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SERDAR ÜNLÜ1,∗, HASAN BİRCAN2, NECLA ÇAKMAK3 and CEVAD SELAM4

1Department of Physics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
2Department of Physics, Kütahya Dumlupınar University, Kütahya, Turkey
3Department of Physics, Karabük University, Karabük, Turkey
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Abstract. We describe the first-forbidden beta transitions by using Pyatov’s restoration method within the
framework of proton–neutron quasiparticle random phase approximation (pn-QRPA). A detailed formalism related
to how to obtain the energies and wave functions of the first-forbidden excitations is clearly given in the present
work. A comparison of the calculated results for various nuclei with the corresponding experimental data is given
to demonstrate an application of the present approximation.
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1. Introduction

Investigation of weak interaction processes remains a
prominent issue in the domain of nuclear physics and
also significantly contributes to the explanation of astro-
physical processes such as nuclear synthesis [1] and
supernova explosions [2,3]. The allowed spin–isospin
transitions (Gamow–Teller (GT) transitions) are the
most common weak interaction processes. In situations
where the allowed GT transitions are not favoured, first-
forbidden transitions become important, particularly for
medium and heavy mass nuclei. A theoretical study of
GT and first-forbidden transitions plays a significant
role in determining quantitative constraints for the ten-
sor force [4].

The theoretical description of single and double β-
decay rates is still an open question for the nuclear struc-
ture theories [5]. As known, the mean-field approxima-
tion is not successful in reproducing the experimental
data related to decay observables due to the exclusion of
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two-body effective interactions. However, the proton–
neutron quasiparticle random phase approximation (pn-
QRPA) has been considered the most potent method
for single and double β-decay calculations [5–46]. The
behaviour of double β-decay amplitude was searched
using the pn-QRPA method [5–37,40,41,46]. The vio-
lations in isospin symmetry and spin–isospin symmetry
significantly affect double β-decay rates which are
obtained within the pn-QRPA [18,28,34,37,40,46]. The
first-forbidden contributions to 2νβ−β− decay rates
were computed [23,41]. The contributions from the
allowed and first-forbidden transitions for single-β-
decay rates were obtained [38,39,42–45]. Recently, the
allowed and first-forbidden β-decay processes have
been investigated using self-consistent approximations
in the framework of the pn-QRPA method [47–51].
The first-forbidden β-decay properties have been calcu-
lated by using gross theory [47]. The β-decay half-lives
and delayed neutron emission probabilities for double
magic 78Ni and 132Sn nuclei have been obtained using
Landau–Migdal interaction in the particle–hole channel
within a self-consistent continuum QRPA model [48].
A large-scale evaluation of β-decay rates of r-process
nuclei with the inclusion of first-forbidden transitions
has been given within a fully self-consistent microscopic
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theoretical framework [49]. The β−-decay strengths for
axially-deformed nuclei have been computed using the
Skyrme finite-amplitude method, and the experimen-
tal data related to the β-decay rates and spin-dipole
resonance have been reproduced by fitting Skyrme
parameters [50]. The β-decay rates for neutron-rich
nuclei have been studied using Skyrme energy density-
functional theory [51].

Pyatov’s restoration method is an efficient way to
define effective interaction potential, which was ini-
tially introduced to restore broken Galilean invariance
of pairing interaction [52]. Then, it has been extended to
the restoration of symmetry violations which stem from
the mean-field approximation [34,37,40,46,53–68]. The
symmetry restoring treatment of the pairing potential
has been discussed in the case of a separable monopole
pairing potential on a quasiparticle basis [53]. A com-
parison between the effective interactions used in the
symmetry restoration methods is given for intrinsic exci-
tations in superfluid nuclei [54]. The broken Galilean
invariance in superfluid nuclei and its connection with
quadrupole pairing interactions are studied for even-
mass Sn isotopes [55]. The electric dipole (E1) and
magnetic dipole (M1) transitions have been investigated
within the translational and rotational invariant approxi-
mations, respectively [56–59]. The restoration of broken
isospin invariance of nuclear Hamiltonian makes an
important contribution to understand the isobar ana-
logue resonance and superallowed Fermi transitions
(�L = 0, �S = 0) [60–66]. The description of
spin–isospin transitions within the restoration of SU(4)
symmetry violations plays a significant role in under-
standing GT transitions (�L = 0, �S = ±1) [67,68]
and double β-decay [34,37,40,46].

