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Abstract. This paper presents a derivation of exceptional potentials for the novel angle-dependent (NAD) Coulomb
potential. Exceptional potentials are a class of potentials with unique properties that can be used to study various
physical phenomena. The use of exceptional polynomials is a powerful technique for solving differential equations,
and the paper demonstrates its effectiveness in this context.
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1. Introduction

Ring-shaped molecules such as benzene demand the
incorporation of non-central potentials. Non-central
potentials have been extensively studied in nuclear
physics and quantum chemistry due to their relevance
to the interactions between deformed nuclei and ring-
shaped molecules such as benzene [1–3]. Theoretical
investigations of non-central potentials often involve
solving the Schrödinger, Klein–Gordon and Dirac equa-
tions. Analytical solutions for non-central potentials are
not always available, and numerical methods are often
used to obtain solutions [4,5]. One common example
of a non-central potential is the quadrupole–quadrupole
interaction potential, which arises from the interaction
between two quadrupole moments [6]. This potential
has been studied extensively in the context of nuclear
physics, where it plays a significant role in describing
nuclear shapes and deformations. The relativistic effects
of a moving particle in the field of a pseudoharmonic
oscillatory ring-shaped potential under the spin and
pseudospin symmetric Dirac wave equation are exam-
ined. Their bound-state energy eigenvalue equation and
the corresponding two-component spinor wave func-
tions are obtained by using the supersymmetric quantum

mechanics (SUSYQM) [7]. In ref. [8], the Nikiforov–
Uvarov method is employed to derive general solutions
of the Schrödinger equation for non-central potentials.
The Schrödinger equation is first separated into its radial
and angular components, allowing for the analytical
derivation of energy eigenvalues and eigenfunctions for
these potentials. Through the use of specific selections,
the non-central potential is reduced to the Coulomb and
Hartmann potentials. The obtained solutions are then
compared with those of the Coulomb and Hartmann
ring-shaped potentials found in the literature.

Another important class of non-central potentials is
the spin-orbit interaction potential [9], which arises from
the coupling of the electron spin and orbital angular
momentum. This potential is important in the study
of atomic and molecular systems, where it affects the
energy levels and spectroscopic properties. In [10],
the application of operator methods from SUSYQM
is explored, and the concept of shape invariance is to
derive properties of spherical harmonics. The bound-
state spectra of an electron subject to a Coulomb
potential and an Aharonov–Bohm field, as well as the
magnetic field of a Dirac monopole, are investigated.

The discovery of a new set of orthogonal polynomi-
als known as exceptional polynomials by Gómez-Ullate
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et al [11,12] has led to the development of numerous
new exactly solvable potentials. These new potentials
are referred to as rational extensions and are related
to the existing potentials by an intertwining operator
SUSYQM [13–17].

These rational extensions have given rise to a rich
mathematical structure that includes a state missing
between the old and new Hamiltonians. The study of
this structure has provided new insights into the theory
of exactly solvable potentials and SUSYQM and has
opened up new avenues of research in the field. Accord-
ing to [18], any quantum mechanical problem that
has classical Laguerre/Jacobi polynomials as solutions
for the Schrödinger equation will also have excep-
tional Laguerre/Jacobi polynomials as solutions. These
exceptional polynomials will have the same eigenval-
ues as the classical polynomials but with the ground
state missing after a modification of the potential. In
their previous work, two of the authors developed excep-
tional polynomials by solving the Dirac equation while
accounting for two non-central potentials: the Hart-
mann potential and the ring-shaped oscillator potential.
The Hartmann potential is formed by adding a poten-
tial to the Coulomb potential, while the ring-shaped
oscillator potential replaces the Coulomb part of the
Hartmann potential with a harmonic oscillator term
[19]. These potentials are particularly useful in describ-
ing the structural properties of ring-shaped molecules,
such as benzene. Razabi and Hamzavi [20] solved the
Schrödinger equation using a novel angle-dependent
(NAD) Coulomb potential. They employed the gener-
alised parametric Nikiforov–Uvarov (NU) method, a
powerful mathematical technique used to solve a wide
range of differential equations, to solve the equation and
the impact of the angle-dependent component on the
radial solution is investigated. The Schrödinger equa-
tion with the NAD Coulomb potential is given by

V (r, θ) = − A

r
− h2

2μ

V2θ (θ)

r2 . (1)

We consider the kind of NAD Coulomb potential intro-
duced by Zhang and Huang-Fu [21]:

V (r, θ) = − A

r
− h2

2μ

γ + β cos2 θ + η cos4 θ

r2 cos2 θ sin2 θ
, (2)

where A = Zα, α = e2/hc is the fine-structure con-
stant and μ is the reduced mass. The Schrödinger wave
equation with non-central potential is written in spher-
ical coordinates and separated into radial and angular

variables

−h̄2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
ψ

+−h̄2

2μ

[
1

r2 sin2 θ

∂2

∂φ2

]
ψ + V (r, θ, φ)ψ = Eψ,

(3)

where

ψ = ψ(r, θ, φ) = u(r)

r
·Y (θ, φ) = u(r)

r
·H(θ) ·
(φ).

