε) =
N∑

ϑ=0

T (ϑ)(ζi )ε
ϑ,
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while ψ( j) ( j = 0, 1, 2, . . .) are obtained by the expan-
sion ψ(ζi + ε) = ψ(0)(ζi ) + ψ(1)(ζi )ε + ψ(2)(ζi )ε

2 +
· · · , the coefficients

ψ(ϑ)(ζi ) =
(

1

ϑ !
∂ϑ

∂ζϑ
i

ψ1(ζi ),
1

ϑ !
∂ϑ

∂ζϑ
i

ψ2(ζi )

)T

(ϑ = 0, 1, 2, . . .).

According to (16), we will choose n appropriate spec-
tral parameters ζi and 2N A( j), B( j). Once the seed
solutions q0, f0 and g0 of system (4) are given, then
the exact expressions of A(N−1) and B(N−1) will be
obtained in (15) as follows:

A(N−1) = �A(N−1)

�N
, B(N−1) = �B(N−1)

�N
, (17)

where �N = det([�(1)
m1+1, �

(2)
m2+1, . . . , �

(n)
mn+1]T) and

�
(i)
mi+1 = (�

(i)
j,s)2(mi+1)×2N and the form of �

(i)
j,s (1 ≤

j ≤ 2mi + 2, 1 ≤ s ≤ 2N ) is as follows:

�
(i)
j,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑ j−1
ϑ=0 C

ϑ
N−sζ

N−s−ϑ
i ψ

j−1−ϑ
1i ,

for 1 ≤ j ≤ mi + 1, 1 ≤ s ≤ N ,∑ j−1
ϑ=0 C

ϑ
2N−sζ

2N−s−ϑ
i ψ

j−1−ϑ
2i ,

for 1 ≤ j ≤ mi + 1, N + 1 ≤ s ≤ 2N ,∑ j−(N+1)
ϑ=0 Cϑ

N−sζ
(N−s−ϑ)∗
i ψ2i ( j−1−N−ϑ)∗,

for mi + 2 ≤ j ≤ 2(mi + 1), 1 ≤ s ≤ N ,

−∑ j−(N+1)
ϑ=0 Cϑ

2N−sζ
(2N−s−ϑ)∗
i ψ

( j−N−1−ϑ)∗
1i ,

for mi+2≤ j≤2(mi+1), N+1≤s≤2N ,

while �A(N−1) and �B(N−1) will be uniquely deter-
mined by the determinant �N substituting its first and
(N +1)th columns via the vector (g(1), . . . , g(n))T with
g(i) = (gij )2(mi+1)×1, where

gij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
j−1∑
ϑ=0

Cϑ
N ζ N−ϑ

i ψ
( j−1−ϑ)
1i ,

for 1 ≤ j ≤ mi + 1,

−
j−N−1∑
ϑ=0

Cϑ
N ζ

(N−ϑ)∗
i ψ

( j−N−1−ϑ)∗
2i ,

for mi + 2 ≤ j ≤ 2(mi + 1).

In general, the transformations (10) and (15) are called
the generalised (n, N − n)-fold DT. In the generalised
(n, N − n)-fold DT, n denotes the number of spectral
parameters used, while N − n represents the sum of
the derivative orders of the Taylor expansion for eigen-
function ψ(ζi ) (i = 1, 2, . . . , n). In this article, we
will establish higher-order lump and rich mixed interac-
tion solutions for system (4) by adopting the generalised
(n, N − n)-fold DT.

Remark 1. When n = N , ri = 0 (1 ≤ i ≤ N ),
the N -fold DT included in the (N , 0)-fold DT and
the generalised (n, N − n)-fold DT will reduce to the
(N , 0)-fold DT, from which if we do not use Taylor
expansion at every ζi , the soliton and breather solu-
tions will be obtained. The generalised (n, N − n)-fold
DT will reduce to the generalised (1, N − 1)-fold DT,
when n = 1 and r1 = N − 1, and from the plane-
wave background, the lump solutions of system (4) will
be obtained. The generalised (n, N − n)-fold DT will
reduce to the generalised (2, N − 2)-fold DT. When
n = 2 and r1 + r2 = N − 2, we can certainly obtain
the mixed lump–breather interaction structures for sys-
tem (4). When 2 < n < N , we will certainly obtain
interaction phenomena with higher order and abundant
structures, but these phenomena will not be described
in this paper. With the help of this method, in the subse-
quent three sections we will generate some multisoliton,
higher-order lump and mixed interaction solutions from
the non-zero background and plane-wave background
for system (4), respectively.

4. Multisoliton solutions, asymptotic analysis and
soliton surfaces of system (4)

In this section, based on the constant seed solutions
and transformation (15), we will use (N , 0)-fold DT
to establish the multisoliton solutions of system (4)
and analyse its elastic interaction and related dynamic
characteristics. We consider the constant seed solutions
q0 = 0 and f0 = g0 = −1 of system (4), and substi-
tute the seed solutions into Lax pair (3) to obtain the
following form solution with ζ = ζκ :

ψκ =
(

ψ1κ

ψ2κ

)
=
⎛
⎜⎝ e

−2iζ 2
κ x−2ζκ t−(1+i)y

2ζκ

e
2iζ 2

κ x+2ζκ t+(1+i)y
2ζκ

⎞
⎟⎠ ,

κ = 1, 2, . . . , N . (18)

In the same background, in terms of transforma-
tion (15), we find that the shape and properties of f and
g are similar. Therefore, to save space, we only show
the multisoliton solutions of q and f and analyse their
elastic interaction.

4.1 One-soliton solutions and dynamic analysis

When N = 1, ζ1 = bi, where b is an arbitrary constant,
in terms of (15), we can obtain the following solutions:

q̃1 = 2iB(0), f̃1 = −1 − 2iA(0)
y , (19)
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Table 1. Relevant physical quantities for one-soliton solution in the x , y direction.

Soliton Amplitude Velocity Wave number Width Primary phase Energy

q̃1 |2b| 1
b , −2b |2b|, ∣∣ 1

b

∣∣ ∣∣ 1
2b

∣∣, |b| 0 |4b|, |8b3|
f̃1 + 1 2 1

b , −2b |2b|, ∣∣ 1
b

∣∣ ∣∣ 1
2b

∣∣, |b| 0
∣∣ 8

3b

∣∣, ∣∣ 16b
3

∣∣

Figure 2. Surface (top) and density (below) plots for one-soliton solutions q and f using (20) with different spectral param-
eters: (a1), (a2) ζ1 = 2i; (a3), (a4) ζ1 = i

2 .

where

�1 =
∣∣∣∣ψ11 ψ21
ψ∗

21 −ψ∗
11

∣∣∣∣ , �A(0) =
∣∣∣∣−ζ1ψ11 ψ21

−ζ ∗
1 ψ∗

21 −ψ∗
11

∣∣∣∣ ,
�B(0) =

∣∣∣∣ψ11 −ζ1ψ11

ψ∗
21 −ζ ∗

1 ψ∗
21

∣∣∣∣ .
For the convenience of analysing the relevant physical
properties of one-soliton, solutions (19) can be rewritten
as

q̃1 = 2be
yi
b sech

(
2b2x − y − 2bt

b

)
,

f̃1 = −1 + 2 sech2
(

2b2x − y − 2bt

b

)
. (20)

From (20), it is easy to observe that q̃1 is a bright one-
soliton structure, while f̃1 is a bell-shaped one-soliton
structure. Relevant physical quantities propagating in
different directions are listed in table 1. For q and f , the
energies are defined as

Eq =
∫ ∞

−∞
|q|2dx +

∫ ∞

−∞
|q|2dy,

E f +1 =
∫ ∞

−∞
( f + 1)2dx +

∫ ∞

−∞
( f + 1)2dy,

respectively. We can easily observe that the physi-
cal quantities of one-soliton solutions depend on the
spectral parameter ζ1. In figures 2(a1) and 2(a2), the
bell-shaped one-soliton structure of q̃1 and f̃1 propa-
gating in the x direction are shown when ζ1 = 2i (i.e.,

b = 2). In figures 2(a3) and 2(a4), q̃1 and f̃1 propa-
gating in the y direction are shown when ζ1 = i

2 (i.e.,
b = 1

2 ).

