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Abstract. In this paper, we use the homotopy perturbation transform method (HPTM) to offer an efficient
semi-analytical technique for solving fractional Emden–Fowler equations. A mixture of Laplace transform, Caputo–
Fabrizio derivative, and homotopy perturbation transformation process has the projected technique. To assess the
efficacy of the suggested technique, test examples have been provided. The series have been used to represent
semi-analytical solutions. Also, covered have the convergence position, estimation, and semi-analytical simulation
results. The HPTM efficiently managed and controlled a series solution that quickly converges to a precise result in
a narrow admissible region. The new findings essentially improve and simplify some of the previously published
findings (see Malagia in Math. Comput. Simul. 190:362, 2021). By assigning appropriate values to free parameters,
dynamical wave structures of some semi-analytical solutions are graphically demonstrated using 2-dimensional
and 3-dimensional figures. Furthermore, various simulations are used to demonstrate the physical behaviors of the
acquired solution with respect to fractional integer order.

Keywords. Time-fractional Emden–Fowler equations (EFEs); homotopy perturbation transform method;
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1. Introduction

The fractional calculus (FC) is the generic general-
ization of integer-order calculus to licentious order
integration and differentiation with non integer order.
The FC dates back to 1695, when l’Hôpital addressed

Leibniz regarding the probable meaning of d1/2x(t)
dt1/2 ,

which represents the semi derivative of x(t) with respect
to t . Due to its advantageous qualities such as ana-
lyticity, linearity and non locality, fractional calculus
has recently become a powerful tool. Furthermore,
there are numerous pioneering references accessible for
various definitions of FC, which lay the foundation
for FC [1–4]. With the rapid advancement of digital

computer technology, many researchers are turning their
attention to the theory and applications of fractional
calculus, for example, Jacob Robert Emden (1862–
1940), a Swiss astrophysicist and Sir Ralph Howard
Fowler (1889–1944), an English astronomer are the
namesakes of the famous Emden–Fowler (EF) equa-
tion [5,6], the generalized derivative operator [7], the
HAM [8,9], the Caputo–Fabrizio fractional derivative
[10], the asymptotic behavior [11], the adomian decom-
position method [12], the conformable derivative [13],
the q-homotopy analysis transform method [14], the
homotopy perturbation transform method [15], the mod-
ified (G ′/G)-expansion method [16,17], the modified
invariant subspace method [18], the finite difference
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method [19], the multi-variable Aleph-function [20],
the Aboodh adomian decomposition method (a pow-
erful research tool, used to successfully develop the
solution of ZKEs) [21], the capacity and applicable
of the projected scheme [22,23], the Banach’s fixed
point speculation (which is investigated for the con-
trolling fractional-order model in order to determine
the existence and uniqueness of the achieved solution)
[24,25], some new voltage behavior such as dark–
bright soliton solution, trigonometric and complex func-
tion solutions [26–30], magnetohydrodynamic [31], the
uniform Haar wavelet resolution technique [32], the
singular boundary value problems [33], the analyti-
cal solutions [34], the exp(−k(p))-expansion technique
[35], the Caputo fractional derivatives [36], the general-
ized Adams–Bashforth–Moulton method [37,38], some
standard fixed point theorems and fractional calculus
theories [39], the pseudo-spectral collocation method
[40], Caputo–Fabrizio fractional derivative [41], the
Mittag–Leffler rule with fractal derivative generalized
[42], and so on.

To investigate these equations, mathematicians devel-
oped some of the most extensively used statistics.
Emden–Fowler’s differential equation is one of these
equations. It has numerous applications in various sci-
entific fields. This equation is expressed in its general
form as

x−κ dm

dxm

(
xκ dn

dxn

)
y + h(x) j (x) = 0, κ > 0. (1)

Wazwaz [12] proposed this equation and it explains a
lot of remarkable facts. The Emden–Fowler equations
were first proposed by Fowler as a solution to an astro-
nomical problem [5], Berkovich [6], followed up with
a consideration of its particular situations and changed
into simpler forms. Other properties of the above equa-
tion, such as fastness, asymptotic evolution, continuity,
boundary value problem, oscillations, and boundedness
were discussed by Wong [5] in 1975.