First-forbidden beta transition probabilities (�L =
±1, �S = 0, ±1) are sensitive to the violations in trans-
lational invariance since the corresponding transition
operator contains the dipole component (r). Charge-
exchange spin-dipole transitions (�L = ±1, �S =
±1) show the sensitivity to the violations in both SU(4)
symmetry and translational invariance. Due to these
symmetry violations, the charge-exchange spin-dipole
operator does not commute with the total Hamiltonian
operator. It is well known that Coulomb and spin–orbit
terms in the Hamiltonian break the SU(4) symmetry.
Also, the kinetic energy part of the total Hamiltonian
does not commute with the charge-exchange spin-dipole
operator. In other words, the remaining part of the total
Hamiltonian besides these terms commutes with the
transition operator. However, this commutativity is bro-
ken in the mean-field level of approximation like other
symmetry properties. At this point, Pyatov’s restoration
procedure can be applied to restore a broken commuta-
tor correlation between the total Hamiltonian operator

and the first-forbidden beta transition operator. Thus,
it becomes possible to give a theoretical description of
the first-forbidden transitions, which is free of effective
interaction strength parameters. A detailed explanation
of the restoration is given in the next section.

2. Model and method

2.1 Restoration of broken commutator correlation

2.1.1 Mean-field basis. The mean-field potential is
described in the following form:

Umf = Ucent +Uls +UC. (1)

The central part consists of the isoscalar (U0) and the
isovector (U1) terms as follows:

Ucent = U0 +U1,

U0 = −V0 f (r), U1 = V1(r)tz.

r-dependent isovector potential can be defined as

V1(r) = 2ηV0 f (r)
N − Z

A
.

The distribution function is given by

f (r) = 1

1 + e
r−R0

a

.

The isospin components for neutron and proton are writ-
ten as

tz = 1/2 (neutron), tz = −1/2 (proton).

The spin–orbit term is defined as

Uls = Vls(r)(l · s).
r-dependent spin–orbit potential can be defined as

Vls(r) = − ξ
1

r

dUcent

dr
and the Coulomb term is given as

UC = VC(r)

(
1

2
− tz

)
.

r-dependency in Coulomb potential can be introduced
as

VC(r) = e2 Z − 1

r

3r

2RC
− 1

2

(
r

RC

)3

, r ≤ RC,

VC(r) = e2 Z − 1

r
, r > RC.

The Woods–Saxon potential with Chepurnov parametri-
sation [69] is usually suitable for single-particle levels.

Let us consider a system of nucleons in a spheri-
cally symmetric average field with pairing forces. In
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this case, the single quasiparticle Hamiltonian in the
second-quantisation representation is given by

Ĥsqp =
∑
jm

ε j (τ )̂α
†
jm(τ )̂α jm(τ ), τ = n, p, (2)

where α̂
†
jm and α̂ jm are one-quasiparticle creation and

annihilation operators, respectively. The proton and neu-
tron pairing gaps are defined as �p = Cp/

√
A and

�n = Cn/
√
A [70], respectively. The pairing strength

parameters Cp and Cn are chosen in such a way that the
experimental pairing gaps [71] are reproduced.

2.1.2 Charge-exchange spin-dipole transition opera-
tor. The charge-exchange spin-dipole operator for β+
transitions is defined as follows:

T̂
+
λμ =

∑
jnmn jpm p

〈 jnmn|[r(Ŷ1 ⊗ σ̂1)]λμ| jpm p〉

×â†
jnmn

â jpm p , (3)

where Ŷ1 ⊗ σ̂1 is a tensor product of the spin and dipole
operators and â†

jnmn
(̂a jpm p ) is a one-particle creation

(annihilation) operator, λ and μ are the correspond-
ing nuclear spin for the transition and its projection,
respectively. By means of Bogolyubov quasiparticle
transformations [72], it is possible to define the tran-
sition operator for even and odd-A nuclei separately.

