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Abstract. A simple and coherent approach to fluid mechanics is presented using a proper formalism of geometric
algebra. The analogy between the equations of electromagnetism and fluid mechanics provides reinterpretation
of the equations for two constituent (vorticity and the Lamb vector) fields. Identifying certain quantities as the
source fields, the guiding Navier–Stokes (NS) equations of fluid mechanics can be formulated as a set of four
geometrically distinct field equations, resembling exactly the Maxwell equations for the constituent magnetic and
electric fields. The same set of equations works for all the cases of compressible, incompressible, viscous and the
inviscid fluid motions with appropriately modified source terms. The analogy is completed by defining the combined
‘fluidomechanic’ bivector field in space–time algebra and further extended to the fluidic analogue of the Poynting
theorem, Poynting vector and Lorentz force.
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1. Introduction

Fluid mechanics is a branch of physics for studying
moving and stationary fluids to improve our understand-
ing of the behaviour of fluids under various forces and
physical conditions and the forces they produce. The
investigations help us to select the proper fluid for dif-
ferent practical applications. For applications involving
transportation, power generation and conversion, the
search for an acceptable method of harnessing nuclear
energy to name a few, the importance of studying fluid
mechanics cannot be overstated! It has almost ubiq-
uitous applications across inter-disciplinary boundaries
of physics, engineering, biology, atmospheric science,
geology, oceanography and so on.

The relevant variables and equations describing the
motion of a fluid are closely analogous to those of
electromagnetism. This has been traced by several
researchers in the past and Maxwell himself pointed out
parallels between the electromagnetic vector potential
and the fluid velocity (vector). Similarity with the math-
ematical structures of electromagnetism (EM) and fluid
mechanics (FM) may be readily recognised from the
definitions of the constituent fields of the two theories.

Biot–Savart law, which is usually known to describe the
magnetic field generated by a stationary electric current,
is also used in aerodynamics to calculate the velocity
induced by the vorticity field. However, in comparison
to the magnetic case, the roles of vorticity and current are
reversed. Quite recently, Osano and Adams compared
the evolution equation of the electromagnetic vector
potential with the Naiver–Stokes (NS) equation and the
two evolution equations for the magnetic and vortic-
ity fields with non-vanishing dissipation terms [1]. Also
the NS equations, rewritten in terms of the vorticity and
the Lamb vector fields exactly resemble the Maxwell
equations for the constituent magnetic and electric fields
[2–4].

On the other hand, the term eddy current in electricity
comes from analogous currents seen in fluid dynamics,
causing localised areas of turbulence known as eddies
giving rise to persistent vortices. Somewhat similarly,
eddy currents can take time to build up and can per-
sist for short time interval in conductors due to their
inductance. Also, recent works based on a ‘fluidic’
viewpoint, developed an NS-like equation in electro-
dynamics by using the appropriate electromotive force.
The new approach suggests possible applications in
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producing electric fields of the required configuration in
plasma medium [5]. However, as Feynman has observed
[6] “electrodynamics is really much easier than hydro-
dynamics”, and in fact, discussing EM first really helps
to understand the complications of fluid mechanics
better.

After the initial success in describing the electro
magnetic theory, Gibbs–Helmholtz’s vector algebra
(VA) dominates for generations as a major mathemati-
cal framework of theoretical physics. However, various
formulations using vector algebra suffer from several
unwarranted features and inadequacies and incorporate
in addition, matrix, tensor and spinorial algebras for
the complete description of physical theories. The cross
product of VA is definable only in 3D and produces
a pseudovector which lacks an absolute direction, to be
fixed according to the convention. Through its definition
of cross product, VA introduces a handedness (chirality)
even when there is no chirality in the entity being mod-
elled.

It should be emphasised that, the cross product, triple
product etc. of vectors and curl of a vector field and
hence the vector algebra and vector calculus as such,
can be defined only in 3D. Generalisation to any other
dimension is not possible – in two dimension, no third
dimension exists to accommodate the (cross) product
vector, and in higher dimensions there are too many
orthogonal directions [7]! By removing the inadequa-
cies of vector algebra, the Grassmann exterior algebra
or the ‘algebra of extension’, provides an efficient and
useful generalisation to any finite dimension and the
basic framework for Clifford geometric algebra. The
exterior or wedge (∧) product of Grassmann algebra
between any two vectors u and v belonging to the vec-
tor space of arbitrary dimensionality can be simply and
precisely defined as u∧v = −v∧u. Using the associa-
tive wedge product, two, three or any number of linearly
independent vectors in a given dimension can be wedged
together to produce higher definite-grade multivector
blades – bivector, trivector, etc. The wedge product also
implies a ‘closure property’. For example, a bivector
u∧v in two dimensions and a trivector u∧v∧w in three
dimensions, both having only one component each that
flips sign under reflection, represent the highest grade
element and pseudoscalar of the respective dimensions.
On the other hand, a trivector v1 ∧ v2 ∧ v3 in 2D and
a quadrivector v1 ∧ v2 ∧ v3 ∧ v4 in 3D collapse back
down to scalar zero so as to prevent construction of any
element of grade higher than the dimensionality of the
space.

Physical quantities like angular velocity, angular
momentum, torque in a force field, magnetic field B
at a point due to a current-element (given according to

Biot–Savart law) and vorticity W in fluid motion, usu-
ally represented by pseudovectors of VA, are properly
represented by bivectors in Clifford geometric algebra
(GA). Correspondingly, the flux and helicity (density)
of the bivector (magnetic, vorticity) fields are aptly rep-
resented by pseudoscalars. Also, particles with spin 0
and odd parity are called pseudoscalar particles, e.g.
‘pseudoscalar mesons’. Hestenes and others [8,9] have
revealed that GA provides a comprehensive description
for the most advanced concepts in theoretical physics,
such as classical mechanics, electromagnetism, fluid
mechanics, theory of relativity, quantum mechanics,
computer science, etc. [9]. GA is now being increas-
ingly recognised as the natural algebra for describing
the physics of n-space and applied to a range of prob-
lems in varied research fields. It is also claimed that
its superior geometric intuition is straightforward and
simple enough to be taught in high schools replacing
Gibbs–Helmholtz VA [10,11]!

Describing the magnetic field as a bivector (field),
geometric algebra provides a final unification of the
usual four Maxwell’s equations of the VA in a sin-
gle, compact equation for the combined electromagnetic
field. Furthermore, a single space–time force equa-
tion in terms of the combined electromagnetic field
encapsulates both the Lorentz force equation and the
power equation. Moreover, the formulation facilitates
a natural introduction of the putative concept of mag-
netic monopole and offers a profound dual symmetric
description by rendering the equations for both the con-
stituent fields, symmetric and inhomogeneous. All these
are discussed in [12] by the present author.