The homotopy perturbation transform method (HPTM)
is described, in which continuous mapping is produced
from the initial obligation to the exact solutions. The
subsidiary parameter confirms solutions convergence.
HPTM is recognized even if a given non-linear prob-
lem does not restrain any small/large parameters. The
convergence zone and rate of approximation category
can be adjusted and controlled. It can also be used to
approximate a nonlinear issue by varying the base func-
tions. The connection of semi-analytical approaches
with the Laplace transform is well-known for avoid-
ing time-consuming repercussions and requiring less
CPU time to examine numerical solutions to nonlinear
problems described in real-life applications. By select-
ing a suitable value for the auxiliary parameter alpha,

we may easily alter and regulate the convergence zone
of solution series in a vast allowed realm. Also, with
the same grade point and order of solution range, it can
yield many more acceptable solutions than all other ana-
lytical techniques. The development in HPTM is the
creation of a novel correction function using homotopy
polynomials. Five test issues confirm the accuracy of
this strategy. This method can be used to solve multi-
dimensional fractional physical problems with ease. The
motion of a drop with memory in time is described by
time-fractional differential equations. When variations
are heavy-tailed, space fractional derivatives emerge to
depict drop motion that accounts for a transform in
the flow field over the exhaustive system. In addition,
the fractional derivatives show that the system mem-
ory is modulated or weighted. Electrical signal publicity
in a transmission line, wave propagation, signal dis-
section, and other applications use the Emden–Fowler
equation. Because of this, fractional modelling is appro-
priate for such systems. As a result, understanding
the multi-dimensional fractional order Emden–Fowler
equation is crucial. It appears to be intriguing to discover
a numerical solution of the fractional order Emden–
Fowler equation using HPTM because of its ability
to provide a parameter that allows us to regulate and
change the series solution’s convergence zone. HPTM
also eliminates the need for linearization, discretized,
small dislocation, or any restricted assumptions, signif-
icantly reduces mathematical computational, provides
nonlocal effect, promises a big convergence zone, and
eliminates the need to calculate complicated polyno-
mials, integrations, or small/large physical parameters.
Conformable derivatives yield Caputo type fractional
operators [43,44], the Mittag–Leffler power law [45],
the application of the improved q-HAM and the opti-
mal perturbation iteration process yield semi-analytical
solutions to the Emden–Fowler problem [46] modified
iterative method [47] and cylindrical coordinate system
[48]. For temporal and spatial discretization, a modified
leap-frog finite difference scheme with stabilized term
and a central finite difference scheme are used [49]. On
the basis of strength and stiffness theory and calculation,
applied materials were determined, and applied physics
calculations were carried out [50], criteria for oscillation
in second-order Emden–Fowler delay differential equa-
tions with a sub-linear neutral term [51], the extended
sinh-Gordon equation expansion method [52], and the
incomplete global GMERR algorithm and the global
GMERR algorithm [53]. The various simulations are
used to demonstrate the physical behaviors of the
acquired solution with respect to the fractional inte-
ger order [54–62], the Laplace transform [63,64] and
the second-order Emden–Fowler neutral delay DEs
as an application of oscillation criteria [65,66]. The
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EFEs under the Dirichlet boundary value problem are
the application of the variational method [67], the q-
homotopy analysis transform method [68], and the
statistical analysis [69]. The development, analysis, and
application of a free coefficient algorithm can also reveal
a desirable or undesirable property/behavior [70–72],
to the best of our knowledge. This is the first time the
Caputo–Fabrizio derivative has been applied to a singu-
lar differential equation problem.

Some basic definitions of fractional calculus are
presented in § 2 and the HPTM is discussed in § 3.
The solution of the Emden–Fowler equation using the
Caputo–Fabrizio type fractional operator by HPTM is
given in § 4. The results and discussion are given in § 5
and finally, the conclusion is presented in § 6.

2. Preliminaries

Here we present some fundamental definitions of
the Riemann–Liouville (R–L) fractional differentiation,
Laplace transform (LT) and FCD [15,35].