(a) Even-A nuclei
The corresponding transition operator for β+-decay can
be written as a combination of quasiboson creation and
annihilation operators

T̂
+
λμ =

∑
np

bnp(λ)Ĉ†
np(λμ)

+(−1)λ+μbnp(λ)Ĉnp(λ, −μ). (4)

The transition operator for β− transitions is defined as
a Hermitian conjugate operator:

T̂−
λμ = [T̂+

λμ]†.

One-quasiboson creation and annihilation operators are
given by

Ĉ†
np(λμ) =

√
2λ + 1

2 jn + 1

∑
mnmp

〈 jpm pλμ| jnmn〉(−1) jp−mp

× α̂
†
jnmn

α̂
†
jp,−mp

and

Ĉnp(λμ) = [Ĉ†
np(λμ)]†.

The reduced matrix elements (b̄np(λ), bnp(λ)) are given
as defined by Varshalovich et al [73]

bnp(λ) = 〈 jn||[r(Ŷ1 ⊗ σ̂1)]λμ|| jp〉√
2λ + 1

unvp,

bnp(λ) = b̄np(λ)

unvp
u pvn,

where v and u are single-particle and hole amplitudes,
respectively.

(b) Odd-A nuclei
For odd-A nuclei, the scattering terms coming from
Bogolyubov quasiparticle transformations are also con-
sidered as follows:

T̂
+
λμ =

∑
np

b̄np(λ)

×Ĉ†
np(λμ)+(−1)λ+μbnp(λ)Ĉnp(λ, −μ)

+d̄np(λ)D̂†
np(λμ)

+(−1)λ+μ+1dnp(λ)D̂np(λ, −μ) (5)

and

D̂†
np(λμ)=

√
2λ+1

2 jn+1

∑
mnmp

〈 jpm pλμ| jnmn 〉̂α†
jnmn

α̂ jpm p .

Also,

D̂np(λμ) = [D̂†
np(λμ)]†

d̄np(λ) = b̄np(λ)

unvp
u pun, dnp(λ) = b̄np(λ)

unvp
vpvn

2.1.3 Effective interaction. A charge-exchange spin-
dipole operator can be defined as a combination of β−
and β+ decay operators in the following form:

F̂
ρ

λμ = 1

2
(T̂

+
λμ + ρ(−1)λ+μT̂

−
λ,−μ), ρ = ±. (6)

Many-body Hamiltonian does not commute with the
charge-exchange spin-dipole operator because of
Coulomb, spin–orbit and kinetic energy terms:

[Ĥ , F̂
ρ

λμ] = [ÛC + Ûls + P̂2/2m, F̂
ρ

λμ]. (7)

In other words, the remaining part of the Hamiltonian
must commute with the transition operator.

[Ĥ − ÛC − Ûls − P̂2/2m, F̂
ρ

λμ] = 0. (8)

This commutativity is broken in the mean-field level of
approximation as follows:

[Ĥsqp − ÛC − Ûls − P̂2/2m, F̂
ρ

λμ] �= 0. (9)
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According to the mean-field potential defined in eq. (1),
eq. (9) can be rewritten in the following form:

[Ûcent, F̂
ρ

λμ] �= 0. (10)

Isoscalar potential already commutes with the transition
operator, and so the violation in commutator correlation
stems from the isovector term in the mean-field poten-
tial.

[Û1, F̂
ρ

λμ] �= 0. (11)

Hence, the nucleon−nucleon effective interaction poten-
tial should be considered in such a way that the broken
commutator correlation is restored.

[Û1 + ĥλ, F̂
ρ

λμ] = 0. (12)

The effective interaction potential consists of the particle–
hole (ph) and the particle–particle (pp) terms, and is
defined within Pyatov’s restoration method:

ĥλ =
∑
ρ

1

4γ
ρ
ph(λ)

∑
μ

[Û1, F̂
ρ

λμ]†
ph · [Û1, F̂

ρ

λμ]ph

+
∑
ρ

1

4γ
ρ
pp(λ)

∑
μ

[Û1, F̂
ρ

λμ]†
pp · [Û1, F̂

ρ

λμ]pp.