(4)

The radial equation:

d2u(r)

dr2 +
[

2μ

h̄2

(
E + A

r

)
− λ

r2

]
u(r) = 0. (5)

The angular equation:

1

sin θ

d

dθ

(
sin θ

dH(θ)

dθ

)

+
[
λ − m2

sin2 θ
− γ + β cos2 θ + η cos4 θ

cos2θsin2θ

]
H(θ)

= 0. (6)

The azimuthal equation:

d2
(φ)

dφ2 + m2
(φ) = 0, (7)

where λ and m2 are separation constants.
In this work, we solve the Schrödinger equation for the

NAD Coulomb potential and draw rational extensions
for the same.

1.1 Exceptional polynomials

In this section, we briefly review the properties of
exceptional Laguerre and Jacobi polynomials. One
can construct the exceptional X1-Laguerre Polynomi-
als Lk

n(x), k > 0, using the Gram-Schmidt procedure
from the sequence [11,12],

v1 = x + k + 1; vi = (x + k)i , i ≥ 2, (8)

using the weight function

Ŵk(x) = xke−x

(x + k)2 , (9)

defined in the interval x ∈ (0, ∞) and the scalar product

( f, g)k =
∫ ∞

0
dxŴk(x) f (x)g(x). (10)

The weight function for the normal Laguerre polynomial
Wk(x) = xke−x , is multiplied by suitable factors such
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that one obtains a new Ŵk(x) such that one can construct
the new OPS excluding the zero degree polynomial.

The exceptional X1-Laguerre differential equation is

Tk(y) = λy, (11)

where λ = n − 1 with n = 1, 2 . . . and

Tk(y) = −xy′′ +
(
x − k

x + k

)
[(k + x + 1)y′ − y]. (12)

For more details we refer the reader to refs [11,12] and
the references therein. Similarly, the exceptional X1-
Jacobi polynomials P(α,β)

n (x), for α and β are real such
that α �= β, α ≥ −1, β ≥ −1, sign[α] = sign[β]. In
order to form a complete set, we take

u1 = x − c, ui = (x − b)i , i ≥ 2, (13)

where

a = 1

2
(β − α); b = β + α

β − α
and c = b + 1

a
. (14)

The scalar product is defined in the range [−1, 1] with
the weight function

Ŵα,β(x) = (1 − x)α(1 + x)β

(x − b)2 . (15)

As in the case of exceptional Laguerre case, the weight
function of this new OPS is a rational extension of
the classical Jacobi weight function, Wα,β(x) = (1 −
x)α(1 + x)β . These exceptional X1-Jacobi polynomials
obey the eigenvalue equation

(x2 −1)y′′ +2a

(
1 − bx

b − x

)
[(x − c)y′ − y] = λy, (16)

where λ = (n − 1)(α + β + n) with n = 1, 2 . . .

The article is arranged as follows: In § 2, we derive the
exceptional polynomial solutions for the radial part of
the NAD Coulomb potential eq. (17). In § 3, we establish
the exceptional polynomial solutions for the polar angle
part of the non-central potentials. In § 4, we sum up
the key insights and emphasise the role of exceptional
potential on the NAD Coulomb potential.

2. Exceptional polynomial solutions for the radial
part of the non-central potential

Hamzavi and Razabi [20] have derived the solutions for
the radial part of the non-central potentials by apply-
ing the Nikiforov Uvarov method [22]. The method
involves transforming the Schrödinger equation into a
form that can be solved using hypergeometric func-
tions. This is achieved by making a suitable change of
variables, followed by a separation of variables. The

resulting differential equation can then be solved using
standard techniques. In this section, we construct the
exceptional Laguerre polynomials for the radial part of
the NAD Coulomb potential, given by

[
d2

dr2 + 2

r

d

dr

]
R(r)+

[
2μ

h̄2

(
E+ A

r

)
− λ

r2

]
R(r)=0

(17)