In the following, a similar study on fluid mechanics
is discussed to facilitate a comprehensive introduction
to fluid mechanics in the appropriate framework of
GA. Formal similarities of physical concepts, notions
and mathematical structures between the theories of
electromagnetism and fluid mechanics are highlighted
with greater clarifications in GA. The divergence and
the evolution equation of the Lamb vector l give the
‘fluidomechanic’ sources – the charge and the current
densities, respectively. Under simple approximations,
the guiding NS equations of motion can be expressed, in
terms of two appropriate field variables, exactly in the
same structure of four Maxwell equations and can be
similarly unified using the combined ‘fluidomechanic’
field in geometric algebra. The same set of equations
works for all the cases of compressible, incompress-
ible, viscous and inviscid fluid motions. Only the source
fields, the scalar charge density and the vector current
density have additional terms in a compressible and/or
viscous fluid flow. Complete expressions for the source
fields are derived in the present work.
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Some papers [13,14] claiming ‘geometric algebraic
approach’ in fluid mechanics have recently been pub-
lished. However, they have actually represented the final
expressions of vector algebraic description, in the lan-
guage of geometric algebra at the end. Panakkal et al
have also mixed the languages of matrix, tensor and dif-
ferential form in their description. A straightforward and
unified field theoretic formulation of fluid mechanics
using purely geometric algebraic description is initiated
in this paper which is expected to provide new insights
and open up new directions of investigation. It is also
intended to give a broad-based exposure of this power-
ful apparatus of theoretical physics to advanced graduate
students – looking forward for its inclusion in university
curriculum. After brief introductions to the basic theory
of fluid mechanics, geometric algebra and calculus in
the following two sections, the field theoretic formula-
tion of FM will be developed next in the proper language
of GA.

2. Fluid mechanics

A fluid cannot support shearing force for any length of
time and it flows. The ease with which a fluid flows is
the measure of its viscosity and even for viscous fluids,
there is no shearing force when it is at rest. Fluids are
regarded as continuous media. In a continuum approach,
‘fluid particles’ and ‘points’ in a fluid are to be inter-
preted as infinitely small volume elements, containing
many molecules and still regarded as points [15]. The
motion of a fluid is described in terms of certain relevant
variables. To reduce complexity, we start with a simple
system in terms of its flow velocity v, density ρ, pres-
sure p and the coefficient of viscosity η and discuss its
motion according to GA.

In FM, the equation of motion of a viscous fluid,
developed by Navier and Stokes, describes the evolution
of the velocity field vector under given initial conditions
[15,16]. Newton’s second law of motion under fluid
stresses due to the pressure gradient and viscosity in
combination with the basic conservation and continu-
ity equations provide a set of equations. The Eulerian
description which is used in most problems of FM uses
the coordinate system fixed in space, like field theories
describing EM or gravity. The field functions, defined
at a given point in space at a given time, refer to the
fixed points in space and not to specific fluid particles,
the latter move about in space in course of time.

With a constant control volume, there is no source or
sink of the mass, i.e. Q = 0, the equation of continuity
describing the change of the density field ρ = ρ(x, t),
given by

∂tρ + ∇ · (ρ v) = 0

⇒ ∂tρ + v · ∇ρ + ρ∇ · v = 0 (1)

is the same as the equation for the conservation of mass.
Here, ∂tρ + (v · ∇)ρ (= dtρ) is termed as the material
(or total time) derivative and the concept of the material
derivative, the rate of change of an intensive property
of a ‘fluid particle’, appears in a velocity field. For an
incompressible fluid setting the material derivative of
density dtρ equal to zero, the equation of continuity
renders the velocity field solenoidal (∇ ·v = 0), making
useful simplification in a number of problems. In terms
of the fluid body force (per unit volume) fb, the equation
of motion may be expressed as

ρdtv = ρ{∂tv + (v · ∇)v} = fb
= −∇ p − ρ∇(gz) + ρk

⇒ ∂tv = −(v · ∇)v − ∇(ρ−1 p + gz) + k, (2)

where the instantaneous/average fluid density ρ is
assumed to be constant and the force acting on the unit
fluid volume is equal to −∇ p plus the external force of
gravity −ρ∇(gz) and the fluid stress ρk due to viscos-
ity. Also, even when the flow is steady, i.e. ∂tv = 0, the
acceleration is non-zero as long as (v · ∇)v �= 0, that is,
if the velocity field changes in space along itself.

The viscous stress tends to diffuse the fluid veloc-
ity gradients and is proportional to the coefficient of
kinematic viscosity η (coefficient of dynamic viscosity
μ divided by density ρ) and depends on temperature.
Yet, if the temperature differences are small within the
fluid, then η can be taken outside the derivative [16],
producing k = η{∇2v + 3−1∇(∇ · v)}. The inertia of
a continuous medium is, therefore, described by a non-
linear term (v · ∇)v, whereas the linear Newtonian fric-
tion law is expected to hold for small rates of strain as
higher powers of η are neglected. For common fluids
such as air and water, the linear relationship is found to
be surprisingly accurate for most applications. For invis-
cid fluid flow (η = 0), the last term on r.h.s. vanishes
and the NS equation reduces to Euler equation, devel-
oped earlier in 1757 by Euler [17], to describe the flow of
an incompressible frictionless (inviscid) fluid. Neverthe-
less, the equations can be applied to both incompressible
and to the more general compressible flow. The com-
pressible or incompressible fluid flow offers a sort of
‘gauge freedom’ in fluid mechanics, although this is
not simply a freedom or choice, actually it has implica-
tions about the physical nature of the flow. The relation
∇ ·v = 0 for the incompressible fluid flow is akin to the
Coulomb gauge in electromagnetism, whereas a Lorentz
gauge-like equation for the average potential fields, rel-
ative to a compressible fluid flow may also be envisaged
[18,19]. Actually, the NS equation is a generalisation
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of the Euler equation. Navier in 1821 first introduced
viscous friction for the more realistic and vastly more
difficult problem of viscous fluid motion. Stokes then
improved on this work to its final form, though complete
solutions were obtained only for the case of simple 2D
flows.