(13)

As seen in eq. (13), the commutator correlation in
eq. (12) contains two unknown strength parameters.
Hence, the particle–hole (γ ρ

ph(λ)) and the particle–

particle (γ ρ
pp(λ)) strength parameters can be determined

analytically using two different commutator correla-
tions, which are defined by adding a constant taking
value as 0 < c < 1.

[cÛ1 + ĥλ
ph, F̂

ρ

λμ] = 0 (14)

[(1 − c)Û1 + ĥλ
pp, F̂

ρ

λμ] = 0 (15)

ĥλ
ph =

∑
ρ

1

4γ
ρ
ph(λ)

∑
μ

[Û1, F̂
ρ

λμ]†
ph · [Û1, F̂

ρ

λμ]ph

ĥλ
pp =

∑
ρ

1

4γ
ρ
pp(λ)

∑
μ

[Û1, F̂
ρ

λμ]†
pp · [Û1, F̂

ρ

λμ]pp.

The following expressions for particle–hole and particle–
particle strength parameters are obtained using the
commutator correlations in eqs (14) and (15), respec-
tively.

γ
ρ
ph(λ)=ρ(−1)λ+μ

2c
〈G.S.|[[Û1, F̂

ρ

λ,−μ]ph, F̂
ρ

λμ]|G.S.〉
(16)

γ ρ
pp(λ)=ρ(−1)λ+μ

2(1−c)
〈G.S.|[[Û1, F̂

ρ

λ,−μ]pp, F̂
ρ

λμ]|G.S.〉.
(17)

(a) The strength parameters for even-A nuclei
The commutator correlation between the isovector
potential and transition operator is obtained as follows:

[Û1, F̂
ρ

λμ]ph =
∑
np

f ρ
np(λ)(Ĉ†

np(λμ)

+ρ(−1)λ+μĈnp(λ, −μ))

f ρ
np(λ) = V1(r)

2
(b̄np(λ) − ρbnp(λ)) (18)

and

[Û1, F̂
ρ

λμ]pp =
∑
np

dρ
np(λ)(Ĉ†

np(λμ)

+ρ(−1)λ+μĈnp(λ, −μ))

dρ
np(λ) = V1(r)

2
(d̄np(λ) − ρdnp(λ)). (19)

The double commutators for even-A nuclei (|G.S.〉 =
|0〉)

γ
ρ
ph(λ) = ρ(−1)λ+μ

2c
〈0|[[Û1, F̂

ρ

λ,−μ]ph, F̂
ρ

λμ]|0〉 (20)

γ ρ
pp(λ) = ρ(−1)λ+μ

2(1 − c)
〈0|[[Û1, F̂

ρ

λ,−μ]pp, F̂
ρ

λμ]|0〉 (21)

are solved and the final expressions for strength param-
eters are obtained as follows:

γ
ρ
ph(λ) = −1

c

∑
np

f ρ
np(λ)bρ

np(λ) (22)

γ ρ
pp(λ) = − 1

1 − c

∑
np

dρ
np(λ)bρ

np(λ) (23)

and bρ
np(λ) is defined as

bρ
np(λ) = 1

2
(b̄np(λ) + ρbnp(λ)).

(b) The strength parameters for odd-A nuclei
For odd-A nuclei, the commutator correlation between
the isovector potential and transition operator is given
as

[Û1, F̂
ρ

λμ]ph

=
∑
np

f ρ
np(λ)(Ĉ†

np(λμ) + ρ(−1)λ+μĈnp(λ, −μ))

+dρ
np(λ)(D̂†

np(λμ) + ρ(−1)λ+μ+1 D̂np(λ, −μ))

(24)

and
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[Û1, F̂
ρ

λμ]pp

=
∑
np

dρ
np(λ)(Ĉ†

np(λμ) + ρ(−1)λ+μĈnp(λ, −μ))

+ f ρ
np(λ)(D̂†

np(λμ)

+ρ(−1)λ+μ+1 D̂np(λ, −μ)). (25)

The double commutators for odd-A nuclei are given as

γ
ρ
ph(λ) = ρ(−1)λ+μ

2c
× 〈 jkmk |[[Û1, F̂

ρ

λ,−μ]ph, F̂
ρ

λμ]| jkmk〉, (26)