4.2 Two-soliton solutions and their asymptotic
analysis

When N = 2, ζ1 = b1i, ζ2 = b2i, where b1 and b2 are
positive arbitrary constants, in terms of (15), we can get
the following solutions:

q̃2 = 2iB(1), f̃2 = −1 − 2iA(1)
y , (21)

where

�2 =

∣∣∣∣∣∣∣∣∣

ζ1ψ11 ψ11 ζ1ψ21 ψ21

ζ2ψ12 ψ12 ζ2ψ22 ψ22

ζ ∗
1 ψ∗

21 ψ∗
21 −ζ ∗

1 ψ∗
11 −ψ∗

11

ζ ∗
2 ψ∗

22 ψ∗
22 −ζ ∗

2 ψ∗
12 −ψ∗

12

∣∣∣∣∣∣∣∣∣
,

�A(1) =

∣∣∣∣∣∣∣∣∣∣

−ζ 2
1 ψ11 ψ11 ζ1ψ21 ψ21

−ζ 2
2 ψ12 ψ12 ζ2ψ22 ψ22

−(ζ 2
1 )

∗
ψ∗

21 ψ∗
21 −ζ ∗

1 ψ∗
11 −ψ∗

11

−(ζ 2
2 )

∗
ψ∗

22 ψ∗
22 −ζ ∗

2 ψ∗
12 −ψ∗

12

∣∣∣∣∣∣∣∣∣∣
,

�B(1) =

∣∣∣∣∣∣∣∣∣∣

ζ1ψ11 ψ11 −ζ 2
1 ψ11 ψ21

ζ2ψ12 ψ12 −ζ 2
2 ψ12 ψ22

ζ ∗
1 ψ∗

21 ψ∗
21 −(ζ 2

1 )
∗
ψ∗

21 −ψ∗
11

ζ ∗
2 ψ∗

22 ψ∗
22 −(ζ 2

2 )
∗
ψ∗

22 −ψ∗
12

∣∣∣∣∣∣∣∣∣∣
.
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The solutions (21) can be rewritten as

q̃2 = −
4(b2

1 − b2
2)

[
−b1e

yi
b1 cosh(ξ2) + b2e

yi
b2 cosh(ξ1)

]

(b1 + b2)2 cosh(ξ1 − ξ2) + (b1 − b2)2 cosh(ξ1 + ξ2) − 4b1b2 cos
(
y b1−b2

b1b2

) , (22)

f̃2 =

4(b1 + b2)(b1 − b2)
2
[√

J1 J2 cosh
(
ξ1 + ξ2 + 1

2 ln J1
J2

)
+ √

J3 J4 cosh
(
ξ1 − ξ2 − 1

2 ln J3
J4

)
+(b1 + b2)[cosh(2ξ2) + cosh(2ξ1) − 2]

]
[
(b1 + b2)2 cosh(ξ1 − ξ2) + (b1 − b2)2 cosh(ξ1 + ξ2) − 4b1b2 cos

(
y b1−b2

b1b2

)]2 − 1, (23)

where

ξ1 = 2b2
1x − y − 2b1t

b1
, ξ2 = 2b2

2x − y − 2b2t

b2
,

J1 = −2(b1 + b2) cos

(
y
b1 − b2

b1b2

)

+2(b1 − b2) sin

(
y
b1 − b2

b1b2

)
,

J2 = −2(b1 + b2) cos

(
y
b1 − b2

b1b2

)

−2(b1 − b2) sin

(
y
b1 − b2

b1b2

)
,

J3 = 2(b1+b2)

[
cos

(
y
b1−b2

b1b2

)
−sin

(
y
b1−b2

b1b2

)]
,

J4 = 2(b1+b2)

[
cos

(
y
b1−b2

b1b2

)
+sin

(
y
b1−b2

b1b2

)]
.

Asymptotic analysis is an extremely useful technique
to analyse the elastic collision of solitons [21–26].
According to solutions (22), to study whether the inter-
action between two solitons is elastic, we have the
following asymptotic analysis:

(i) The analysis of solution q̃2 is as follows:

• Before the interaction (t → −∞):

q̃2 → η−
1 = 2b1e

yi
b1 sech

[
ξ1 + ln

(
b1 − b2

b1 + b2

)]
,

ξ1 ∼ 0, ξ2 → +∞,

q̃2 → η−
2 = 2b2e

yi
b2 sech

[
ξ2 + ln

(
b2 − b1

b2 + b1

)]
,

ξ2 ∼ 0, ξ1 → +∞,

where η−
1 , η−

2 are the asymptotic expressions of q̃2
before the interaction.

• After the interaction (t → +∞):

q̃2 → η+
1 = 2b1e

yi
b1 sech

[
ξ1 + ln

(
b1 + b2

b1 − b2

)]
,

ξ1 ∼ 0, ξ2 → −∞,

q̃2 → η+
2 = 2b2e

yi
b2 sech

[
ξ2 + ln

(
b2 + b1

b2 − b1

)]
,

ξ2 ∼ 0, ξ1 → −∞,

(24)

where η+
1 , η+

2 are the asymptotic expressions of q̃2 after
the interaction.

(ii) The analysis of solution f̃2 is as follows:

• Before the interaction (t → −∞):

f̃2 + 1 → ν−
1 = 2 sech2

[
ξ1 + ln

(
b1 − b2

b1 + b2

)]
,

ξ1 ∼ 0, ξ2 → +∞,

f̃2 + 1 → ν−
2 = 2 sech2

[
ξ2 + ln

(
b1 − b2

b1 + b2

)]
,

ξ2 ∼ 0, ξ1 → +∞,

(25)

where ν−
1 , ν−

2 are the asymptotic expressions of f̃2 + 1
before the interaction.

• After the interaction (t → +∞):

f̃2 + 1 → ν+
1 = 2 sech2

[
ξ1 + ln

(
b1 + b2

b1 − b2

)]
,

ξ1 ∼ 0, ξ2 → −∞,

f̃2 + 1 → ν+
2 = 2 sech2

[
ξ2 + ln

(
b1 + b2

b1 − b2

)]
,

ξ2 ∼ 0, ξ1 → −∞,

(26)

where ν+
1 , ν+

2 are the asymptotic expressions of f̃2 + 1
after the interaction.

After the above analysis (23)–(26), the relevant phys-
ical quantities of two-soliton q̃2 and f̃2 + 1 are listed in
different directions in tables 2 and 3. By comparing these
physical quantities, we notice that the relevant physical
quantities of the two-soliton before and after the interac-
tion remain unchanged, but the phase is opposite, and so
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it is an elastic interaction. In order to understand these
physical quantities more intuitively, we show the rele-
vant images in figure 3 when the spectral parameters
ζ1 = i

2 and ζ2 = 2i and t = −4, 0, 4. In fig-
ure 3, we can easily observe the propagation and strong
interaction of two-soliton, which will not be described
here.

When N = 3, similar to the method of N = 1, 2,
we can certainly obtain the three-soliton solutions, but
the relevant dynamic features and physical properties
will not be described due to space constraints. When
the parameters ζ1 = i

2 , ζ2 = 2i, ζ3 = i
3 , we only plot

the structures of three-soliton as shown in figure 4.