The study of fluid mechanics is formulated as a bound-
ary value problem, solving the NS equations (1) and (2)
with appropriate boundary conditions [16]. For a New-
tonian fluid, the coefficient of viscosity η is assumed
to be constant. Using vector calculus in 3D fluid con-
tinuum, the nonlinear convective term (v · ∇)v gives
rise to pseudovector vorticity field (curl of the velocity
vector) in the presence of circulation or rotationality of
the flow velocity v. Exact solutions are possible for the
degenerate cases, in which the nonlinear terms vanish,
as in the steady laminar flow – the well-known Hagen–
Poiseuille flow through a capillary tube of uniform
cross-section [20]. Other examples include Couette flow
[15,16] (between the rotating cylinders and also between
the moving parallel planes) and the oscillatory Stokes
boundary layer [21].

In most of the practical problems, the presence of the
nonlinear convective term (v · ∇)v cannot be ignored.
Analytical solutions for the resulting set of nonlinear
partial differential equations range from difficult to prac-
tically impossible. Only in a few special cases, the NS
equation is solvable in closed form. Interesting exam-
ples of such solutions to the full nonlinear equations,
include Jeffery–Hamel flow, Von Kármán swirling flow,
stagnation point flow [22], Landau–Squire jet [15] and
Taylor–Green vortex [23]. The existence of these exact
solutions, however, does not guarantee stability – tur-
bulence may develop at higher Reynolds numbers. As
the velocity increases, the complex vortices and turbu-
lence, or chaos that occur in 3D fluid flows make the
calculation intractable to any but approximate numeri-
cal methods for simulating the nonlinear term.

However, in a parallel field theoretic approach using
vorticity and the Lamb vector as two independent field
variables, equations of the fluid motion (the NS equa-
tions) are reformulated in terms of the divergence and
the evolution equation of the two fields. The nonlinear-
ities are absorbed in the divergence and the evolution
equation of the Lamb vector field and assume special
physical significance as the input source fields. In the
process, a more tractable set of linear field equations
can be developed to describe the dynamics of fluid
flow. The source terms depend on the geometry and the
total energetics of the flow and are also apt for mod-
elling. With the input source terms, we are thus led
to a ‘closed’ set of linear equations and the dynamics
described in this manner is called the ‘metafluid dynam-
ics’ by Marmanis [3]. While Marmanis considered an

incompressible fluid, the Maxwell-type equations for a
compressible fluid is constructed by Abreu et al [19]
by taking into account a dissipation term from the
beginning.

In this paper, using proper GA formalism, a set of four
similar equations are developed for the most general
case of compressible viscous fluid. Both Eulerian invis-
cid flow and incompressible flow are described with the
same set by modifying the source fields with η = 0 and
solenoidal velocity field, i.e. ∇ · v = 0. Moreover, the
appropriate space–time force equation in this compre-
hensive formulation provides, both the power equation
and the Lorentz-type force law as in the case of EM.

3. Geometric algebra and calculus

The GA developed by Clifford provides a natural unifi-
cation of the algebras of Grassmann and Hamilton into
a single structure. The higher grade elements of exterior
algebra extends the usual 3D vector space, spanned by
4 unit bases (1, {α̂i }), to a multivector space spanned by
8 (= 23) unit bases:

1, {α̂i }, {α̂i ∧ α̂ j } and I3 (= α̂1 ∧ α̂2 ∧ α̂3),

with i, j = 1, 2, 3 and i �= j . 1 and I3 (I 2
3 = −1)

are unit scalar and pseudoscalar respectively and form
a pair of unit dual bases. Similarly, the unit vector and
bivector bases α̂i and α̂ j ∧ α̂k (= I3 α̂i = α̂i I3) form
another pair of unit dual bases. The product I3 α̂i implies
contraction (or usual dot product) of I3 with α̂i . Also in
3D, the pseudovector u×v may be regarded as the dual
of the bivectoru∧v sinceu∧v = I3(u×v) = (u×v)I3.

Dot product of two vectors produces a scalar, and
hence the name scalar product in vector algebra. After
introducing the exterior product, Grassmann [24] also
introduced the dot product between two vectors, defined
similarly, but always to be carried out first in a sequence,
i.e. u · v∧w ≡ (u · v)w. In tensor algebra, this product
is termed as inner product or contraction which reduces
the total rank by 2 and the product is not always a
scalar. For the higher rank tensors, it is extended with
the provision of multiple inner products or contractions,
producing different lower rank tensors in addition to
scalars. Similarly, the exterior algebra also uses mul-
tiple inner products or contractions of two multivector
blades. For example, contraction between a vector and a
bivector results in a vector whereas, with two bivectors
one gets a bivector from a single contraction and a scalar
from a double contraction.

The inner and exterior products of two vectors com-
plement each other: while the inner product lowers the
grade, the other raises it, one is commutative and the
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other is anticommutative. However, they are not invert-
ible in general. By combining both exterior (wedge) and
inner (dot) products of Grassmann algebra, Clifford’s
ingenuous contribution was to define a new associative
product, the geometric product [25]. For any two arbi-
trary vectors u and v, the product is defined as

uv = u.v + u ∧ v = C (say) ⇒ u.v = (uv + vu)/2

and u ∧ v = (uv − vu)/2,

and it endows the basic vector space with an algebraic
structure that embraces vector, complex, quaternion and
the spin algebra in a single formalism and sets apart Clif-
ford algebra from others. The product C is the sum of
a scalar s (= u · v) and a bivector A (= u ∧ v) and
represents a mixed multivector. Here, the multivectors
of definite grade are represented with bold capitals and
calligraphics represent multivectors of mixed grade. The
even subalgebra generated by the geometric product uv
contains only scalars and bivectors and in two dimen-
sions the even subalgebra is isomorphic to the complex
numbers, while in three dimensions it represents the
four-component quaternion defined by Hamilton. In
fact, the geometric product appears as a more funda-
mental product of the algebra, since both the inner and
the exterior products can be derived from it. The associa-
tivity and almost invertibility of the geometric product
makes this algebra a formidable tool of mathematical
physics.

Elements of GA represent both physical quantities
and operations. Projections, rejections, reflections along
vectors and rotations in planes – all these operations are
handled much more efficiently in GA than in traditional
vector and matrix algebras [7]. The unit quaternion,
called rotor in GA, encode rotation and using the elliptic
functional form introduced by Hestenes [26], the rotor
is found to be more efficient than the conventional rota-
tion matrix. In a sequence of rotations, interpolation with
quaternionic representation is far more convenient than
that with the rotation matrix.