γ ρ
pp(λ) = ρ(−1)λ+μ

2(1 − c)

× 〈 jkmk |[[Û1, F̂
ρ

λ,−μ]pp, F̂
ρ

λμ]| jkmk〉, (27)

where the valence nucleon is represented by |G.S.〉 =
| jkmk〉 = α̂

†
jkmk

|0〉.
The final form of the strength parameter also contains

a core–nucleon interaction term as follows:

γ
ρ
ph(λ) = −1

c

∑
np

f ρ
np(λ)bρ

np(λ)

+
∑
p

dρ
kp(λ)gρ

kp(λ) (odd-neutron) (28)

γ ρ
pp(λ) = − 1

1 − c

∑
np

dρ
np(λ)bρ

np(λ)

+
∑
p

f ρ
kp(λ)gρ

kp(λ) (odd-neutron) (29)

γ
ρ
ph(λ) = −1

c

∑
np

f ρ
np(λ)bρ

np(λ)

+
∑
n

dρ
nk(λ)gρ

nk(λ) (odd-proton) (30)

γ ρ
pp(λ) = − 1

1 − c

∑
np

dρ
np(λ)bρ

np(λ)

+
∑
n

f ρ
nk(λ)gρ

nk(λ) (odd-proton) (31)

and gρ
np(λ) is defined as

gρ
np(λ) = 1

2
(d̄np(λ) + ρdnp(λ)).

2.2 First-forbidden excitations and transition rates

The collective Hamiltonian for the first-forbidden tran-
sitions can be defined as follows:

Hλ = Hsqp + hλ. (32)

The following equation is solved to determine the
corresponding energies and wave functions for the first-
forbidden excitations:

[Ĥλ, �̂(λ)]|G.S.〉 = ωλ�̂(λ)|G.S.〉. (33)

2.2.1 First-forbidden excitations in even-A nuclei.
The first-forbidden excitations for even-A nuclei are rep-
resented by a phonon-creation operator in the following
form:

�̂i (λμ)|g.s.〉 = Q̂†
i (λμ)|0〉

=
[ ∑

np

Xi
np(λ)Ĉ†

np(λμ)

+(−1)λ+μY i
np(λ)Ĉnp(λ, −μ)

]
|0〉. (34)

The commutator correlation between the phonon cre-
ation and annihilation operators is given by

[Q̂i (λμ), Q̂†
j (λμ)] = δi j . (35)

The total Hamiltonian can be diagonalised by solving
the equation of motion:

[Ĥλ, Q̂
†
i (λμ)]|0〉 = ωλ

i Q̂
†
i (λμ)|0〉. (36)

The orthonormalisation condition giving the forward
(Xi

np) and backward (Y i
np) amplitudes is obtained using

eq. (35):
∑
np

(Xi
np(λ))∗X j

np(λ) − (Y i
np(λ))∗Y j

np(λ) = δi j . (37)

2.2.2 First-forbidden excitations in odd-A nuclei. The
suitable version of the pn-QRPA for odd-mass nuclei is
called the proton–neutron quasiparticle phonon nuclear
model (pn-QPNM). According to pn-QPNM, the first-
forbidden excitations are represented by the following
operator:

�̂n
k (λ)|G.S.〉 = (�̂n

k (λ))†|0〉 = Nn
k (λ)̂α

†
jkmk

|0〉
+

[∑
iν

Rkν
ni (λ)〈 jνmνλμ| jkmk〉Q̂†

i (λμ)̂α
†
jνmν

]
|0〉,

(38)

where k(ν) indices correspond to valence nucleons
for the initial (final) nucleus as neutron (proton) or
proton (neutron). The corresponding energies for the
first-forbidden excitations in the neighbour nuclei are
determined by solving the equation of motion as

[Ĥλ, (�̂
n
k (λ))†]|0〉 = ωn

k (λ)(�̂n
k (λ))†|0〉. (39)
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Figure 1. Percentage contributions of charge-exchange
spin-dipole excitations in 62Cu.