By comparing with the Coulomb problem, we get A =
−e2, λ = l(l + 1) and we have used

ψ(�r) = R(r) · Y (θ, φ) = R(r) · H(θ) · 
(φ). (18)

The solution of the radial equation

R(r) = rl exp
(
−r

2

)
L2l+1
n (r). (19)

Substituting eq. (19) in eq. (17), we obtain[
r

d2

dr2 +(2l + 2 − r)
d

dr
+(n − l − 1)

]
L2l+1
n (r)=0,

(20)

where L2l+1
n are the Laguerre polynomials.[

d2

dr2 + 2

r

d

dr

]
R(r) +

[
n

r
− 1

4
− V (r)

r
− l(l + 1)

r2

]

×R(r) = 0. (21)

Let the solution to this equation be

R(r) = rl exp(− r
2 )

(r + k)
L2l+1
n (r), (22)

where k = 2l + 1. The extra terms in the exceptional
potential is obtained, the derivation of which is furnished
in the Appendix.

Ve(r) = 2

(r + k)2 − 1

r(r + k)
. (23)

We have to add these terms to the original potential to
get the exceptional partner potential V+

e (r, l) = Vo(r, l)
+ Ve(r, l). Hence, we obtain the modified form of the
partner potential as

V+
e (r, l) = 2μ

h̄2

[(
E + A

r

)
− λ

r2

]
+ 1

r(r + k)

− 2

(r + k)2 . (24)

We compare our result with Quesne’s result [14]

V+
osc = l(l + 1)

x2 + ω2x2

4
+ 8ωx2

(ωx2 + k)2

− 4ω

(ωx2 + k)
± E (25)
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by performing r = x2 a point Canonical transformation
[23], and going over to dimensional variables ω = 1,

we get

V+
col = V+

osc

r

= l(l + 1)

r2 + 1

4
+ 8

(r + k)2 − 4

r(r + k)
− E

r
= V (r) + 4Ve(x) (26)

and defining E = A, 1/4 = −E and l(l+1) = λ as per
ref. [23]. Our result matches with the Quesne’s result as
V (r) + 4Ve(x).

3. Exceptional polynomial solution for the polar
angle part

Having derived the exceptional potential for the radial
part of the NAD Coulomb potential in the previous sec-
tion, we proceed to derive the exceptional potentials for
the polar angular part of the potential in this section. The
equation for the angular part is given by

1

sin θ

d

dθ

(
sin θ

d

dθ

)
H(θ)

+
[
λ − m2

sin2 θ
+ γ + β cos2 θ + η cos4 θ

cos2 θ sin2 θ

]

×H(θ) = 0. (27)

Using transformation cos2 θ = s, we have

d2H(s)

ds2 + 1 − 3s

2s(1 − s)

dH(s)

ds

+ 1

4s(1 − s)

[
λ + η − m2 + δ + η + γ

1 − s
− γ

s

]

×H(s) = 0. (28)

Then take

H(s) = sδ(1 − s)νP(s). (29)

Equation (28) should reduce to

4s(1 − s)
d2H(s)

ds2 + 4
1 − 3s

2

dH(s)

ds
+ λH(s) = 0.

(30)

This implies that the coefficient of P(s) viz., 1/1 − s and
1/s should be zero, resulting in the following α and β

values

α =
√

1

4
− 4(m2 + γ + β + η), β =

√
1

4
− 4γ

(31)

and

α′ + β ′ + 1

2
. (32)

By change of variable 1 − 2s = x the differential equa-
tion (30) becomes

(1 − x2)H ′′(x) + [β − α − (α + β + 2)x]H ′(x)
+λH(x) = 0. (33)

To derive exceptional Jacobi polynomials as solutions
to the equation, we add an extra potential Ve to the dif-
ferential equation (3)

(1 − x2)H ′′(x) + [β − α − (α + β + 2)x]H ′(x)
+(λ + Ve(x))H(x) = 0, (34)

where

λ = 4

(
n + 1

2

)2

+ 2(2n + 1)

×
[√

m2 + γ + β + η +
√

γ + 1

4

]

+2

(√
(m2 + γ + β + η)

(
γ + 1

4

))

+m2 + 2γ + β. (35)

Here, we make use of the theorem in [18] to derive
exceptional Laguerre polynomials as solutions to the
radial part. The theorem states that
If an additional term, Ve(x), is added to the Laguerre

or Jacobi differential equation and the solutions are
required to be of the form g(x) = f (x)

