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Abstract. In this paper, we study quantum entanglement and non-classical statistical aspects for a model describing
two three-level � atoms interacting with a single-mode cavity field. The Hamiltonian describes multi-photon
processes and includes the Kerr-like medium in the resonance case. The constants of motion are obtained from
the Hamiltonian operators under the rotating wave approximation. The exact solution of the wave function for the
whole system is obtained under the special initial conditions when the atom is in the ground state and the field
in the coherent states. The results are used to perform some studies on the temporal evolution of collapse revival,
normal squeezing function, photon antibunching and Q-function to measure the degree of entanglement between
subsystems. Entanglement dynamics using von Neumann entropy and Shannon information is used to quantify
the entanglement in the quantum subsystems. The numerical results show that the presence of these parameters
plays an essential role in developing these aspects. The above optical schemes have many advantages and can be
used in various experiments in quantum optics and information, such as trapped ions and quantum electrodynamics
resonators.

Keywords. Two three-level atoms; collapse–revival; Shannon information; von Neumann entropy;
Mandel Q-parameter; normal squeezing; Q–function.

PACS Nos 42.50.Ar; 42.50.Lc; 42.50.Pq

1. Introduction

The interaction between matter and photons occupies
the central position in both quantum optics and infor-
mation [1]. Jaynes–Cummings (JC) [2] model is the
simplest and the most widely used model to study
quantum phenomena. It has become the cornerstone of
technical progress in treating the interaction between
photons and atoms and has enabled major advances
in the study of quantum information processing pro-
tocols. Moreover, this model leads to the prediction of
a wide range of experimentally interesting phenomena.
Recently, we have extended this model to the nonlin-
ear time-dependent JC model and the nonlinear JCM
model with explicit time dependence [3–5]. Moreover,
generalisations of this model were obtained, such as
the entropy squeezing of a single atom for two atoms
with two-level interaction with a binomial field [6], the
exact solution of the wave function for atoms with two

levels and four levels [7,8], the interactions of an atom
with multiple levels and a field with one or two modes
[9,10], and with a Stark shift term [11,12], cross-Kerr
non-linearity [13] and the squeezing of the deformed
JCM [14]. Many non-trivial phenomena have been pre-
dicted by the JCM, e.g., the phenomenon of collapse
and revival [15,16], one (two-photon) absorption spectra
[17], stimulated emission [18] and nonlinear quantum
[19].

On the other hand, the damped interaction between
two three-level �-type [20] with the Caldirola-Kanai
form as well as the collective spontaneous emission of
two three-level � atoms of type � in a finite Q cavity
[21] have been studied using the main equation. In addi-
tion, two identical atoms of the three-level �-type [22]
were studied, with a photon k surrounded by a down-
converting Kerr medium [23]. The exact solution of the
wave function for several considered atomic field sys-
tems of two identical atoms of three levels of types V,
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� and � have been determined using the Laplace trans-
formation technique [24]. Furthermore, the solution for
the three-level entangled pair of two atoms in the cas-
cade configuration with and without the effect of atomic
motion [25] was presented. Recently, we have studied
an atomic system consisting of a three-level atom in
the presence of the classical national gravitational field
[26,27].

Quantum entanglement plays an important role in
quantum information, such as quantum computing,
communication [28,29], cryptography [30–33] and tele-
portation [34]. Entropy is a very useful measure of the
purity of quantum state [35] and the Stark shift effect on
entropy has been analysed [36,38]. The second-order
correlation function [37] or the Mandel Q-parameter
[39] can test the Poisson statistics [40–44]. In addition,
the phenomenon of radiation field compression plays
an important role in quantum optics and has a number
of applications, such as encoding [45,46]. They have
no singularity, they exist for all wave functions, they
are bounded and they are greater than or equal to zero
[47,48]. These distributions were not only kept as theo-
retical tools, but also measured experimentally [49,50]

The new ingredient in this work is that we have taken
into account two atoms which are identical and non-
identical and a new algorithm to obtain the exact solution
of wave function is found. Also, the Kerr-like medium
is applied in the Hamiltonian as a function of pho-
ton number operators. The time-dependent Schrödinger
equation is employed to obtain the wave function by
the Newton interpolation method in the quantum form
when the atom and the field are initially prepared in
their excited state and coherent state, respectively. The
atomic inversion, the Shannon entropy, the second-
order coloration function, the normal squeezing and the
quasiprobability distribution Q-function properties are
calculated. The influence of different parameters and the
impact of second atom on the evolution time-dependent
non-classical statistical aspects and entanglement are
examined. We noticed that the atomic inversion is
affected by the presence of these quantities. Further-
more, we observed that the photon statistics distribution
changes from sub- to super-Poissonian. Moreover, we
remarked that the broadening and splitting of the Q-
function occur and the behaviour of the Q-function is
changed by the existence of theses parameters.