3.1 Geometric calculus

Retaining the gradient and divergence operations and
discarding curl (= ∇×) of the 3D vector calculus, the
‘exterior calculus’ introduces the exterior derivative ∇∧
of a vector field f , defined as

∇ ∧ f = α̂i∂xi ∧ α̂ j f j = α̂i ∧ α̂ j ∂xi f j
≡ I3(∇ × f) = (∇ × f)I3
⇒ ∇ × f = −I3(∇ ∧ f) = −(∇ ∧ f)I3 etc.

In geometric calculus, like the geometric product, a gen-
eralised gradient operation on multivectors is similarly
defined with ∇ ≡ ∇. + ∇∧ and using this operator

a complete unification of the field equations for both
EM [12] and FM (as we will see here) can be achieved.
Hestenes also generalised the calculus of differential
forms according to GA and given an invariant formula-
tion of the Hamiltonian mechanics in terms of geometric
calculus [27].

3.2 The space–time algebra and calculus

The GA, like exterior algebra can be seamlessly extended
from 2, 3 dimensions to two arbitrary higher dimensions.
Replacing the Euclidean metric by the Minkowski met-
ric with appropriate basis vectors, the 3D GA can be
extended to the algebra of 4D Minkowski space–time or
simply space–time algebra [8,28]. The four basis vec-
tors α̂μ, μ = 0, 1, 2, 3, satisfying α̂μ · α̂ν = ημν ,
generates the sequence (− + + +) of algebraic signs
on the main diagonal of the flat space–time metric
in which α̂2

0 = −1 = −α̂2
k (the opposite signature

of (+ − − −) can also be used). Here, the Greek
indices run from 0 to 3 and Latin indices run from 1
to 3. α̂ks are evidently similar to the usual orthogonal
basis vectors of 3D space, where α̂0 is the time-like
basis vector of the 4D space–time. The corresponding
space–time algebra is spanned by 24 = 16 multi-
vector unit bases: 1, {α̂μ}, {α̂ j α̂0, α̂ j α̂k}, {I4 α̂μ} and
I4 (= α̂0 α̂1 α̂2 α̂3), with μ = 0, 1, 2, 3 ; j, k = 1, 2, 3
and j �= k. The geometric product, for the entire set of
basis vectors, is similarly defined as

α̂μ α̂ν = α̂μ ∧ α̂ν, μ �= ν

= α̂μ · α̂ν, μ = ν,

1 and I4 (I 2
4 = −1) are unit scalar and pseudoscalar,

respectively and forms a pair of unit dual bases. The dual
sets of α̂ j α̂0 (time-like) and α̂ j α̂k (space-like) bases
together represent six orthogonal space–time bivector
bases. Also, I4 α̂μ, the dual of α̂μ, represents four trivec-
tor bases of which I4 α̂0 = α̂1 α̂2 α̂3, may be identified
as the unit pseudoscalar I3 of the associated 3D space.

In 4D space–time, the highest grade-4 blades are pseu-
doscalars and the grade-3 trivector blades, dual of the
vectors, are called antivectors. The geometric product
is a sum of the multiple inner products or contractions
and the exterior product and is termed a multivector.
All these multivectors, linear combinations of blades of
different grades, are elements of a geometric algebra.

The even subalgebra of higher-dimensional space, the
spinors, generalises the rotation–dilation produced by
quaternions in 3D space. It may be noted that, rotors
can handle much more complex rotations and in the
non-Euclidean space. For example, rotors in 4D space–
time continuum produce Lorentz boost in addition to
the usual rotations on three orthogonal spatial planes.
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Quaternions and spinors have equivalent algebraic prop-
erties as well as the same geometric significance [26].
In fact, after a long time, Pauli in the formulation of
quantum mechanical spinor algebra and Dirac in his
theory of the relativistic electron, though not appreci-
ating fully, have rediscovered Clifford algebra. It was
Hestenes [29] who finally demonstrated that both the
Pauli and Dirac algebras are indeed expressible in the
language of GA and has carried out an extensive refor-
mulation of the theory of spinors – without invoking
anything quantum-mechanical!

The gradient operator in space–time calculus is corre-
spondingly expressed as α̂μ∂xμ = −α̂0c−1∂t +∇ which
is equivalent to the Dirac operator �, using four γ matri-
ces instead of the space–time basis vectors α̂μ. For a
check, we note: (−α̂0c−1∂t + ∇) · (−α̂0c−1∂t + ∇) =
−c−2∂2

t + ∇2 is the d’Alembertian �2 – the Laplacian
of Minkowski space.

4. Fluid mechanics using geometric algebra

Using a common identity of geometric calculus (GC)
for the nonlinear term: (v · ∇)v = v · (∇ ∧ v) + 1

2∇v2;
with v ≡ |v|, eq. (2) becomes

∂tv = −v · (∇ ∧ v) − ∇v2

2
− ∇(ρ−1 p + gz) + k

⇒ ∂tv = −v · W − ∇� + η{∇2v + 3−1∇(∇ · v)},
(3)

where

W = ∇ ∧ v. (4)

The bivector W (≡ I3 w, the vector w being the dual
of W) provides the proper representation of the vortic-
ity field (just like the magnetic field in electromagnetic
theory) and the term � (= v2

2 + p
ρ

+gz) is the Bernoulli
energy function or simply the Bernoulli head. In order
to include the effect of viscous dissipative terms from
the beginning, we now redefine the Lamb vector field
as: l = v · W − k and from eq. (3) we get

l = −∂tv − ∇� (5)

– an expression for the Lamb vector l in terms of
� and v, exactly similar to that for the electric field
(e = −∇φ − ∂ta), described by the conservative scalar
potential φ due to the electric charge distribution and
the non-conservative term involving the time deriva-
tive of the electromagnetic vector potential a. Putting
η = 0 ⇒ l ≡ linvisc = v ·W (the vector part v ·W of the
geometric product vW (= v · W + v ∧ W) constitutes
the Lamb vector. The pseudoscalar part v ∧ W is the
helicity density of the vorticity field [30,31], in analogy

with the helicity density (a∧B) of the magnetic field in
electromagnetism. It appears in the expression for the
fluidic current density (in eq. (10)) and measures the
linkage or knottedness of vortex lines in the flow and
also may be considered as the handedness (or chirality)
of the flow as it changes sign from a right-handed to a
left-handed frame of reference.), and both eqs (3) and
(5) describe the Euler equation for the inviscid flow.

Though the examples of true inviscid fluids or super-
fluids are limited, inviscid flow has many applications in
fluid dynamics. The Euler equation is as well applicable
in many fluid dynamical problems involving low viscos-
ity and large Reynolds number. However, the assumed
negligible viscosity is no longer valid near a solid bound-
ary.