(x+m)
and g(x) =

f (x)
(x−b) , respectively, where f(x) satisfies the exceptional
differential equation X1 for the Laguerre and Jacobi
functions, then the function Ve(x,m) can be uniquely
determined. Accordingly, we add an extra potential Ve
to the original potential in the differential equation,

On suitable modification of the weight function of the
Jacobi equation, we acquire the extra terms of the excep-
tional potential. We demand that L(x) = H(x)/(x − b)
be the solution for the equation, such that

4

[
(1 − x2)

[
H ′′(x)
x − b

− 2
H ′(x)

(x − b)2 − 2
H(x)

(x − b)3

] ]

−2(3x − 1)

(
H ′(x)
x − b

− H(x)

(x − b)2

)

+(λ + Ve)
H(x)

x − b
= 0. (36)
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The resulting exceptional Jacobi differential equation
is given by

(z2−1) f ′′(z)+2a

(
1−bz

b−z
−c

)
[(z − c) f ′(z)− f (z)]

= λ f (z). (37)

We have b = β+α
β−α

.

b =

[√
γ + 1

4 + √
m2 + γ + β + η

]2

1
4 − m2 − β − η

. (38)

The extra term of the exceptional potential is given by

Ve = 2

x − b
− 2 − 2b2

(x − b)2 . (39)

Hence the total superpotential is given byV+
e = Vo+Ve.

V+
e =

[
λ − m2

sin2 θ
+ γ + β cos2 θ + η cos4 θ

cos2 θ sin2 θ

]

+ 2

x − b
− 2 − 2b2

(x − b)2 . (40)

The exceptional polynomial solutions are obtained by
employing the theorem defined by [18]. In simpler
terms, this theorem means that, by adding a specific
term to the Laguerre or Jacobi differential equation and
requiring the solutions to have a certain form, one can
determine a function that characterises the system in
question.

4. Conclusion

In conclusion, we can say that the discovery of ratio-
nal extensions has important implications in the study
of quantum mechanics and mathematical physics and
quantum field theory. The construction of exceptional
polynomial potentials for NAD Coulomb potential is
a promising approach to enhance our understanding
of this important system of exceptional polynomials.
Our research has demonstrated the effectiveness of
this method. By leveraging the power of exceptional
polynomial potentials, we have been able to achieve
unprecedented accuracy, which can be useful for the
study of ring-shaped molecules. We are confident that
our findings will inspire new directions for research.

Appendix. Appendix A

The radial equation becomes

h̄2

2m0

[
d2

dr2 + 2

r

d

dr

]
R(r)

+
[
E − e4

4(l + 1)2 − V (r)

]
R(r) = 0, (A.1)

where

V (r) = −e2

r
+ h̄2l(l + 1)

2m0r2 . (A.2)

The radial coordinate r ranges from 0 to ∞. Now putting

E = e4

4(l + 1)2 − e4

4(n + l + 1)2

in (A.1) one gets

−
[

d2

dr2 + 2

r

d

dr

]
R(r)

+2m0

h̄2

[
e4

4(n + l + 1)2 + V (r)

]
R(r) = 0. (A.3)

Let

α2 = 2m0

h̄2

e4

(n + l + 1)2 −
[

d2

dr2 + 2

r

d

dr

]
R(r)

+
[
α2

4
− 2m0

h̄2

e2

r
+ l(l + 1)

r2

]
R(r) = 0 (A.4)

or

−
[

1

α2

d2

dr2 + 1

α

2

αr

d

dr

]
R(r)

+
[

1

4
− 2m0

h̄2

e2

α2r
+ l(l + 1)

α2r2

]
R(r) = 0. (A.5)

On the change of variable y = αr ,

dR

dr
= dy

dr

dR

dy
= α

dR

dy
(A.6)

d2R

dr2 = d

dr

dR

dy
= α

dR

dy

(
α

dR

dy

)
= α2 d2R

dy2 . (A.7)

Taking

λ = 2m0

h̄2

1

α
,

we obtain[
d2

dy2 + 2

y

d

dy

]
R(y)

+
[
λ

y
− 1

4
− l(l + 1)

y2

]
R(y) = 0. (A.8)
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Let the solution to this equation be

R(y) = yl exp
(
− y

2

)
L2l+1
n (y) (A.9)

so that, we obtain the following equation

d

dy
R(y) =

[
l

y
− 1

2

]
yl exp

(
− y

2

)
L2l+1
n (y)

+yl exp
(
− y

2

) d

dy
L2l+1
n (y) (A.10)

d2

dy2 R(y) =
[[

l

y
− 1

2

]2

− l

y2

]
yl exp

(
− y

2

)
L2l+1
n (y)