Definition 1

The Caputo derivative is defined for α ≥ 0 and n ∈ N∪0
is defined as follows (see ref. [15]):

CF
0 Dα

t u(t) = 1

�(n − α)

∫ t

0
(t − ξ)

dn

dtn
u(ξ)dξ, (2)

where CF
0 Dα

t is the Caputo–Fabrizio derivative.

Definition 2

Assume u be a function u ∈ H1(a1, b1), b1 > 0, 0 <

α < 1. Then, the fractional Caputo–Fabrizio fractional
operator is defined as (see [15]):

CF
0 Dα

t u(t) = M(α)

1 − α)

∫ t

0
exp

[
−α(1 − ξ)

1 − α

]
u′(ξ)dξ,

t ≥ 0, 0 < α < 1, (3)

with normalized functions M(α) which depends on α ∈
M(0) = M(1) = 1.

Definition 3

The CFD of order 0 < α < 1 is given by (see [15])

CF
0 Dα

t u(t) = 2(1 − α)

M(α)(2 − α)
u(t) + 2α

M(α)(2 − α)∫ t

0
u(ξ)dξ, t ≥ 0, (4)

where CF
0 Dα

t u(t) = 0, if u is a constant function.

Definition 4

The Laplace transform (LT) for the CFD of order 0 <

α < 1 and m ∈ N is given by (see [15])

L
[

CF
0 D(m+α)

t u(t)
]
(s)

= 1

1 − α
L[um+1(t)]L

[
exp

( −α

(1 − α)
t

)]

= sm+1L[u(t)] − smu(0) − sm−1u′(0) · · · − um(0)

s + α(1 − s)
.

(5)

In particular, we have

L
[

CF
0 D(m+α)

t u(t)
]
(s) = sL(u(t))

s + α(1 − s)
, m = 0,

L
[

CF
0 D(m+α)

t u(t)
]
(s) = s2L(u(t)) − su(o) − u′(0)

s + α(1 − s)
,

m = 1.

3. General description of homotopy perturbation
transform method via Caputo–Fabrizio type
operator

This section presents a powerful scheme called the
homotopy perturbation transform method [15]. We look
at the following equation of nonlinear partial differential
equation along with the Caputo–Fabrizio derivative:

CF
0 Dm+α

t u(x, t) + βu(x, t) + ϕu(x, t)

= k(x, t), n − 1 < α + m ≤ n, (6)

such that

∂ lu(x, 0)

∂t l
= fl(x), l = 0, 1, 2, . . . , n − 1. (7)

Now, by applying the LT on eq. (6) and eq. (7), we get

L[u(x, t)] = 	(x, s)

−
(
s + α(1 − s)

sn+1

)
L[βu(x, t) + ϕu(x, t)], (8)

where

	(x, s) = 1

sm+1 [sm f0(x) + sm−1 f1(x)

+ · · · + fm(x)] + s + α(1 − s)

sn+1 k̃(x, s). (9)

Taking the inverse Laplace transformation (eq. (8)),
we have

u(x, t) = 	(x, s) − L−1
[(

s + α(1 − s)

sn+1

)

L[βu(x, t) + ϕu(x, t)]
]

, (10)



  123 Page 4 of 11 Pramana – J. Phys.          (2023) 97:123 

where 	(x, s) is the term that arises from the source
term, and it specifies the initial conditions. The solution
u(x, t) can be extended into an infinite sequence using
the regular homotopy perturbation method as follows:

u(x, t) =
∞∑
n=0

pnun(x, t). (11)

where um(x, t) are known functions and is given by

ϕu(x, t) =
∞∑
n=0

pnHn(x, t). (12)

The polynomial Hn(x, t) are defined as [8,9]

Hm(u0, u1, u2, . . . , un)= 1

n!
∂m

∂pm

[( ∞∑
m=0

piui

)]

p=0

,

m = 0, 1, 2, . . . . (13)

Substituting eq. (11) and eq. (12) into eq. (10), we get
∞∑

m=0

um(x, t) = 	(x, s) − pL−1
[(

s + α(1 − s)

sm+1

)

L
[
β

∞∑
m=0

pmum(x, t) +
∞∑
n=0

pmHm

]]
.