4.3 Soliton surfaces

The soliton equation has many connections with differ-
ential geometries. Since the famous report of Gauss in
1827, the soliton theory has been widely applied to dif-
ferential geometry surfaces and soliton surface theory
developed by Sym can establish the general relation-
ship between integrable systems and geometry [27–29].
Meanwhile, soliton surface method provides a geomet-
ric interpretation for many integrable systems, such as
spin, vortex, chiral field and so on [30,31]. Recently,
research on soliton surface has become extremely popu-
lar. However, there are no studies on the soliton surfaces
of (2 + 1)-dimensional non-isospectral problem. In this
section, we will study the soliton surfaces of system (4)
according to the previous soliton solutions.

Based on the seed solutions q0 = 0 and f0 = g0 =
−1, we can get the eigenfunctions matrix of system (4)
as follows:

�(ζ)=
⎛
⎜⎝e

−2iζ 2x−2ζ t−(1+i)y
2ζ −e

−2iζ 2x+2ζ t+(1−i)y
2ζ

e
2iζ 2x+2ζ t+(1+i)y

2ζ e
2iζ 2x−2ζ t−(1−i)y

2ζ

⎞
⎟⎠ ,

(27)

and det(�(ζ )) = 2 cosh(
y+2ζ t

ζ
) �= 0, M, N ∈ SU (2).

By applying Sym formula �(ζ)−1 d
dζ

�(ζ ) [31], we can
obtain the N -soliton surface (F1, F2, F3) of system (4),
the analytic form of which is defined as

�[N ](ζ )−1 d

dζ
�[N ](ζ ) =

(
iF3 + F0 iF1 − F2

iF1 + F2 −iF3 + F0

)
.

(28)

According to (14) and (27), we can determine that
�[N ](ζ ) = T (ζ )�(ζ ) in (28). It is worth noting that
ζ satisfies the non-isospectral relation ζt = 2ζ ζy . When
N = 1, 2, 3, we will give the soliton surface structures
satisfying the non-isospectral conditions as shown in fig-
ures 5–7, respectively. In figures 5(a1)–5(a3), based on
the isospectral parameter ζ = 1, we show the structures
of one-soliton surface for t = −3, 0, 3, which have
pretty good symmetry. In figures 5(b1)–5(b3), based on
the non-isospectral parameter ζ = 2y+4

3−4t , we show the
structures of one-soliton surface for t = −1, 0, 1. In
figures 6(a1)–6(a3), based on the isospectral parameter
ζ = 1, we show the structures of two-soliton surface
for t = −3, 0, 3, which have pretty good symmetry.
In figures 6(b1)–6(b3), based on the non-isospectral
parameter ζ = 2y+4

3−4t , we show the structures of two-
soliton surface for t = −1, 0, 1. In figure 7, based on
the isospectral parameter ζ = 1, we show the structures
of three-soliton surface for t = −3, 0, 3, which also
have pretty good symmetry.

5. Higher-order lump solutions and
large-parameter asymptotic analysis for system (4)

In this section, we still only show the higher-order lump
solutions ofq and f and analyse them. According to (15)
and generalised (1, N − 1)-fold DT, higher-order lump
solutions of system (4) will be established based on one
spectral parameter. Subsequently, substituting (5) into
Lax pair (3), we get the following form solution for
system (4):

ψ =
(

ψ1
ψ2

)
=
⎛
⎝

(
C1eג[x+iy+(2iζ−m)t+δ(ε)] + C2e−ג[x+iy+(2iζ−m)t+δ(ε)]) e

i(kx+my+μt)
2

(
C1m−eג[x+iy+(2iζ−m)t+δ(ε)] + C2m+e−ג[x+iy+(2iζ−m)t+δ(ε)]) e

−i(kx+my+μt)
2

⎞
⎠ , (29)

with

m∓ = 2c

ik + 2iζ ∓√−4c2 − k2 − 4kζ − 4ζ 2
,

ג =
√−4c2 − k2 − 4kζ − 4ζ 2

2
,

δ(ε) =
N∑
i=0

(ei + idi )ε
2i ,

where ε is an extremely small parameter, usually refer
to ei and di (i = 0, 1, 2, . . . , N ) as real control param-
eters, while C1 and C2 are real numbers. According
to (29) and the (N , 0)-fold DT, we can certainly get
the breather solutions. However, the main goal of this
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Table 2. Relevant physical quantities for two-soliton solution q̃2 in the x , y direction.

Soliton Amplitude Velocity Wave number Width Primary phase Energy

η−
1 |2b1| 1

b1
, −2b1 |2b1|,

∣∣ 1
b1

∣∣ ∣∣ 1
2b1

∣∣, |b1| ln
(
b1−b2
b1+b2

)
|4b1|, |8b3

1|
η−

2 |2b2| 1
b2

, −2b2 |2b2|,
∣∣ 1
b2

∣∣ ∣∣ 1
2b2

∣∣, |b2| ln
(
b2−b1
b2+b1

)
|4b2|, |8b3

2|
η+

1 |2b1| 1
b1

, −2b1 |2b1|,
∣∣ 1
b1

∣∣ ∣∣ 1
2b1

∣∣, |b1| ln
(
b1+b2
b1−b2

)
|4b1|, |8b3

1|
η+

2 |2b2| 1
b2

, −2b2 |2b2|,
∣∣ 1
b2

∣∣ ∣∣ 1
2b2

∣∣, |b2| ln
(
b2+b1
b2−b1

)
|4b2|, |8b3

2|

Table 3. Relevant physical quantities for two-soliton solution f̃2 + 1 in the x , y direction.

Soliton Amplitude Velocity Wave number Width Primary phase Energy

ν−
1 2 1

b1
, −2b1 |2b1|,

∣∣ 1
b1

∣∣ ∣∣ 1
2b1

∣∣, |b1| ln
(
b1−b2
b1+b2

) ∣∣ 8
3b1

∣∣, ∣∣ 16b1
3

∣∣
ν−

2 2 1
b2

, −2b2 |2b2|,
∣∣ 1
b2

∣∣ ∣∣ 1
2b2

∣∣, |b2| ln
(
b1−b2
b1+b2

) ∣∣ 8
3b2

∣∣, ∣∣ 16b2
3

∣∣
ν+

1 2 1
b1

, −2b1 |2b1|,
∣∣ 1
b1

∣∣ ∣∣ 1
2b1

∣∣, |b1| ln
(
b1+b2
b1−b2

) ∣∣ 8
3b1

∣∣, ∣∣ 16b1
3

∣∣
ν+

2 2 1
b2

, −2b2 |2b2|,
∣∣ 1
b2

∣∣ ∣∣ 1
2b2

∣∣, |b2| ln
(
b1+b2
b1−b2

) ∣∣ 8
3b2

∣∣, ∣∣ 16b2
3

∣∣

Figure 3. Structural plots of the two-soliton solutions q and f via the (22) with two spectral parameters ζ1 = i
2 , ζ2 = 2i

when t = −4, 0, 4.
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Figure 4. Structural plots of the three-soliton solutions q and f with three spectral parameters ζ1 = i
2 , ζ2 = 2i, ζ3 = i

3
when t = −4, 0, 4.

Figure 5. One-soliton surfaces for system (4) with isospectral parameters for t = −3, 0, 3: (a1)–(a3) ζ = 1, ζ1 = 2i,
(x, y) ∈ [−3, 3] × [−3, 3]. One-soliton surfaces for system (4) with non-isospectral parameters for t = −1, 0, 1:
(b1)–(b3) ζ = 2y+4

3−4t , ζ1 = 2i, (x, y) ∈ [−1, 1] × [−1, 1].
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Figure 6. Double-soliton surfaces for system (4) with isospectral parameters for t = −3, 0, 3: (a1)–(a3) ζ = 1,

ζ1 = i
2 , ζ2 = 2i, (x, y) ∈ [−3, 3] × [−3, 3]. Double-soliton surfaces for system (4) with non-isospectral parameters for

t = −1, 0, 1: (b1)–(b3) ζ = 2y+4
3−4t , ζ1 = i

2 , ζ2 = 2i, (x, y) ∈ [−1, 1] × [−1, 1].