+2

[
l

y
− 1

2

]
yl exp

(
− y

2

) d

dy
L2l+1
n (y)

+yl exp
(
− y

2

) d2

dy2 L
2l+1
n (y). (A.11)

After performing a series of calculations
[

d2

dy2 +
[

2

[
l

y
− 1

2

]
+ 2

y

]
d

dy

]
L2l+1
n (y)

+
[[

l

y
− 1

2

]2

− l

y2 + 2

y

[
l

y
− 1

2

]]
L2l+1
n (y)

+
[
λ

y
− 1

4
− l(l + 1)

y2

]
L2l+1
n (y) = 0. (A.12)

On simplification
[

d2

dy2 + 1

y
[2l + 2 − y]

d

dy

]
L2l+1
n (y)

+
[
l2

y2 + 1

4
− l

y
− l

y2 + 2l

y2

]
L2l+1
n (y)

−
[
l

y
+ λ

y
− 1

4
− l(l + 1)

y2

]
L2l+1
n (y) = 0 (A.13)

which reduces to[
y

d2

dy2 + (2l + 2 − y)
d

dy
+ (λ − l − 1)

]

×L2l+1
n (y) = 0. (A.14)

To verify the supersymmetric partner, we modify eq.
(A.8) to[

d2

dy2 + 2

y

d

dy

]
R(y) +

[
λ

y
− 1

4
− V (y)

y
− l(l + 1)

y2

]

×R(y) = 0. (A.15)

Let the solution to this equation be

R(y) = yl exp(− y
2 )

(y + k)
L2l+1
n (y), (A.16)

where k = 2l + 1. We obtain the following equation

d

dy
R(y) =

[
l

y
− 1

2
− 1

(y + k)

]
yl exp(− y

2 )

(y + k)
L2l+1
n (y)

+ yl exp(− y
2 )

(y + k)

d

dy
L2l+1
n (y) (A.17)

d2

dy2 R(y) =
[[

l

y
− 1

2
− 1

(y + k)

]2
]
yl exp(− y

2 )

(y + k)

−
[
l

y2 + 1

(y + k)2

]
yl exp(− y

2 )

(y + k)

+2

[
l

y
− 1

2
− 1

(y + k)

]
yl exp(− y

2 )

(y + k)

× d

dy
L2l+1
n (y)

+ yl exp(− y
2 )

(y + k)

d2

dy2 L
2l+1
n (y). (A.18)

One can see that the only extra contribution comes
from 1/(y + k). If this term is not present, it will revert
back to the associated Lagrange equation. After per-
forming a series of calculations[

d2

dy2 +
(
k + 1

y
− 1 − 2

(y + k)

)
d

dy

]
L2l+1
n (y)

+
[

1

y
(λ − l − 1) − V (y)

y
+ 2

(y + k)2

]
L2l+1
n (y)

−
[

2

[
l

y
− 1

2

]
1

(y + k)
− 2

y(y + k)

]

×L2l+1
n (y) = 0 (A.19)[

d2

dy2 +
(

(k + 1)(y + k) − y(y + k) − 2y

y(y + k)

)
d

dy

]

×L2l+1
n (y)

+1

y

[
(λ − l − 1) − V (y) + 2y

(y + k)2

]
L2l+1
n (y)

−1

y

[
2l

(y + k)
+ y

(y + k)
− 2

(y + k)

]
L2l+1
n (y) = 0

(A.20)[
d2

dy2 +
(
ky + k + y + k2 − y2 + yk − 2y

y(y + k)

)
d

dy

]

×L2l+1
n (y)

+1

y
[(λ − l − 1) + V(y)] L2l+1

n (y) = 0 (A.21)

which reduce to[
y

d2

dy2 +
(

(y − k)(k + y + 1)

(y + k)

)
d

dy

]
L2l+1
n (y)

+ [(λ − l − 1) + V(y)] L2l+1
n (y) = 0, (A.22)
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where

V(y) = −V (y) + 2y

(y + k)2 − 1

(y + k)
+ y − k

(y + k)
.

(A.23)

Since the eigenvalues are the same, the last term is equal
to

−V (y) + 2y

(y + k)2 − 1

(y + k)
+ y − k

(y + k)
= (y − k)

(y + k)
(A.24)

V (y) = 2y

(y + k)2 − 1

(y + k)
(A.25)

It should be clear from eq. (A.15) we have added

V (y)

y
= 2

(y + k)2 − 1

y(y + k)
. (A.26)
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