In a steady flow (∂tv = 0) of an ideal fluid along a
streamline, the Euler equation gives Bernoulli equation.
Since v is orthogonal to the vector v · W, taking scalar
product with v one gets from eq. (5): v ·∇� = 0; which
implies that � is constant along a streamline. This is
Bernoulli’s theorem of fluid dynamics. In addition, if
the flow is irrotational, i.e. vorticity W = 0, we get
∇� = 0 or � = constant everywhere. The Bernoulli’s
theorem is actually a statement of conservation of energy
and can also be deduced using simple arguments [6].
Another equation named after Torricelli, expressing the
magnitude of the final velocity (v = √

2gz) of a fluid
flowing out of an orifice at a depth z from the top of a
full reservoir, where g is the acceleration due to grav-
ity, can be shown to be a particular case of Bernoulli’s
theorem.

The Lamb vector for the inviscid case v · W, also
known as vortex force or the NS swirl field, is identi-
cally zero in irrotational flows (W = 0). Also, if the
flow velocity v is normal to the vorticity W plane, l is
again zero, resulting in what is known as the Beltrami
flow. Both the vorticity and the Lamb vector are derived
from the velocity field and as such do not give any new
information that is not available from the velocity field.
According to Stokes’ theorem, vorticity is related to the
flow’s circulation (line integral of the velocity along a
closed path) per unit area of an infinitesimal loop. Vor-
ticity gives a microscopic measure of the rotation at any
point in the fluid. Vortex is a fluid structure within which
any fluid particle experiences a ‘rotation’ and is asso-
ciated with the vorticity bivector field. Vorticity has a
magnitude which is twice the angular velocity of the
rotating fluid structure and the plane of the bivector rep-
resents the plane of rotation [6]. Whereas vorticity is
essentially a fluid related term, the angular velocity term
is generally used for all sorts of rotational motion. Vortex
can be either laminar or turbulent. Vorticity emphasises
the rotational content of the fluid motion and the evolu-
tion and the divergence of the other dynamical variable,
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the Lamb vector field represents the source fields in the
field theoretic study of the problem.

In this formulation, the Bernoulli energy function �

plays the part of the scalar potential instead of enthalpy,
which is used by several researchers to describe the
scalar potential [4,32]. Here, � appears to be a better
choice to represent the scalar potential. In this approach,
the velocity field v plays as usual the role of the vector
potential along with � as the scalar potential and the
field variables W and l are the two other essential ele-
ments of the theory.

A flow situation in which the kinetic energy is signifi-
cantly absorbed due to the action of fluid viscosity gives
rise to a laminar flow regime at low velocity and density,
smaller characteristic linear dimensions and at higher
viscosity. However, the most important and interesting
problem in fluid dynamics is the phenomenon of tur-
bulence, distinguished by high Reynolds number, high
diffusivity and dissipation and 3D vortical fluctuations.
Turbulence is impossible in irrotational flows and vor-
ticity is necessary (but not sufficient) for turbulent flow
to start and is characterised by many spatio-temporal
scales, produced and sustained by continuous transfer
of energy and momentum from the larger to smaller
scales. In turbulent flow regime, the system’s inertial
forces dominate over the viscous forces, the flow energy
is extracted and transferred to the swirling motion and
the reverse current created – the ‘eddies’. The energy
transferred is then get cascaded to smaller eddies and so
on, until all the kinetic energy gets transferred to thermal
energy by viscosity. It is possible to present turbulent
flow as an interplay between vorticity and the Lamb
fields [3]. However, due to the complex nature of the
nonlinear NS equation, in most cases, the equations are
solved for describing average quantities through simu-
lation and approximations [33].

Using the formal similarity between the field variables
of fluid mechanics (eqs (4) and (5)) and the correspond-
ing (field) variables of electromagnetic theory, together
with suitably defined source terms, a similar set of lin-
ear field equations (for these two field variables) can be
developed to describe the dynamics of the fluid motions.
In the following, the ‘fluidomechanic’ charge and the
current densities will be defined by the divergence and
the evolution equations of the Lamb vector, respectively.
Now, from the very definition of the vorticity field W
(eq. (4)), we directly get

∇ ∧ W = 0, (6)

just like the Maxwell equation for the magnetic field. In
the most general case of viscous flow, the vorticity equa-
tion (also known as Helmholtz equation), describing
the evolution of the vorticity field can be derived from
eq. (3) and is given by

∂tW = ∇ ∧ ∂tv = −∇ ∧ l ≡ −∇ ∧ (v · W) + ∇ ∧ k.

(7)

The equation also represents the law of angular momen-
tum conservation applied to the fluid flow [6]. In both
the evolution equations (3) and (7), the coefficient of vis-
cosity η enters as a multiplicative factor to the Laplacian
of the respective field. The first term of the right hand
side of eq. (7) may be expanded as: −∇ ∧ (v · W) =
−W(∇ ·v)− (v ·∇)W+ (W∧∇) ·v, since ∇ ∧W = 0.

The first term −W(∇ · v) describes the stretching of
vorticity due to flow compressibility, the second term
−(v · ∇)W is the advection term whereas the third term
(W ∧ ∇) · v describes the stretching or tilting of vor-
ticity due to the flow velocity gradients. The random
field of turbulence, however, exhibits certain organised
structures of vorticity. Vorticity increases when vor-
tex lines are stretched, enhancing dissipation [30]. The
Burgers–Rott vortex, apart from serving as an example
which provides an exact solution to the NS equations
(for viscous flow), furnishes an illustration of the vortex
stretching mechanism.

Next, we consider the divergence of the Lamb vector.
By taking the divergence of both sides in eq. (5) we get

∇ · l = −∂t∇ · v − ∇2� = n(r, t) ≡ n

= −∇2� for incompressible flow. (8)

It is important to note that, the divergence of the Lamb
vector is the same for both inviscid and viscous incom-
pressible flow. The Laplacian of�, a function of position
and time, is identically zero for irrotational flows. More
important is the specific way in which it connects with
the vorticity. The function n(r, t) represents the flu-
idomechanic (also called ‘turbulent’) charge density and
for incompressibile flow, n = −∇2�. In turbulent flow,
this function will be significantly greater than in a lam-
inar flow. There is a tendency for � to accumulate in
regions where the divergence of the Lamb vector is
greater than 0.