(14)

Comparing the coefficients of p0, p1, p2, p3 and p4,
we get

p0 : u0(x, t) = 	(x, s),

p1 : u1(x, t)

= −L−1
[(

s + α(1 − s)

sm+1

)
L[βu0(x, t) + H0(u)]

]
,

p2 : u2(x, t)

= −L−1
[(

s + α(1 − s)

sm+1

)
L[βu1(x, t) + H1(u)]

]
,

p3 : u3(x, t)

= −L−1
[(

s + α(1 − s)

sm+1

)
L[βu2(x, t) + H2(u)]

]
,

...

pm+1 : um+1(x, t) = −L−1
[ (

s + α(1 − s)

sm+1

)

L[βum+1(x, t) + Hm+1(u)]
]
.

With the help of HPTM, the series solutions are

u(x, t) =
∞∑

m=0

um(x, t). (15)

This approach avoids linearization and weak nonlinear-
ity assumptions, and the solution is created in the form
of a general solution, making it more practical than the
method of simplifying physical problems.

4. Semi-analytical experiments

In this section, we will solve various types of Emden–
Fowler equations using the homotopy perturbation
transform method (see [46]).

Example 1. Contemplate the Emden–Fowler equation

CF
0 Dα

t u(x, t) = ∂2u

∂x2 + 5

x

∂u

∂x

−(12t2 − 2t x2 + 4t4x2)u(x, t), (16)

with the IC

u(x, 0) = 1. (17)

Using the Laplace transformation on both sides of equa-
tions(16) and (17), we get

L[u(x, t)] = 1

s
+

(
s + α(1 − s)

s

)

L
[
∂2u

∂x2 + 5

x

∂u

∂x
− (12t2 − 2t x2 + 4t4x2)u(x, t)

]
.

(18)

Applying the inverse of the LT to eq.(18), we get

u(x, t) = 1 + L−1
[(

s + α(1 − s)

s

)

L
[
∂2u

∂x2 + 5

x

∂u

∂x
− (12t2 − 2t x2 + 4t4x2)u(x, t)

]]
.

(19)

Now, applying the HPTM, we get

∞∑
m=0

um = +pL−1
[(

s + α(1 − s)

s

)

L
[ ∞∑
m=0

pmum + 5

x

∞∑
m=0

pmum

−(12t2 − 2t x2 + 4t4x2)

∞∑
m=0

pmum

]]
.

(20)
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Using the above conditions, we get

p0 : u0(x, t) = 1,

p1 : u1(x, t) = −4

3
t3(3α + x2α)

− 2t (−x4 + x4α)

+ t2(−12 − 4x2 + 12α + 4x2α + x4α),

p2 : u2(x, t) = 8

9
t6(9α2 + 6x2α2 + x4α2)

+ 2t (32x2 + x4 − 64x2α − 2x4α

+ 32x2α2 + x4α2)

− 2t2(30 + 2x2 − 60α − 36x2α − x4α

+ 30α2 + 34x2α2 + x4α2)

+ 1

3
t3(−108α − 4x2α + 108α2

+ 36x2α2 + x4α2)

− 8

15
t5(−90α − 60x2α − 10x4α

+ 90α2 + 60x2α2 + 13x4α2 + x6α2)

+ 4

3
t4(−6x4α − 2x6α − 3α2

+ 6x4α2 + 2x6α2),

p3 : u3(x, t) = −2t (−384 − 64x2 − x4

+ 1152α + 192x2α + 3x4α − 1152α2

− 192x2α2 − 3x4α2 + 384α3 + · · · )
+ t2(−108 − 4x2 + 1476α + 204x2α + 3x4α

− 2628α2 − 396x2α2 − 6x4α2

+ 1260α3 + 196x2α3 + · · · )
− 1

3
t3(264α + 8x2α − 1680α2 − 208x2α2

− 3x4α2 + 1416α3 + 200x2α3 + 3x4α3)

+ 32

81
t9(27α3 + 27x2α3 + 9x4α3 + x6α3)

− 4

45
t6(−1530α2 − 700x2α2 − 10x4α2

+ 1530α3 + 796x2α3 + 73x4α3 + x6α3)