Figure 7. Three-soliton surfaces for system (4) with isospectral parameters for t = −3, 0, 3: (a1)–(a3) ζ = 1, ζ1 = i
2 ,

ζ2 = 2i, ζ3 = i
3 , (x, y) ∈ [−3, 3] × [−3, 3].

section is to give the higher-order lump solutions and
analyse them. Thus, two forms of Taylor expansion
about spectral parameter ζ will be given later. Then,
we can set ζ = ζ1 + ε2 in (29). Meanwhile, ψ needs
to expand through Taylor series around ε = 0, and the
following expressions can be obtained:

ψ(ε2) =
∞∑

ϑ=0

ψ(ϑ)ε2ϑ

= ψ(0) + ψ(1)ε2 + ψ(2)ε4 + ψ(3)ε6+· · · , (30)

where ψ(ϑ) = (ψ
(ϑ)
1 , ψ

(ϑ)
2 )T (ϑ = 0, 1, 2, . . .) can be

uniquely obtained through (16) and (29).
In order to acquire the higher-order lump solutions

of system (4) by means of symbolic computation, let
M = − k

2 ±ci and consider the following two expansion
types:

Type I: Take C1 = −C2 = 1
ε
, c = k = 1, ζ =

ζ1 + ε2 with ζ1 = M and use Taylor series expan-
sion at ε = 0 for (29). Subsequently, the vectors
ψ(ϑ) = (ψ

(ϑ)
1 , ψ

(ϑ)
2 )T can be obtained, which are poly-
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nomials containing x, y, t , and then the lump solutions
of system (4) can be acquired. Under this expansion
type, the related expansion of (29) are as follows:

ψ
(0)
1 = (−2 + 2i)[(3 + i)t − iy − x − id0 − e0]

× e
i
2 (x+y+t)

,

ψ
(0)
2 = (2 − 2i)[(3 + i)t − iy − x − id0 − e0 + 1]

× e− i
2 (x+y+t)

,

ψ
(1)
1 =

{(
− 16

3
+ 88

3
i

)
t3 − 4[(1 + 7i)x + (i − 7)y

+ (i − 7)d0 + (1 + 7i)e0]t2 − 8

{(
− 1

2
− i

)
x2

+ [(2 − i)y − (1 + 2i)e0 + (2 − i)d0]x
+
(

1

2
+ i

)
y2 + [(2 − i)e0 + (1 + 2i)d0]y

−
(

1

2
+ i

)
e2

0 + (2 − i)d0e0

− 5

8
− 3

4
i +

(
1

2
+ i

)
d2

0

}
t

− 2

3
(1 − i)d3

0 + (2 − 2i)(ie0 + ix − y)d2
0

+ 1

2
(1 − i)[8ie0y + 8ixy + 4e2

0 + 8xe0

+ 4x2 − 4y2 + 1]d0 − 2

3
(1 + i)e3

0

− 2(1 − i)(ix − y)e2
0 − 2

[
(1 + i)x2

− 2(1 − i)yx − (1 + i)

(
y + 1

2

)(
y − 1

2

)]
e0

+ 1

6
(1 − i)(−4ix3 + 12ixy2 + 12x2y

− 4y3 − 3ix + 12id1 + 3y + 12e1)

}
e

i
2 (x+y+t)

,

ψ
(1)
2 =

{(
16

3
− 88

3
i

)
t3 + 4[(1 + 7i)x

+ (i − 7)y + (i − 7)d0 + (1 + 7i)e0 − 1 − 7i]t2

+ 8

{(
1

2
+ i

)
d2

0 + [(2 − i)e0 + (2 − i)x − 2

+ i + (1 + 2i)y]d0 −
(

1

2
+ i

)
e2

0

+ [(−1 − 2i)x + 1 + 2i + (2 − i)y]e0

−
(

1

2
+ i

)
x2 + [1 + 2i + (2 − i)y]x

− 9

8
− 7

4
i +

(
1

2
+ i

)
y2 + (−2 + i)y

}
t

+ 2

3
(1 − i)d3

0 − 2(1 − i)(ie0 + ix − i − y)d2
0

− 4(1 − i)

[
1

2
e2

0 + (iy + x − 1)e0 − 1

2
y2

+ (ix − i)y + 1

2
x2 − x + 5

8

]
d0 + 2

3
(1 + i)e3

0

+ (2 − 2i)(ix − i − y)e2
0 + 2

{
(−1 − i)y2

+ [2 − 2i + (−2 + 2i)x] y + 5

4
+ 5

4
i

+ (1 + i)x2 − (2 + 2i)x

}
e0 + 2

3
(1 + i)x3

+ (−2 + 2i)(i + y)x2 + (−2 + 2i)x

(
iy2 − 5

4
i

− 2y

)
− 1

6
(1 − i)(−12iy2 − 4y3 + 12id1

+ 3i + 15y + 12e1)

}
e
− i

2
(x+y+t)

. (31)

Type II: Take C1 = −C2 = c = k = 1, ζ = ζ1 + ε2

with ζ1 �= M (e.g., ζ1 = M+1) and adopt Taylor series
expansion at ε = 0 for (29).

If we choose Type-II, we will get periodic wave (PW)
solutions. However, this is not our main objective. In
this paper, we only choose M = − k

2 + ci and mainly
consider three cases: N = 1, 2, 3 based on Type I. To
facilitate the calculation, we only consider parameters
c = k = m = μ = 1.

5.1 First-order lump solutions and maximal peak
amplitude

When N = 1, in terms of transformation (15), from
the seed solutions (5) and combining with the gener-
alised (1, 0)-fold DT, we can acquire the following two
expressions:

q̃1 = ei(x+y+t) + 2iB(0), f̃1 = −1 − 2iA(0)
y , (32)

in which

A(0) = �A(0)

�1
, B(0) = �B(0)

�1
,

where

�1 =
∣∣∣∣∣
ψ

(0)
1 ψ

(0)
2

ψ
(0)∗
2 −ψ

(0)∗
1

∣∣∣∣∣ ,

�A(0) =
∣∣∣∣∣

−ζ1ψ
(0)
1 ψ

(0)
2

−ζ ∗
1 ψ

(0)∗
2 −ψ

(0)∗
1

∣∣∣∣∣ ,

�B(0) =
∣∣∣∣∣
ψ

(0)
1 −ζ1ψ

(0)
1

ψ
(0)∗
2 −ζ ∗

1 ψ
(0)∗
2

∣∣∣∣∣ .
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By using Type I, from (31) and (32), we get first-
order lump solutions of system (4) and rewrite solutions
(32) as

q̃1 =
(

�1

�2
+ 1

)
ei(x+y+t), f̃1 = �3

�
2
2

− 1, (33)

where

�1 = 8i(y + d0 − t) − 8

(
x + e0 − 3t − 1

2

)2

−8(y + d0 − t)2 + 2,

�2 = 4

(
x + e0 − 3t − 1

2

)2

+ 4(y + d0 − t)2 + 1,

�3 = 64(y + d0 − t)

(
x + e0 − 3t − 1

2

)
.