Using simple identity of geometric calculus, the diver-
gence of the Lamb vector can also be expressed as

∇ · l = ∇ · (v · W − k)

= W : W − v · (∇ · W) − ∇ · k
≡ W : W − v · ∇2v + (v · ∇ − 4

3
η∇2)∇ · v. (9)

For the incompressible fluid flow, ∇ · v = 0 ⇒ ∇ · l =
W : W−v · ∇2v = −∇2�. Comparing eq. (8) with eq.
(9), we can write ∇ · l = −∇2�+ (v · ∇ − 4

3η∇2)∇ · v
= n. The first term on the right-hand side of eq. (9) – the
square magnitude of the vorticity W2 = W : W, a
scalar field representing the strength of the vorticity
field defines another important quantity enstrophy den-
sity. Applying the vector integral theorem on the NS
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equation (3), it follows that for an incompressible fluid,
2−1∂tv

2 = ηW : W, i.e., the time rate of change of the
flow energy (per unit mass) is proportional to the viscos-
ity coefficient η times the enstrophy density [30]. The
negative value implies the decline of the flow energy or
dissipation effect. Large value of enstrophy due to the
stretching of vortex filaments indicates turbulent flow
[34].

The importance and the physical properties of the
Lamb vector and its divergence have been studied and
explored by several researchers [35,36]. While the over-
all Lamb vector divergence can be positive, zero or
negative, positive contributions can only arise owing to
the second term −v · (∇ · W), the so-called ‘flexion
product’. Lamb vector divergence is identically zero for
the irrotational (W = 0) and Beltrami (l = 0) flows and
more generally, whenever the Lamb vector is solenoidal.
In such cases, the two parts may be locally balanced,
i.e., W : W = v · (∇2v) and need not be zero sep-
arately. Turbulence occurs frequently in regions where
the sign of the Lamb vector divergence switches between
negative and positive.

Finally, we derive the evolution of the Lamb vector,
which is not adequately described and studied in the
literature. In the first place, from eq. (5) we get the
expression: ∂t l = −∂2

t v − ∇∂t�. More explicit and
useful expression for the evolution equation of the Lamb
vector is obtained from the very definition: l = v ·W−k
as ∂t l = ∂t (v · W) − ∂tk = ∂tv · W + v · ∂tW − ∂tk,
and use of eqs (5) and (7) yields

∂t l = (−l − ∇�) · W + v · (−∇ ∧ l) − ∂tk
= −l · W − (∇�) · W − v · (∇ ∧ l) − ∂tk
= −v2 ∇ · W − v∇ · l + {∇ · (v ∧ W)} · v

+(v ∧ W) : ∇ ∧ v + W · ∇(� + v2)

−2 (l · ∇)v + l(∇ · v) − ∇(v · k)

+∇ · (v ∧ k) − ∂tk ⇒ ∂t l + v2∇ · W = −j,

where

j = v n − {∇ · (v ∧ W)} · v
−(v ∧ W) : W − W · ∇(� + v2)

+2 (l · ∇)v − l(∇ · v) + ∇(v · k)

−∇ · (v ∧ k) + ∂tk,

with

n = ∇ · l,
k = −η{∇2v + (3−1∇)∇ · v}
and

∂tk = −η{∇2 + (3−1∇)∇·}
(l + ∇�) etc.

(see Appendix). (10)

Identifying n and j as the source quantities, possessing
spatial and temporal structures, it is possible to present
turbulence as an interplay between vorticity and the
Lamb vector. The viscous dissipation terms are absorbed
in the source terms through eqs (8) and (10).

4.1 Field theoretic formulation according to the
geometric algebra

The guiding NS equation of fluid mechanics, expressed
in terms of appropriately defined vorticity W and the
Lamb vector l according to geometric calculus as a set
of four geometrically distinct (scalar, vector, bivector
and pseudoscalar) field equations (6)–(10), are now rear-
ranged as

∇ · l = n; v2 ∇ · W + ∂t l = −j;
∂tW + ∇ ∧ l = 0 and ∇ ∧ W = 0, (11)

where eqs (8) and (10) furnish complete expressions for
the charge and current densities (n and j) respectively.
The same set of four equations can be used for Eulerian
inviscid flow by modifying the source fields with η = 0,
whereas for incompressible flow the velocity field is
solenoidal, i.e. ∇ · v = 0. The modified expressions of
n and j for incompressible and/or inviscid flow accord-
ing to eq. (10) are equivalent with the corresponding
expressions quoted in [3,13,19], using vector calculus.
Both the sources (the charge and the current densities)
are inputs and to be determined by observing the geom-
etry and the total energetics of the flow.

Earlier, Troshkin [2] examined the significance of the
analogy between the incompressible Euler equation and
Maxwell equations. He studied the turbulent fluctua-
tions in an ideal turbulent medium with the system of
equations for average velocities and Reynolds stresses
using perturbation technique. Marmanis [3] subse-
quently presented an analogy between incompressible
NS equation and Maxwell equation and applied the
formulation to study the turbulent fluid flow for high
Reynolds numbers, with averaged field quantities. He
has not considered dissipation terms arguing that, for a
theory of high Reynolds number, the viscous corrections
are important only in the very small scales and are even-
tually filtered out by the averaging procedure. However,
the derivation of the expressions in this important study
is marred with repeated and simultaneous use of cross
and wedge products. In a more general and independent
formulation, Kambe [4] derived a set of analogous equa-
tions for inviscid compressible fluid flow with source
terms. Inclusion of viscous effects in the formulation is
also indicated. In another interesting paper, extending
the analogy between fluid mechanics and electromag-
netism, Thompson and Moeller [18] formulated a set of
Maxwell equations for the charged fluid ‘plasma’.
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Abreu et al [19], on the other hand, obtained the
Maxwell-type equations for a compressible fluid with
dissipation term, considering the viscosity from the
beginning. However, the formulation omitted certain
source terms. The authors have also constructed the
Lagrangian for this fluid. To analyse the applications
of this formalism in quark-gluon plasma (QGP), they
also developed the non-Abelian generalisation of some
results. Besides, a correlation function and the disper-
sion relation have been analysed as functions of the
Reynolds number.