+ 4

15
t5(1620α + 760x2α + 20x4α − 3240α2

− 1904x2α2 − 292x4α2 − 4x6α2 + 1617α3 + · · · )
− 1

12
t4(3072x2α + 2016x4α + 32x6α

+ 204α2 − 6140x2α2−4032x4α2 − 64x6α2− · · · )
− 2

9
t8(−432α2 − 432x2α2 − 144x4α2

− 16x6α2 + 432α3 + 432x2α3 + 153x4α3 + · · · )
+ 16

63
t7(−63x4α2 − 42x6α2 − 7x8α2

+ 36α3 + 16x2α3 + 63x4α3 + 42x6α3 + 7x8α3)

...

Hence the series solution is given by

u(x, t) =
∞∑

m=0

um(x, t) = u0 + u1 + u2 + u3 + · · · .

(21)

Therefore, it converges to exact solution of the integer-
order EFEs as u(x, t) = ex

2t2 .

Example 2. Contemplate the Emden–Fowler equation

CF
0 Dα

t u(x, t) = ∂2u

∂x2 + 2

x

∂u

∂x
−(5 + 4x2)u(x, t) − (6 − 5x2 − 4x4), (22)

with the IC

u(x, 0) = x2 + ex
2
. (23)

Using the Laplace transformation on both sides of equa-
tions (22) and (23), we get

L[u(x, t)] = 1

s
(x2 + ex

2
) −

(
s + α(1 − s)

s

)

L(6 + 5x2 − 4x2) +
(
s + α(1 − s)

s

)

L
[
∂2u

∂x2 + 2

x

∂u

∂x
− (5 + 4x2)u

]
. (24)

Applying the inverse of the LT to eq. (24), we get

u(x, t) = x2 + ex
2

+(−6 + 5x2 − 4x2)(1 − α + αt) + L−1[(
s + α(1 − s)

s

)
L

[
∂2u

∂x2 + 2

x

∂u

∂x
− (5 + 4x2)

]]
.

(25)

Applying the HPTM, we get
∞∑

m=0

um = x2 + ex
2 − (6 + 5x2 − 4x2)(1 − α + αt)

+ pL−1
[(

s + α(1 − s)

s

)

L
[ ∞∑
m=0

pmum+2

x

∞∑
m=0

pmum−(5+4x2)

∞∑
m=0

pmum

]]
,

(26)
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Using the above conditions, we get

p0 : u0(x, t) = x2 + ex
2

+ (−6 + 5x2 − 4x4)(1 − α + tα),

p1 : u1(x, t) = 30 + 7ex
2 − 80x2 + 4ex

2
x2

− 8x4 − 54α − 7ex
2
α + 54tα + 7ex

2
tα

+ 155x2α − 4ex
2
x2α

− 155t x2α + 4ex
2
t x2α + 12x4α

− 12t x4α + 24α2 − 48tα2 + 12t2α2

− 75x2α2 + 150t x2α2 − 75

2
t2x2α2

− 4x4α2 + 8t x4α2 − 2t2x4α2

p2 : u2(x, t) = 1

2
t2α2

(−1302 + 73ex
2 − 550x2 + 88ex

2
x2 − 16x4

+ 16ex
2
x4 + 1278α + 465x2α + 12x4α)

+ (−1 + α)(630 − 73ex
2 + 360x2

− 88ex
2
x2 + 8x4 − 16ex

2
x4 − 876α

+ 73ex
2
α − 395x2α . . .),

− tα(1506 − 146ex
2 + 755x2 − 176ex

2
x2

+ 20x4 − 32ex
2
x4 − 2604α + 146ex

2
α

− 1100x2α . . .)

+ 1

6
t3(−426α3

− 155x2α3 − 4x4α3),

p3 : u3(x, t) = −2790 + 1039ex
2

− 520x2 + 1932ex
2
x2 − 8x4 + 720ex

2
x4 + 64ex

2
x6

+ 8826α − 3117ex
2
α + · · ·

− 1

6
t3α3(−1854 − 601ex

2

− 7403x2 − 1112ex
2
x2 − 2276x4 − 272ex

2
x4

− 64x6 + 2244α + · · · )
+ t (−1 + α)α(8826 − 3117ex

2

+ 1675x2 − 5796ex
2
x2 + 28x4 − 2160ex

2
x4

− 192ex
2
x6 − · · · )

+ 1

2
t2α2(−2826 + 2679ex

2

+ 6483x2 + 4976ex
2
x2 + 2260x4 + 1712ex

2
x4

+ 64x6 + 128ex
2
x6 + · · · )

+ 1

24
t4(−1356α4 − 235x2α4 − 4x4α4).