The wave-function amplitudes are found from the fol-
lowing normalisation condition:

|Nn
k (λ)|2 +

∑
iν

|Rkν
ni (λ)|2 = 1. (40)

Figure 2. Percentage contributions of charge-exchange
spin-dipole excitations in 90Nb.

2.2.3 Transition rates. Generally, the β-decay proba-
bilities are given by the following formula:

B(Ji → J f ) = 1

2Ji + 1
|〈J f ||Mβ±||Ji 〉|2. (41)
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Figure 3. Percentage contributions of charge-exchange
spin-dipole excitations in 118Sb.

The β-decay matrix elements are usually defined as fol-
lows:

Mβ±(Ji → J f , λ, μ) = 〈J f |T̂±
λμ|Ji 〉. (42)

Figure 4. Percentage contributions of charge-exchange
spin-dipole excitations in 120Sb.

First-forbidden β-decay matrix elements are computed
by using ξ -approximation [70]. According to this
approximation, the decay matrix elements for λπ = 0−
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Figure 5. Percentage contributions of charge-exchange
spin-dipole excitations in 124Sb.

and λπ = 1− transitions consist of relativistic and non-
relativistic terms:

Mβ±(0−) = ∓M±(ρA, λ = 0)

−i
mec

h̄
ξM±( jA, κ = 1, λ = 0) (43)

and

Mβ±(1−) = M±( jV , κ = 0, λ = 1, μ)

∓i
mec√

3h̄
ξM±(ρV , λ = 1, μ)

+i

√
2

3

mec

h̄
ξM±( jA, κ = 1, λ = 1, μ). (44)

The total decay rate can be given as follows:

f0t (B(Ji → J f , λ = 0)

+B(Ji → J f , λ = 1)) = Dg2
V

4π
. (45)

The transition probabilities B(λπ = 0−, 1−; β±) are
specified by

B(Ji → J f , λ = 0)

= 1

2Ji + 1
|〈J f ||Mβ±(0−)||Ji 〉|2 (46)

and

B(Ji → J f , λ = 1)

= 1

2Ji + 1
|〈J f ||Mβ±(1−)||Ji 〉|2. (47)

Finally, the non-relativistic matrix element for λπ =
2− is specified by

Mβ±(2−) = M±(λ = 2, κ = 1, jA, μ). (48)

Transitions with λπ = 2− are referred to as unique
first-forbidden transitions and their decay rates can be
expressed as

f1t B(Ji → J f , λ = 2) = 3

4

Dg2
V

4π
, (49)

where

B(Ji → J f , λ = 2)

= 1

2Ji + 1
|〈J f ||Mβ±(2−)||Ji 〉|2, (50)

D = 6250 s and the effective ratio of the axial and vector
coupling constants is taken as (gA/gV ) = −1.24.

The relativistic and the non-relativistic β-decay mul-
tiple operators [70] for various excitations are given as
follows:

For Jπ = 0− excitation,

M±(ρA, λ = 0) = gA

c
√

4π

∑
k

t̂±(k)(σk · ϑk)

M±( jA, κ = 1, λ = 0) = gA
∑
k

t̂±(k)rk(Y1(̂rk)σk)0.



Pramana – J. Phys.          (2023) 97:121 Page 9 of 11   121 

Table 1. The centroid energies for the charge-exchange spin-dipole transitions.

Transition ω̄ (0−) ω̄ (1−) ω̄ (2−) ω(�L = 1,�S = 1) [74]

62Ni →62Cu 22.23 17.65 15.25 ≈20
90Zr →90Nb 23.42 17.34 15.82 ≈20
118Sn →118Sb 23.32 18.81 14.08 ≈20
120Sn →120Sb 22.55 19.13 14.58 ≈20
124Sn →124Sb 24.84 19.90 14.50 ≈20

The energies are given in unit of MeV.

Table 2. The β− decay log ft values for some odd-A nuclei.

BE jn → jp PW Exp.

95Sr (1/2)+ → (1/2)− 6.311 6.161 [75]
137Xe (7/2)− → (7/2)+ 6.831 6.567 [76]
139Ba (7/2)− → (7/2)+ 6.811 6.845 [77]
205Hg (1/2)− → (1/2)+ 5.455 5.257 [78]
209Pb (9/2)+ → (9/2)− 5.869 5.534 [79]
211Pb (9/2)+ → (9/2)− 6.08 5.99 [80]

BE stands for beta emitter and PW stands for present work.