From this expression, we can see that there are two
parameters e0 and d0, which can change the position
of the first-order lump. In figure 8, we exhibit relevant
structures of q and f , from which we can clearly see the
structures of first-order lump q and f . They have sin-
gle peak and double troughs, double peaks and double
troughs, respectively. The position coordinate, maximal
peak amplitude of first-order lump are listed in table 4,
and t is an arbitrary time. In figures 8(a1)–8(a3) and
8(b1)–(b3), when the parameters e0 = d0 = 0, we show
the propagation process at different time, and clearly
observe their propagation characteristics, which will not
be described here. In figures 8(a4) and 8(b4), when
time t = 0, we show the structures with parameters
e0 = d0 = 3, and find that the parameters can control
the position.

5.2 Second-order lump solutions and large-parameter
asymptotic analysis

When N = 2, in terms of transformation (15), from seed
solution (5) and adopting the generalised (1, 1)-fold DT,
we can acquire the following two expressions:

q̃2 = ei(x+y+t) + 2iB(1), f̃2 = −1 − 2iA(1)
y , (34)

in which

A(1) = �A(1)

�2
, B(1) = �B(1)

�2
,

where

�2 =

∣∣∣∣∣∣∣∣∣

ζ1ψ
(0)
1 ψ

(0)
1 ζ1ψ

(0)
2 ψ

(0)
2

ζ ∗
1 ψ

(0)∗
2 ψ

(0)∗
2 −ζ ∗

1 ψ
(0)∗
1 −ψ

(0)∗
1

ζ1ψ
(1)
1 + ψ

(0)
1 ψ

(1)
1 ζ1ψ

(1)
2 + ψ

(0)
2 ψ

(1)
2

ζ ∗
1 ψ

(1)∗
2 + ψ

(0)∗
2 ψ

(1)∗
2 −ζ ∗

1 ψ
(1)∗
1 − ψ

(0)∗
1 −ψ

(1)∗
1

∣∣∣∣∣∣∣∣∣
.

�A(1) and �B(1) can be obtained by determinant �2
replacing its first and third columns by the vector

(−ζ 2
1 ψ

(0)
1 , −ζ 2∗

1 ψ
(0)∗
2 , −ζ 2

1 ψ
(1)
1 −2ζ1ψ

(0)
1 , −ζ 2∗

1 ψ
(1)∗
2

− 2ζ ∗
1 ψ

(0)∗
2 )T.

Because the second-order lump solutions are very
complex, we will not give its specific form here. From
(34), by using Type I, the second-order lump solu-
tions can be acquired for system (4). According to
(29), its solutions will contain four arbitrary parameters
e j , d j ( j = 0, 1), which control the position and split
shape. As shown in figure 9, we can not only observe the
propagation characteristics of the second-order lump at
different times and strong interaction, but also clearly
see that it splits into triangles.

However, as the parameters e1, d1 increase, we find
that the first-order lumps after splitting are very similar
in shape. Large-parameter asymptotic is an extremely
effective method to explore whether the first-order
lumps after splitting are the same when the parame-
ters e1 and d1 tend to infinity [32]. Thus, we have the
following large-parameter asymptotic analysis:

(i) Large-parameter asymptotic analysis about d1 is
as follows:

For solution q̃2 in (34), we take

t = e0 = e1 = d0 = 0,

d1 = τ1d3 + τ2d2 + τ3d + τ4,

τi ∈ R, i = 1, 2, 3, 4,

where d is the new control parameter we introduce. For
q̃2, under the first transformations x = X + ad and
y = Y + bd (a, b ∈ R), we can obtain the following
governing polynomial:

F1(a, b) = 16a6 + 48a4b2 + 48a2b4 + 16b6

+48a3τ1 − 144ab2τ1 + 36τ 2
1 . (35)

The roots of the governing polynomial (35) are related
to the central positions of the separated first-order lump.
So we define these roots as the central point of the cor-
responding first-order lump. Therefore, we can control
the central positions of the separated first-order lump by
adjusting central point (a, b) and τ1. Equation (35) is a
polynomial of degree 6, which allows three double roots
to exist. However, these central points are arbitrary, but
we find that the limits at any central points are the same
when d tends to infinity. In order to study the prop-
erties of the separated first-order lump at infinity, we
will give the three specific double roots and analyse the
asymptotic behaviour of the separated first-order lump
as follows:

When τ1 = −18, for governing polynomial (35), we
can get three sets of values for a, b. Let central points
(a, b) = (a j , b j ) ( j = 1, 2, 3). We get

(a1, b1) = (3, 0), (a2, b2) =
(

− 3

2
,

3
√

3

2

)
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Table 4. Coordinate and maximal peak amplitude for lump solutions (33).

Solutions Peak coordinate Trough coordinate Maximum Minimum

|q| (3t − e0 + 1
2 , t − d0, t) (3t − e0 + 1

2 ± 1
2

√
3, t − d0, t) 3 0

f (3t − e0 + 1
2 ± 1

4

√
2, t − d0 ± 1

4

√
2, t) (3t − e0 + 1

2 ± 1
4

√
2, t − d0 ∓ 1

4

√
2, t) 1 −3

and

(a3, b3) =
(

− 3

2
, −3

√
3

2

)
,

respectively. For (a1, b1), we take

X = X̂ − τ2 − 9

18
and Y = Ŷ .

For (a2, b2), we take

X = X̂ − −τ2 − 18

36
and Y = Ŷ −

√
3τ2

36
.

For (a3, b3), we take

X = X̂ − τ2 + 18

−36
and Y = Ŷ −

√
3τ2

−36
.

Parameter τ2 can adjust the central point of the lump
slightly and its role will be shown later. In terms of (5)
and (34), we have the following asymptotic limit expres-
sion for the three double roots:

lim
d→∞

(
q̃2 − q0

ei(x+y)

)
= −8iŶ − 4

4X̂2 + 4Ŷ 2 + 1
. (36)

When τ1 = 18, for governing polynomial (35), we
can also get three sets of values for a, b. Then, we can
get

(a1, b1) = (−3, 0) or (a2, b2) =
(

3

2
,

3
√

3

2

)

or

(a3, b3) =
(

3

2
, −3

√
3

2

)
,

respectively. For (a1, b1), we take

X = X̂ − τ2 − 9

18
and Y = Ŷ .

For (a2, b2), we take

X = X̂ − τ2 + 18

−36
and Y = Ŷ −

√
3τ2

−36
.

For (a3, b3), we take

X = X̂ − −τ2 − 18

36
and Y = Ŷ −

√
3τ2

36
.

In terms of (5) and (34), we have the following asymp-
totic limit expression for the three double roots:

lim
d→∞

(
q̃2 − q0

ei(x+y)

)
= −8iŶ − 4

4X̂2 + 4Ŷ 2 + 1
. (37)

(ii) Large-parameter asymptotic analysis about e1 is as
follows:

For solution q̃2 in (34), we take

t = e0 = d0 = d1 = 0,

e1 = τ5d3 + τ6d2 + τ7d + τ8,

(τ� ∈ R, � = 5, 6, 7, 8),

where d is the new control parameter introduced by us.
For q̃2, under the first transformations x = X + ad
and y = Y + bd (a, b ∈ R), we obtain the following
governing polynomial:

F2(a, b) = 16a6 + 48a4b2 + 48a2b4 + 16b6

+48b3τ5 − 144a2bτ5 + 36τ 2
5 . (38)

When τ5 = −18, for governing polynomial (38),
we get three sets of values for a, b. Let (a, b) =
(a j , b j ) ( j = 1, 2, 3), we get

(a1, b1) = (0, 3) or (a2, b2)

=
(

3
√

3

2
, −3

2

)
or (a3, b3)

=
(
− 3

√
3

2
, −3

2

)
,

respectively. For (a1, b1), we take

X = X̂ + 1

2
and Y = Ŷ − τ6

18
.