The fluid mechanical analogues of the Lorentz force
law and the Poynting theorem of EM can also be devel-
oped in this formulation. Using the identity, ∇ ·(W ·l) =
(∇ · W) · l − (∇ ∧ l) : W and the vorticity equation
∂tW = −∇ ∧ l, we can develop analogous ‘Poynting
theorem’ in FM by writing the rate of energy supplied
to the system:

∂t u = j · l = −{∂t l − v2∇ · W} · l
= −∂t l2

2
− v2{(∇ ∧ l) : W + ∇ · (W · l)}

= −∂t
l2 − v2W2

2
− v2∇ · (W · l)

= −∂t u f − ∇ · s f ⇒ ∂t (u + u f ) + ∇ · s f
= 0, (12)

where u f = 2−1(l2 − v2W2) is the energy density of
the fluid and s f = v2 W · l is the corresponding ‘Poynt-
ing vector’ (∇ · s f representing the flux of the energy
flowing out). Also, in analogy with the classical electro-
magnetic field, the Lagrangian density may be written
as L = ρ

2 v2 − n � + v · j, where n � − v · j represents
the potential part. Then, applying the Euler–Lagrangian
equation and using the appropriate field equations, anal-
ogous expression for the Lorentz force density can be
derived as

f = n l − j · W. (13)

Earlier, Scofield and Huq [37], using the tensor calcu-
lus, also derived the fluid mechanical analogue of the
Lorentz force and the Poynting theorem (of electromag-
netic theory) and discussed the implications. From the
analysis, they observed that the fluidic Lorentz force and
the Poynting theorem describe new channels of stress-
energy propagation and dissipation. In the following,
we will see that a single space–time force equation,
just as in the case of EM, provides a complete account
for both the Poynting theorem and the Lorentz force
law.

4.2 Unification of the four geometrically distinct field
equations

Now, using the formalism of geometric calculus by
introducing a paravector differential operator (c−1∂t +
∇) and the fluidomechanic parabivector field F =
l+cW, we can combine all the four equations (11) into
a single multivector equation in terms of the paravector
source term J = c n − j as

(c−1∂t + ∇)F = c−1∂tF + ∇ · F + ∇ ∧ F
= n − c−1j ≡ v−1J , (14)

where the dimensional parameter c of the differential
operator is equated with the magnitude of the instanta-
neous fluid velocity v at the end. Operating both sides
of eq. (14) with (−c−1∂t + ∇) and equating the scalar
parts, we get the equation of continuity expressing flu-
idomechanic charge conservation:

∂t n + ∇ · j = 0 (15)

– a new equation which relates n and j, where the tur-
bulent current is the flux of the turbulent charge. With
suitable applications, further significance of this equa-
tion may be gained.

5. Reformulation of fluid mechanics in space–time
algebra

Finally, extending the algebra of 3D space to the algebra
of 4D Minkowski space–time [8,28] with the replace-
ment of the Euclidean metric by the Minkowski metric,
a more compact and elegant description of FM can
be achieved. Specially, this reformulation in terms of
space–time algebra leads to possible relativistic investi-
gation of the fluid motion.

Replacing the paravector differential operator by the
space–time gradient (Dirac operator) � = α̂μ∂xμ =
−α̂0c−1∂t + ∇ and the parabivector field by the appro-
priate space–time bivector F = l ∧ α̂0 − cW, eq. (14)
takes the form

�F = � · F + � ∧ F = c−1j̄ ≡ v−1j̄, (16)

where the source field is accordingly represented by
the space–time current density vector j̄ = α̂0c n + j
and c of the Dirac operator is substituted at the end
with v, the magnitude of the instantaneous fluid veloc-
ity. The left-hand side of eq. (16) contains both vector
and trivector parts, whereas the right-hand side contains
only a space–time vector. From the two constituent vec-
tor (� ·F = v−1j̄) and trivector (� ∧F = 0) equations,
equating the time-like and space-like bases of the two
sides of the equations separately, one gets back the set
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of four equations (11). It is important to note that the
unification of the separate equations for divergence and
curl in a single equation is non-trivial—both the uni-
fied equations (14) and (16) can be inverted directly
to determine the combined field. Also, by defining the
space–time vector potential ā = α̂0� − c v, one can
consistently express the space–time bivector field as
F = � ∧ ā and since � · (� · F) is zero, we get � ·
j̄ = 0 – eq. (15) expressing charge conservation. Demir
and Tanişli [32] reformulated the Maxwell-type equa-
tions for compressible inviscid fluid on the basis of
space–time algebra in a compact and elegant form.
Moreover, the fluid wave equation in terms of poten-
tials are derived ‘in a form similar to electromagnetic
and gravitational counterparts’. In this formulation, the
scalar potential is represented by the enthalpy and they
have not considered viscous dissipation terms.

Both the power equation and the Lorentz force law
can also be obtained, as in the case of EM, from the
appropriate space–time force equation as

f̄ ≡ ∂t p̄ = c−1 j̄ · F
⇒ α̂0 c

−1 ∂t u + ∂tp

= (α̂0 n + c−1 j) · (l ∧ α̂0 − cW)

= n l + c−1 α̂0 j · l − j · W.

Separation of the temporal and spatial parts of the
space–time force yields both power and Lorentz force
equations. Written explicitly:

∂t u = j · l = −∂t
l2 − v2W2

2
−v2∇ · (W · l)

= −∂t u f − ∇ · s f
and

f = ∂tp = n l − j · W,

as in eqs (12) and (13).

In this formulation, as in the case of EM [12], from the
scalar part 〈F2〉0 = l2 + v2W2 of the square of the flu-
idomechanic bivector field F which is independent of
the reference frame, the Lagrangian density L can be
obtained, although this is not true for the field energy
density u f – which is an observer-dependent quantity.
One can also derive the field equation (eq. (16)) from the
Euler–Lagrange equation, as an alternative. In the pres-
ence of the source terms, using the interaction energy
j̄ · ā (= 〈j̄ ā〉0) together with the invariant scalar 〈F2〉0,
the total Lagrangian density in the appropriate form is

L =
(〈

F2

2
+ v−1j̄ ā

〉
0

)
≡

〈
(� ∧ ā)2

2
+ v−1 j̄ ā

〉
0
.

(17)

In functional form we may write: L ≡ L(ā, � ∧ ā)
and the space–time Euler–Lagrange equation may be
accordingly expressed as

∂ L
∂ ā

− � ∂ L
∂(� ∧ ā)

= 0.

Substitution of L from eq. (17) in the above equation
finally reproduces eq. (16): � · (�∧ ā) = � ·F = v−1 j̄.
The remaining equation also follows as � ∧ F =
� ∧ � ∧ ā = 0. The potential formulation thus facili-
tates the formulation of a Lagrangian field theory of FM
starting with a scalar-valued Lagrangian density. The
approach also leads to the conservation laws of energy
and momentum.