For Jπ = 1− excitation,

M±( jV , κ = 0, λ = 1, μ) = gV

c
√

4π

∑
k

t̂±(k)(ϑk)1μ

M±(ρV , λ = 1, μ) = gV
∑
k

t̂±(k)rkY1μ(̂rk)

M±( jA, κ = 1, λ = 1, μ)

= gA
∑
k

t̂±(k)rk(Y1(̂rk)σk)1μ.

For Jπ = 2− excitation,

M±( jA, κ = 1, λ = 2, μ)

= gA
∑
k

t̂±(k)rk(Y1(̂rk)σk)2μ.

2.3 Application of various isotopes

Charge-exchange spin-dipole β− strength distributions
for 62Ni, 90Zr and 118,120,124Sn isotopes are illustrated
in figures 1–5. Let us note that the horizontal axis
shows the calculated energies with respect to the ground
state of the neighbour odd–odd nuclei. As seen, the
first-forbidden 2− excitations in odd–odd nuclei show
more fragmentation than the 0− and 1− excitations. The
strength distributions for λπ = 1− excitations are usu-
ally obtained in a narrow energy region. The energy
spectra for λπ = 1− excited states do not exhibit a peak
above 20 MeV except for the 124Sb isotope. It can be
concluded that the β− transition strength for λπ = 1−
excitations shifts to higher energies for heavier Sb iso-
topes. The decay strength for λπ = 0− excitations is

concentrated in a higher energy region than 1− and 2−
excitations. The energy spectra for λπ = 0− excitations
do not show a peak below 10 MeV except for 90Nb.
The first-forbidden 0− excited states in 90Nb exhibit
more fragmentation than other 0− spectra. For these
isotopes, the experimental data, which were obtained
from (3He,t) reactions at E(3He) = 450 MeV, show a
charge-exchange spin-dipole resonance around 20 MeV
[74]. To make a comparison with the experimental data,
the centroid energies for three components (0−, 1− and
2− states) of the spin-dipole transitions are calculated
according to the following formula:

ω̄ =
∑

i ωi |Mi
β−|2∑

i |Mi
β−|2 .

The calculated centroid energies are tabulated and
presented in table 1. The last column shows the exper-
imental data for spin-dipole resonance. It is possible to
say that the calculated centroid energies usually show a
good agreement with the experimental position of spin-
dipole resonance.

Another application of the present method is an
investigation of the first-forbidden transitions for odd-A
nuclei. In this respect, a comparison of the calculated
β-decay log ft values for various odd-A nuclei with the
corresponding experimental data is given in tables 2 and
3. These tables demonstrate that the calculated log ft val-
ues are usually close to the corresponding experimental
values.
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Table 3. The β+ -decay log ft values for some odd-A nuclei.

BE jp → jn PW Exp

191Au (3/2)+ → (3/2)− 6.2 6.9 [81]
197Tl (1/2)+ → (1/2)− 5.96 6.42 [82]
199Tl (1/2)+ → (1/2)− 5.91 6.54 [83]
201Tl (1/2)+ → (1/2)− 5.90 6.09 [84]

BE stands for beta emitter and PW stands for present work.

3. Conclusion

Charge-exchange spin-dipole transitions are described
by using Pyatov’s restoration method within the frame-
work of pn-QRPA method. The mathematical formalism
is provided to be free of effective interaction strength
parameters by following the restoration procedure. The
present formalism is applied for the β− decay strength
distributions of 62Ni, 90Zr, 118Sn, 120Sn, 124Sn isotopes
and β-decay log ft values of some odd-A nuclei. It can
be said that the present approximation is successful in
reproducing the experimental data related to charge-
exchange spin-dipole transitions.

In the near future, the calculations will be extended to
other decay emitters. We predict that applying Pyatov’s
restoration procedure for restoring a broken commutator
correlation will ensure a good motivation to describe the
electric or magnetic multiple transitions, which have no
relation with any symmetry property.
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