For (a2, b2), we take

X = X̂ −
(√

3τ6

36
− 1

2

)
and Y = Ŷ + τ6

36
.

For (a3, b3), we take

X = X̂ +
(√

3τ6

36
+ 1

2

)
and Y = Ŷ + τ6

36
.

τ6 has the same effect as τ2. In terms of (5) and (34), we
have the following asymptotic limit expression for the
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three double roots:

lim
d→∞

(
q̃2 − q0

ei(x+y)

)
= −8iŶ − 4

4X̂2 + 4Ŷ 2 + 1
. (39)

When τ5 = 18, for governing polynomial (38), we
also get three sets of values for a, b. Then, we get

(a1, b1) = (0, −3) or (a2, b2) =
(

3
√

3

2
,

3

2

)

or

(a3, b3) =
(

− 3
√

3

2
,

3

2

)
,

respectively. For (a1, b1), we take

X = X̂ + 1

2
and Y = Ŷ − τ6

18
.

For (a2, b2), we take

X = X̂ +
(√

3τ6

36
+ 1

2

)
and Y = Ŷ + τ6

36
.

For (a3, b3), we take

X = X̂ −
(√

3τ6

36
− 1

2

)
and Y = Ŷ + τ6

36
.

In terms of (5) and (34), we have the following asymp-
totic limit expression for the three double roots:

lim
d→∞

(
q̃2 − q0

ei(x+y)

)
= −8iŶ − 4

4X̂2 + 4Ŷ 2 + 1
. (40)

By this analysis, based on the specific double roots,
when τ2 = 0 or τ6 = 0, we can find that the spe-
cific central point of the separated first-order lump is
(ad + 1

2 , bd). According to (36), (37), (39) and (40),
we can find that the shape and properties of the sep-
arated first-order lump are identical when d tends to
infinity for q̃2 in (34). In order to observe the properties
of these separated first-order lump more intuitively for
q̃2 in (34), we show the relevant images under the spe-
cific parameter d in figures 10(a1)–10(a5). For example,
in figures 10(a1) and 10(a5), we can fix the central point

of the lump on y = 1
2 at (1

2 , 10) and (1
2 , −30), respec-

tively by adjusting slightly. In figures 10(a2) and 10(a4),
we can fix the central point of the lump on the x-axis
at (15, 0) and (−15, 0) by adjusting slightly. Concur-
rently, we can clearly find that the lumps are symmetric
about y = 1

2 in figures 10(a1) and 10(a5), while the
lumps are symmetric about the x-axis in figures 10(a2)
and 10(a4). In figure 10(a3), we show the strong interac-
tion structure and fix the central point at (1

2 , 0). We also
notice that the shape and size of these lumps are iden-
tical with the increase in d in figure 10. Certainly, we
can also obtain the expression of the asymptotic limit
of the separated first-order lump by the above analy-
sis for f̃2. We will not describe it again due to space
constraints.

5.3 Third-order lump solutions and large-parameter
asymptotic analysis

When N = 3, from transformation (15) and plane-wave
seed solutions (5) and combining with the generalised
(1, 2)-fold DT, we can acquire the third-order lump solu-
tions

q̃3 = ei(x+y+t) + 2iB(2), f̃3 = −1 − 2iA(2)
y , (41)

in which

A(2) = �A(2)

�3
, B(2) = �B(2)

�3
,

where

�3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ 2
1 ψ

(0)
1 ζ1ψ

(0)
1 ψ

(0)
1 ζ 2

1 ψ
(0)
2 ζ1ψ

(0)
2 ψ

(0)
2

ζ 2∗
1 ψ

(0)∗
2 ζ ∗

1 ψ
(0)∗
2 ψ

(0)∗
2 −ζ 2∗

1 ψ
(0)∗
1 −ζ ∗

1 ψ
(0)∗
1 −ψ

(0)∗
1

ζ 2
1 ψ

(1)
1 + 2ζ1ψ

(0)
1 ζ1ψ

(1)
1 + ψ

(0)
1 ψ

(1)
1 ζ 2

1 ψ
(1)
2 + 2ζ1ψ

(0)
2 ζ1ψ

(1)
2 + ψ

(0)
2 ψ

(1)
2

ζ 2∗
1 ψ

(1)∗
2 + 2ζ ∗

1 ψ
(0)∗
2 ζ ∗

1 ψ
(1)∗
2 + ψ

(0)∗
2 ψ

(1)∗
2 −ζ 2∗

1 ψ
(1)∗
1 − 2ζ ∗

1 ψ
(0)∗
1 −ζ ∗

1 ψ
(1)∗
1 − ψ

(0)∗
1 −ψ

(1)∗
1

ζ 2
1 ψ

(2)
1 + 2ζ1ψ

(1)
1 + ψ

(0)
1 ζ1ψ

(2)
1 + ψ

(1)
1 ψ

(2)
1 ζ 2

1 ψ
(2)
2 + 2ζ1ψ

(1)
2 + ψ

(0)
2 ζ1ψ

(2)
2 + ψ

(1)
2 ψ

(2)
2

ζ 2∗
1 ψ

(2)∗
2 + 2ζ ∗

1 ψ
(1)∗
2 + ψ

(0)∗
2 ζ ∗

1 ψ
(2)∗
2 + ψ

(1)∗
2 ψ

(2)∗
2 ζ 2∗

1 ψ
(2)∗
1 + 2ζ ∗

1 ψ
(1)∗
1 + ψ

(0)∗
1 ζ ∗

1 ψ
(2)∗
1 + ψ

(1)∗
1 ψ

(2)∗
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

�A(2) and �B(2) can be obtained by the determinant
�3 replacing its first and fourth columns by the vector
(−ζ 3

1 ψ
(0)
1 , −ζ 3∗

1 ψ
(0)∗
2 , −ζ 3

1 ψ
(1)
1 −3ζ 2

1 ψ
(0)
1 , −ζ 3∗

1 ψ
(1)∗
2

−3ζ 2∗
1 ψ

(0)∗
2 , −ζ 3

1 ψ
(2)
1 −3ζ 2

1 ψ
(1)
1 −3ζ1ψ

(0)
1 , −ζ 3∗

1 ψ
(2)∗
2

− 3ζ 2∗
1 ψ

(1)∗
2 − 3ζ ∗

1 ψ
(0)∗
2 )T.

By using Type I, in terms of (41), it is easy for us
to obtain the third-order lump solutions for system (4).
According to (29), its solutions will contain six arbi-
trary parameters e j , d j ( j = 0, 1, 2), which control
the position and split shape. As shown in figure 11, we
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Figure 8. Surface (top) and density (bottom) plots for the first-order lump solutions (32) with different control parameters
and time: (a1)–(a3) and (b1)–(b3) e0 = d0 = 0, (a4) and (b4) with e0 = d0 = 3.

Figure 9. Surface (top) and density (bottom) plots for the second-order lump solutions (34) with different control param-
eters and time: (a1), (b1), (a3), (b3) e j = d j = 0 ( j = 0, 1) except e1 = 100; (a2), (b2) e j = d j = 0; (a4), (b4)
e j = d j = 0 ( j = 0, 1) except d1 = 100.

Figure 10. Density plots for the second-order lump solution q via (34) based on different large-parameters e1, d1 when
t = 0. (a1) τ5 = −18, τ6 = τ7 = τ8 = 0, d = 10

3 , (a2) τ1 = −18, τ2 = τ3 = τ4 = 0, d = 29
6 , (a3) d = 0, (a4)

τ1 = 18, τ2 = τ3 = τ4 = 0, d = 31
6 and (a5) τ5 = 18, τ6 = τ7 = τ8 = 0, d = 10.
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can clearly see the propagation, strong interaction and
arrangement shape of the third-order lump with different
parameters at different time.