Hence the series solution is given by

u(x, t) =
∞∑

m=0

um(x, t) = u0 + u1 + u2 + u3 + · · · .

(27)

Therefore, it converges to exact solution of the integer-
order EFEs as u(x, t) = et+x2 + x2.

Example 3. Contemplate the Emden–Fowler equation

CF
0 Dα

t u(x, t) = ∂2u

∂x2 + 4

x

∂u

∂x
−(18x + 9x4)u(x, t) + 2 + (18x + 9x4)t2, (28)

with the IC

u(x, 0) = ex
3
. (29)

Using the Laplace transformation on both sides of equa-
tions (28) and (29), we get

L[u(x, t)] = 1

s
ex

3

+
(
s + α(1 − s)

s

)
L(18x + 9x4)t2

+
(
s + α(1 − s)

s

)

L
[
∂2u

∂x2 + 4

x

∂u

∂x
− (18x + 9x4)u

]
. (30)

Applying the inverse of the LT to eq. (30), we get

u(x, t) = ex
3 + 2 + 18t2x + 9t2x4 − 2α + 2tα

− 18t2xα + 6t3xα − 9t2x4α + 3t3x4

+ L−1
[(

s + α(1 − s)

s

)

L
[
∂2u

∂x2 + 4

x

∂u

∂x
− (18x + 9x4)

]]
.

(31)

Now applying the HPTM, we get

∞∑
m=0

um = ex
3 + 2 + 18t2x + 9t2x4 − 2α + 2tα

−18t2xα + 6t3xα − 9t2x4α + 3t3x4

+pL−1

[(
s + α(1 − s)

s

)
L

[ ∞∑
m=0

pmum
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Figure 1. Comparison of our approximate solution u(x, t)
for different values of α = 1.25, α = 1.50, α = 1.75 and
α = 2 for Example 4.1.

+4

x

∞∑
m=0

pmum − (18x + 9x4)

∞∑
m=0

pmum

]]
. (32)

Using the above conditions, we get

p0 : u0(x, t) = ex
3 + 2 + 18t2x + 9t2x4

− 2α + 2tα − 18t2xα + 6t3xα − 9t2x4α + 3t3x4

p1 : u1(x, t) = 2 + 72t2

x
+ 18t2x

+ 252t2x2 + 9t2x4 − 4α + 4tα − 144t2α

x

+ 48t3α

x
− 36t2xα + 12t3xα

− 504t2x2α + 168t3x2α − 18t2x4α

Figure 2. Surface show the 3D wave function u(x, t) at (a) α = 1.25, (b) α = 1.50, (c) α = 1.75 and (d) α = 2.
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Figure 3. Comparison of approximate solution u(x, t) for
different values of α = 1.25, α = 1.50, α = 1.75 and α = 2
for Example 4.2.

+ 6t3x4α + 2α2 − 4tα2 + t2α2

+ 72t2α2

x
− 48t3α2

x
+ 6t4α2

x
+ 18t2xα2

− 12t3xα2 + 3

2
t4xα2 + 252t2x2α2 − 168t3x2α2

+ 21t4x2α2 + 9t2x4α2 − 6t3x4α2 + α2

. . . p2 : u2(x, t) = − 2t
(−2α + 18xα + 9x4α + 6α2 − 3α3) + 2

(−18x−9x4−2α+18xα+9x4α+3α2 − · · · )

+
3t5(−16α3 + 16x2α3 + 280x3α3

+2x4α3 + 56x5α3 + x7α3)

20x3

Figure 4. Surface show the 3D wave function u(x, t) at (a) α = 1.25, (b) α = 1.50, (c) α = 1.75 and (d) α = 2.