6. Concluding remarks

The advantages of using the geometric algebraic for-
mulation of fluid mechanics are discussed and clarified.
Formal similarities between physical concepts, notions
and in mathematical structures, specially between the
theories of electromagnetism and fluid mechanics are
highlighted. In the first place, reinterpreting the guid-
ing NS equation(s) with the constituent vorticity and
the Lamb fields and identifying certain quantities as
the source fields, it is possible to present a set of four
geometrically distinct field equations – scalar, vector,
bivector and pseudoscalar equations, respectively, in the
usual 3D space. The same set of equations works for all
the cases of compressible, incompressible, viscous and
inviscid fluid flows. Only the source fields, the charge
density and the vector current density have additional
terms in a compressible and/or viscous fluid flow. With
the two source fields n and j, we get the equation of
continuity – a new equation expressing fluidic charge
conservation. Determining the distribution of ‘fluidome-
chanic sources’ experimentally or numerically, the set
of linear equations can be solved for specific problems.

The analogy with the Maxwell equation of electro-
magnetism is completed with the unification of all the
four equations in terms of an appropriate combined flu-
idomechanic bivector field F in space–time algebra.
Secondly, a full-fledged field theoretic description is
obtained with the derivation of the fluidic analogue of the
Poynting theorem, Poynting vector and Lorentz force
from the space–time force equation. As an alternative,
it is shown that one can also derive the field equation (16)
from the appropriate Euler–Lagrange equation using
the Lagrangian density L obtained from the combined
field F.

On the other hand, concepts and formalisms of FM
are also incorporated in electromagnetic theory. For
example, the term eddy current in electricity comes
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from analogous currents seen in fluid dynamics, causing
vigorous localised circulations known as eddies. Eddy
currents are induced by changing magnetic fields and
circulate in conductors in closed loops in the plane of the
magnetic field like swirling eddies in a stream. Critical
appreciations of the two formulations offer important
insights to share between the two. New perspective
from the turbulent hydrodynamics also helped in attain-
ing illuminating observations on the electromagnetic
field.

Starting from the microscopic Maxwell equations and
with the introduction of polarisation and magnetisation
fields, Liu [38] developed a set of irreversible, nonlin-
ear ‘hydrodynamic Maxwell’ equations in continuous
media. The author identified two additional thermody-
namic forces which ‘give rise to dissipative terms and
represent mechanism for the EM fields to restore equi-
librium in non-conducting media’ and expected many
more consequences for ‘ferrofluids’, superconductors
and nematic liquid crystals with appropriate modifica-
tion of the Maxwell’s equations. Holland [39] proposed
an alternative Eulerian model and argued that EM phe-
nomena, conventionally described in a field-theoretic
language, also admit a complementary description in
terms of a many-particle system possessing an interac-
tion potential. The method facilitates the construction
of spin-0 state for the EM field and offers an analogue
of the quantum potential formulation. In addition, using
the classical trajectories, an expression for the propaga-
tor of the EM field is derived in the Eulerian picture.

As in FM, new extra terms are introduced using
the convective derivative in moving EM systems. In
developing electro- and magnetohydrodynamics, stellar
evolution etc., NS-like equation must be solved to deter-
mine the time and spatial response of charges. Parallels
are made between the inertia property of matter, elec-
tromagnetism and the hydrodynamic drag in potential
flow. The methodological treatment provided by the ‘flu-
idic electrodynamics’ approach is rewarding on various
accounts. A new approach to electrodynamics, based
on a fluidic viewpoint, developed an NS-like equation
by using the appropriate electromotive force. Recent
works introducing new concepts suggest among others,
possible applications in producing electric fields of the
required configuration in the plasma medium [5]. The
authors also mentioned several important approaches
in solving complex problems of high-energy physics
and cosmology by identifying conceptual similarities
between disparate physical phenomena.

The newly developing field theoretic approach of the
FM allows a fast transposition from electromagnetism
to fluid dynamics and vice versa. It is natural to expect
that the comprehensive theoretical framework presented
in this paper will provide new insights and open up

new directions of investigation with many more con-
sequences.

Appendix

Using eqs (5) and (7), the evolution equation of the Lamb
vector field l can be written as

∂t l = ∂t (v · W − k) = ∂tv · W + v · ∂tW − ∂tk
= (−l − ∇�) · W + v · (−∇ ∧ l)

−η{∇2 + (3−1∇)∇·}∂tv
= −l · W − (∇�) · W − v · (∇ ∧ l)

−η{∇2 + (3−1∇)∇·}(−l − ∇�). (A.1)

With two vector fields l and v, a known identity of geo-
metric calculus reads as

∇(v · l) = (v · ∇)l+(l · ∇)v+(∇ ∧ v) · l+(∇ ∧ l) · v
⇒ (∇ ∧ l) · v ≡ −v · (∇ ∧ l) = −∇(v · k)

− (v · ∇)l − (l · ∇)v + l · W (A.2)

since v · (v ·W) vanishes identically. Now, substitution
of (A.2) in (A.1) gives

∂t l = −∇(v · k) − (v · ∇)l − (l · ∇)v + W · ∇�

+η{∇2 + (3−1∇)∇·}(l + ∇�).

Moreover, from the following identity of GC:

∇ · (v ∧ l) = l(∇ · v) + (v · ∇)l − v(∇ · l) − (l · ∇)v
⇒ (v · ∇)l = ∇ · (v ∧ l) − l(∇ · v)

+v(∇ · l) + (l · ∇)v

and we can write:

∂t l = −∇(v · k) − ∇ · (v ∧ l) + l(∇ · v) − v(∇ · l)
−2(l · ∇)v + W · ∇�

+η{∇2 + (3−1∇)∇·}(l + ∇�). (A.3)

Expressing the second term on the right-hand side of the
above equation as

−∇ · (v ∧ (v · W)) + ∇ · (v ∧ k)

= −∇ · {v2W − (v ∧ W) · v} + ∇ · (v ∧ k)

= −∇v2 · W − v2∇ · W + {∇ · (v ∧ W)} · v
+(v ∧ W) : ∇ ∧ v + ∇ · (v ∧ k),

eq. (A.3) can be written as

∂t l = −∇(v · k) − v2 ∇ · W + {∇ · (v ∧ W)} · v
+(v ∧ W) : W + ∇ · (v ∧ k) + l(∇ · v) − v(∇ · l)
−2 (l · ∇)v + W · ∇(� + v2) + η∇2(l + ∇�)

+3−1η∇{∇ · (l + ∇�)}.
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