We know that e0 and d0 can control the position
change of the third-order lump, e1 and d1 can control
splitting and arrange into triangles, e2 and d2 can con-
trol splitting and arrange into pentagons. Next, we will
only conduct large-parameter asymptotic analysis for e2
and d2 to explain the shape and properties of the sepa-
rated first-order lump when d tends to infinity.

(i) Large-parameter asymptotic analysis about e2 is as
follows:

For solution q̃3 in (41), we take

t = e0 = e1 = d0 = d1 = d2 = 0,

e2 = τ1d5 + τ2d4 + τ3d3 + τ4d2 + τ5d + τ6
(τi ∈ R, i = 1, 2, 3, 4, 5, 6),

where d is the new control parameter introduced by us.
For q̃3, under the first transformations x = X + ad
and y = Y + bd (a, b ∈ R), we obtain the following
governing polynomial:

F3(a, b) = 32(a2 + b2)(16a10 + 80a8b2

+ 160a6b4 + 160a4b6 + 80a2b8

+ 16b10 − 360a5τ1 + 3600a3b2τ1

− 1800ab4τ1 + 2025τ 2
1 ). (42)

Equation (42) is a polynomial of degree 12, which allows
the existence of six double roots. Similarly, in terms of
the correlation analysis of second-order lump, we define
these roots as the central point of the corresponding
lump. However, these central points are also arbitrary,
but we find that the limits at any central points are the
same when d tends to infinity. In order to study the
properties of the separated first-order lump at infinity,
we will give five specific double roots and analyse the
asymptotic behaviour of the separated first-order lump
as follows:

When τ1 = 4
45 , for governing polynomial (42), we get

five sets of values for a, b. Let central points (a, b) =
(a j , b j ) ( j = 1, 2, 3, 4, 5, 6). We get

(a1, b1) = (0, 0), (a2, b2) = (1, 0),

(a3, b3) =
( √

5

5 + √
5
,

√
5
√

2
√

5 + 5

5 + √
5

)
,

(a4, b4) =
( √

5

5 + √
5
, −

√
5
√

2
√

5 + 5

5 + √
5

)
,

(a5, b5) =
( √

5√
5 − 5

,

√
−10

√
5 + 25√

5 − 5

)

and

(a6, b6) =
( √

5√
5 − 5

, −
√

−10
√

5 + 25√
5 − 5

)
,

respectively. Because of the complexity of the latter four
roots, we only analyse the first and second roots here.
For (a1, b1), we take X = X̂ + 1

2 and Y = Ŷ and for

(a2, b2), we take X = X̂ + (9τ2
4 + 1

2 ) and Y = Ŷ . In
terms of (5) and (41), we have the following asymptotic
limit expression for the three double roots:

lim
d→∞

(
q̃3 − q0

ei(x+y)

)
= 8iŶ − 8X̂2 − 8Ŷ 2 + 2

4X̂2 + 4Ŷ 2 + 1
. (43)

(ii) Large-parameter asymptotic analysis about d2 is as
follows:

For solution q̃3 in (41), we take

t = e0 = e1 = e2 = d0 = d1 = 0,

d2 = τ7d5 + τ8d4 + τ9d3 + τ10d2 + τ11d + τ12
(τ� ∈ R, � = 7, 8, 9, 10, 11, 12),

where d is the new control parameter introduced by us.
For q̃3, under the first transformations x = X + ad
and y = Y + bd (a, b ∈ R), we obtain the following
governing polynomial:

F4(a, b) = 32(a2 + b2)(16a10 + 80a8b2 + 160a6b4

+ 160a4b6 + 80a2b8 + 16b10

− 1800a4bτ7 + 3600a2b3τ7

− 360b5τ7 + 2025τ 2
7 ). (44)

When τ7 = 4
45 , for governing polynomial (42), we get

five sets of values for a, b. Let central points (a, b) =
(a j , b j ) ( j = 1, 2, 3, 4, 5, 6). We get

(a1, b1) = (0, 0), (a2, b2) = (0, 1),

(a3, b3) =
(√

5
√

2
√

5 + 5

5 + √
5

,

√
5

5 + √
5

)
,

(a4, b4) =
(

−
√

5
√

2
√

5 + 5

5 + √
5

,

√
5

5 + √
5

)
,

(a5, b5) =
(√−10

√
5 + 25√

5 − 5
,

√
5√

5 − 5

)

and

(a6, b6) =
(

−
√

−10
√

5 + 25√
5 − 5

,

√
5√

5 − 5

)
,

respectively. Because of the complexity of the latter four
roots, we only analyse the first and second roots here.
For (a1, b1), we take X = X̂ + 1

2 and Y = Ŷ and for

(a2, b2), we take X = X̂ + 1
2 and Y = Ŷ + 9τ8

4 . In terms
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of (5) and (41), we have the following asymptotic limit
expression for the three double roots:

lim
d→∞

(
q̃3 − q0

ei(x+y)

)
= 8iŶ − 8X̂2 − 8Ŷ 2 + 2

4X̂2 + 4Ŷ 2 + 1
. (45)

By the above analysis, based on the specific double
roots, when parameters τ2 = 0 or τ8 = 0, we can find
that the specific central point of the separated first-order
lump is (ad + 1

2 , bd). According to (43) and (45), we
find that the shape and properties of the separated first-
order lump are identical when the parameter d tends to
infinity for q̃3 in (41). In figure 12, the density plots
of the separated first-order lump are displayed for q̃3 in
(41). The related symmetry, strong interaction and shape
size can be easily observed from these figures, and so
we will not describe them again.

6. Mixed interaction phenomenon of different
localised waves

In this section, for fundamental solution (29), we will
use the generalised (2, N − 2)-fold DT and only adopt
two spectral parameters to exhibit the interaction phe-
nomenon of different localised waves for system (4).
According to the control parameters e0 and d0, we can
regulate the intensity of the interaction. Next, we will
only consider two cases: N = 2 (the generalised (2, 0)-
fold DT) and N = 3 (the generalised (2, 1)-fold DT).
To facilitate calculation, we only consider parameters
c = k = m = μ = 1.

6.1 Application of the generalised (2,0)-fold DT

When N = 2, we will use the generalised (2, 0)-fold DT
and only adopt two spectral parameters ζ1 and ζ2. In this
application, we know that there are three cases: (i) Using
Taylor expansion for two spectral parameters, (ii) using
Taylor expansion for only one spectral parameter and
(iii) neither spectral parameter uses Taylor expansion.

In Case (i), when using Type I at ζ1 and Type II at
ζ2, interaction structures of first-order lump and first-
order PW will be produced. When using Type II at ζ1
and ζ2, interaction structures of two first-order PWs will
be produced. In Case (ii), when using Type I at ζ1 or
ζ2, the interaction structures of one-breather and first-
order lump will be generated. In Case (iii), two-breather
rather than novel interactions will be produced. In the
following, for Case (ii), we only consider the interaction
structures between one-breather and first-order lump.
Subsequently, we will use Type I at ζ1 and choose ζ2 =
2i.

Based on the generalised (2, 0)-fold DT and combin-
ing with plane-wave seed solutions (5), we can acquire

the following two expressions:

q̃ = ei(x+y+t) + 2iB(1), f̃ = −1 − 2iA(1)
y , (46)

where A(1) and B(1) can be determined by
{
T (0)(ζ1)ψ

(0)(ζ1) = 0,

T (ζ2)ψ(ζ2) = 0,
(47)

in which

A(1) = �A(1)

�2
, B(1) = �B(1)

�2
,

where

�2 =

∣∣∣∣∣∣∣∣

ζ1ψ
(0)
1 ψ

(0)
1 ζ1ψ

(0)
2 ψ

(0)
2

ζ ∗
1 ψ

(0)∗
2 ψ

(0)∗
2 −ζ ∗

1 ψ
(0)∗
1 −ψ

(0)∗
1

ζ2ψ11 ψ11 ζ2ψ21 ψ21
ζ ∗

2 ψ∗
21 ψ∗

21 −ζ ∗
2 ψ∗

11 −ψ∗
11

∣∣∣∣∣∣∣∣
.