Pramana – J. Phys.          (2023) 97:123 Page 9 of 11   123 

Figure 5. Comparison of approximate solution u(x, t) for
different values of α=1.25, α=1.50, α=1.75 and α=2 for
Example 4.2.

−
9t4(16α2 − 16x2α2 − 280x3α2 − 2x4α2

−56x5α2 − x7α2 − 16α3 + 16x2α3 · · · )
4x3

− 1

x3 3t2

(48 − 48x2 − 840x3 − 6x4 − 168x5 − 3x7 − 144α

+ 144x2α + 2520x3α + 18x4α + · · · )
1

3x3 t
3 (−432α + 432x2α

+7560x3α + 54x4α + 1512x5α + 27x7α

+864α2 − 864x2α2 − · · · ) .

...

Figure 6. Surface show the 3D wave function u(x, t) at (a) α = 1.25, (b) α = 1.50, (c) α = 1.75 and (d) α = 2.
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Hence series solution is given by

u(x, t) =
∞∑

m=0

um(x, t) = u0 + u1 + u2 + u3 + · · ·

(33)

Therefore, it converges to the exact solution u(x, t) =
ex

3 + t2 of the integer-order EFEs.

5. Results and discussion

In this section, we show the 2-dimensional and 3-
dimensional graphs for some of the reported solutions
with a suitable parameter choice. Figure 1 shows the
comparison of approximate solution for eq. (16) attained
by HPTM versus t for different values of α. Figure 2(a)–
(d) shows the profile of the third-order approximation
solution for 3D wave function for second-order frac-
tional nonlinear EFEs for −1 ≤ x ≤ 1 and 0 ≤ t ≤ 1
at α = 1.25, 1.50, 1.75 and α = 2, for eq.(16) by the
application of initial condition represented by eq.(17)
of u(x, t). Figure 2 depicts the solitary wave nature
of the approximate solution produced by HPTM for
the second-order fractional nonlinear EFEs. Figure 3
shows the comparison of approximate solution for eq.
(22) attained by HPTM versus t for different values
of α. Figures 3(a)–(d) shows the profile of the third-
order approximation solution for 3D wave function for
second-order fractional nonlinear EFEs for −1 ≤ x ≤ 1
and 0 ≤ t ≤ 1 at α = 1.25, 1.50, 1.75 and α = 2 for eq.
(22) by the application of initial condition represented
by eq. (23) of u(x, t). Figure 3 depicts the solitary wave
nature of the approximate solution produced by HPTM
for the second order fractional nonlinear EFEs. Figure 4
shows the comparison of approximate solution for eq.
(28) attained by HPTM versus t for different values
of α. Figure 4(a)–(d) shows the profile of the third-
order approximation solution for 3D wave function for
second-order fractional nonlinear EFEs for −1 ≤ x ≤ 1
and 0 ≤ t ≤ 1 at α = 1.25, 1.50, 1.75 and α = 2, for eq.
(28) by the application of initial condition represented
by eq. (29) of u(x, t). Figure 4 depicts the solitary wave
nature of the approximate solutions produced by HPTM
for the second-order fractional nonlinear EFEs.

6. Conclusion

In this present work, the homotopy perturbation trans-
form method has been used to obtain semi-analytical
solutions to the nonlinear time fractional nonlinear EFEs
with great precision and accuracy. The collected findings
reveal that up to third-order approximation the accuracy
is very high. By setting 1 < α ≤ 2, we can discover the
classical solution to these model. The results show that

the HPTM is a very effective and powerful approach
for studying various quantum nonlinear model. This
approach can also be used to investigate more complex
phenomena in science and engineering. This technique
is also ideal for studying higher-order nonlinear model,
which can be found in a wide range of physical sci-
ences fields. To demonstrate the relevance and efficacy
of the considered strategy, we looked at three different
examples of the projected model. The secure outputs
show that a basic HPTM algorithm was used to generate
standardized semi-analytical solutions. The suggested
approach is unique in that it provides a simple solution,
a critical convergence zone, and a non-local influence.
Finally, the proposed scheme can be used to examine
the behavior of nonlinear systems that exist in quan-
tum mechanics as a novel tool over previous available
analytical techniques.
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