�A(1) and �B(1) can be uniquely determined by deter-
minant �2 replacing its first and third columns by the
vector (−ζ 2

1 ψ
(0)
1 , −ζ 2∗

1 ψ
(0)∗
2 , −ζ 2

2 ψ11, −ζ 2∗
2 ψ∗

21)
T,

where ψ11 = ψ1|ζ=ζ2, ψ21 = ψ2|ζ=ζ2 .
By symbolic computation, from solutions (46), we

know that there are two parameters e0, d0 in the solu-
tions that control the position. Then, the interaction
structures between first-order lump and one-breather
will be obtained. To save space, we will no longer show
complex analytical solutions here, but we will only show
the interaction structures of q as shown in figure 13
based on appropriate parameter combinations. From fig-
ure 13, we can clearly see the propagation characteristics
and strong interaction of the breather and lump under
different parameters at different time.

6.2 Application of the generalised (2,1)-fold DT

When N = 3, we will use the generalised (2, 1)-fold
DT and only adopt two spectral parameters ζ1 and ζ2.
In this application, we know that there are two cases:
(i) Using Taylor expansion for two spectral parameters
and (ii) using Taylor expansion for only one spectral
parameter.

However, this paper will mainly discuss Case (ii).
For Case (ii), we obtain the new interaction structures
between one-breather and second-order lump. Subse-
quently, we will use Type I at ζ1 and choose ζ2 = 2i.
Now, from plane-wave seed solutions (5) and combin-
ing with the generalised (2, 1)-fold DT, we can acquire
the following two expressions:

q̃ = ei(x+y+t) + 2iB(2), f̃ = −1 − 2iA(2)
y , (48)
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Figure 11. Surface (top) and density (bottom) plots for third-order lump solutions (41) with different control parameters and
time: (a1), (b1) t = e j = d j = 0 ( j = 0, 1, 2); (a2), (b2) t = 1, e j = d j = 0; (a3), (b3) t = e j = d j = 0 except e2 = 6000;
(a4), (b4) t = e j = d j = 0 except e0 = 4, d0 = 2, d1 = 600.

Figure 12. Density plots for third-order lump solution q via (41) based on different large parameters e2, d2 when t = 0 and
same control parameter d = 20 and other parameters τi = τ� = 0 except (a1) τ7 = 4

45 , (a2) τ1 = 4
45 , (a4) τ1 = − 4

45 and (a5)
τ7 = − 4

45 . All parameters of (a3) are 0.

Figure 13. Surface (top) and density (bottom) plots of interaction structures between one-breather and first-order lump for q
via (47) based on different control parameters: (a1)–(a3) e0 = d0 = 0; (a4) e0 = d0 = 3.

where A(2) and B(2) need to be obtained by the following
equations:⎧⎪⎨
⎪⎩
T (0)(ζ1)ψ

(0)(ζ1) = 0,

T (0)(ζ1)ψ
(1)(ζ1) + T (1)(ζ1)ψ

(0)(ζ1) = 0,

T (ζ2)ψ(ζ2) = 0,

(49)

in which

A(2) = �A(2)

�3
, B(2) = �B(2)

�3
,

where
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Figure 14. Surface (top) and density (bottom) plots of interaction structures between one-breather and second-order lump
for f via (48) based on different control parameters when t = 0. (a1) e j = d j = 0 ( j = 0, 1); (a2) e j = d j = 0 except
e1 = 100; (a3) e j = d j = 0 except d1 = 100.

�3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ 2
1 ψ

(0)
1 ζ1ψ

(0)
1 ψ

(0)
1 ζ 2

1 ψ
(0)
2 ζ1ψ

(0)
2 ψ

(0)
2

ζ 2
1 ψ

(1)
1 + 2ζ1ψ

(0)
1 ζ1ψ

(1)
1 + ψ

(0)
1 ψ

(1)
1 ζ 2

1 ψ
(1)
2 + 2ζ1ψ

(0)
2 ζ1ψ

(1)
2 + ψ

(0)
2 ψ

(1)
2

ζ 2∗
1 ψ

(0)∗
2 ζ ∗

1 ψ
(0)∗
2 ψ

(0)∗
2 −ζ 2∗

1 ψ
(0)∗
1 −ζ ∗

1 ψ
(0)∗
1 −ψ

(0)∗
1

ζ 2∗
1 ψ

(1)∗
2 + 2ζ ∗

1 ψ
(0)∗
2 ζ ∗

1 ψ
(1)∗
2 + ψ

(0)∗
2 ψ

(1)∗
2 −ζ 2∗

1 ψ
(1)∗
1 − 2ζ ∗

1 ψ
(0)∗
1 −ζ ∗

1 ψ
(1)∗
1 − ψ

(0)∗
1 −ψ

(1)∗
1

ζ 2
2 ψ11 ζ2ψ11 ψ11 ζ 2

2 ψ21 ζ2ψ21 ψ21

ζ 2∗
2 ψ∗

21 ζ ∗
2 ψ∗

21 ψ∗
21 −ζ 2∗

2 ψ∗
11 −ζ ∗

2 ψ∗
11 −ψ∗

11

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

�A(2) and �B(2) can be determined by determinant �3
replacing its first and fourth columns through the vector
(−ζ 3

1 ψ
(0)
1 , −ζ 3

1 ψ
(1)
1 −3ζ 2

1 ψ
(0)
1 , −ζ 3∗

1 ψ
(0)∗
2 , −ζ 3∗

1 ψ
(1)∗
2

− 3ζ 2∗
1 ψ

(0)∗
2 , −ζ 3

2 ψ11, −ζ 3∗
2 ψ∗

21)
T, where ψ11 =

ψ1|ζ=ζ2, ψ21 = ψ2|ζ=ζ2 .
By symbolic computation, from solutions (48) and

(49), we know that there are four control parameters
e j , d j ( j = 0, 1). Then, the interaction structures
between one-breather and second-order lump will be
acquired. Similarly, we will omit the expression of com-
plex solutions and only show the related structures of f
in figure 14.

Conclusions

In this paper, we have studied the (2 + 1)-dimensional
non-isospectral CD system (4), which may describe
many physical phenomena in nonlinear optics, fluids
and Bose–Einstein condensates. The main results of this
paper are summarised as follows:

(i) MI, excitation principle and regional distribution
of different localised waves were analysed and
marked as shown in figure 1.

(ii) Generalised (n, N − n)-fold DT was successfully
extended to non-isospectral (2 + 1)-dimensional
CD system (4) for the first time.

(iii) Using the (N , 0)-fold DT, multisoliton solutions
were established and relevant structures are shown
in figures 2–4. The relevant dynamic character-
istics are given using the asymptotic analysis
technique in tables 1–3. Meanwhile, we have given
the relevant figures of soliton surface (see fig-
ures 5–7).

(iv) Using the generalised (1, N − 1)-fold DT, higher-
order lump solutions based on parametric control
were acquired and analysed using the large-
parameter asymptotic analysis method, and rele-
vant structures are shown in figures 8–12.

(v) Using the generalised (2, N − 2)-fold DT, the
mixed interaction structures between the breather
and lump were obtained, and relevant structures
are shown in figures 13 and 14.

The above results are reported for the first time. We
hope that the results in this paper will help to explain
some novel physical phenomena.
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