The article is organised as follows: In the next section,
we give a brief description of the quantum model under
consideration for the two three-level �-configuration of
atoms. Section 2 is devoted to drive the exact solution
of the model under consideration and the probability
amplitudes are found. We shall use the explicit time evo-
lution of the wave function obtained in §3 to investigate
the collapse–revival phenomenon, the Shannon entropy

Figure 1. Schematic diagram of two �-type three-level
atoms.

and Von Neumann entanglement of this model in §4–6,
respectively. Moreover, we examine the photon counting
statistics by using the second-order colouration function
g2(t), in §7. The normal squeezing and the quasiprob-
ability distribution Q-function properties are presented
in §8 and 9, respectively. Finally, conclusions are pre-
sented in §10.

2. Description of the Hamiltonian of the system

This section is devoted to describe two-(non)-identical
three-level �-type atoms (A and B) (i.e., two three-
level atoms with three hyperfine levels of 87Rb: all the
pertinent levels are shown in figure 1. In the electric
dipole approximation, the transitions |ep〉 ↔ |i p〉 and
|ep〉 ↔ |gp〉 are allowed and the transition |i p〉 ↔ |gp〉
is forbidden. The Hamiltonian under the rotating wave
approximation (RWA) can be written as (h̄ = c = 1)

Ĥ = Ĥ0 + ĤI , (1)

where Ĥ0 is the free Hamiltonian for the atoms and the
field, which can given by

Ĥ0 = �â†â +
∑

p

ω
p
1 |ep〉〈ep| + ω

p
2 |i p〉〈i p|

+ω
p
3 |gp〉〈gp|, p = A, B, (2)

where â†(â) is the creation(annihilation) operator with
�, which satisfy [â, â†] = 1̂ and [â, â] = 0, while
the population operators for the pth atom are described
by |ep〉〈ep|, |i p〉〈i p| and |gp〉〈gp| with ω

p
j (ωp

1 ≤
ω

p
2 ≤ ω

p
3 ) ( j = 1, 2, 3) representing the energy levels.

Furthermore, the atoms and the field interaction Hamil-
tonian (ĤI ) for the whole system is written in the form

ĤI = χ(â†â)2 +
∑

p

(
λ
p
1

(
â�|ep〉〈i p| + â†�|i p〉〈ep|

)

+λ
p
2

(
â�|ep〉〈gp| + â†�|gp〉〈ep|

))
, (3)

where χ shows a Kerr-like medium, λk(k = 1, 2) is the
coupling constant parameter between the pth atom and
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the field, � is the multiplicity of the photon and |mp〉〈n p|
(|n p〉〈mp|) where m = n = e, i, g and m �= n are the
raising and lowering operators, respectively. Also, the
atomic operators (|mp〉〈n p|) in the U(3) group satisfy
the relation

[|kp〉〈l p|, |mp〉〈n p|] = |kp〉〈n p|δ plm − |mp〉〈l p|δ pnk, (4)

where δlm is the Kronecker symbol (equal to unity if
l = m and zero otherwise). The field operator relations
are

[â†â, â†�] = �â†�, [â†â, â�] = −�â�. (5)

These relationships are easily established. The annihi-
lation and creation operators satisfy

â�|n〉 =
√

n!
(n − �)! |n − �〉,

â†�|n〉 =
√

(n + �)!
n! |n + �〉. (6)

Now, the dynamical operators can be achieved by
Heisenberg equations

ı
dÔ

dt
= [Ô, Ĥ ] + ı

∂ Ô

∂t
. (7)

With some calculations, we get

i
dâ†â

dt
= �

(
∑

p

(
λ
p
1

( − â�|ep〉〈i p| + â†�|i p〉〈ep|
)

+λ
p
2

( − â�|ep〉〈gp| + â†�|gp〉〈ep|
)))

, (8)

i
d

(|ep〉〈ep|
)

dt
=

∑

p

(
λ
p
1

(
â�|ep〉〈i p| − â†�|i p〉〈ep|

)

+λ
p
2

(
â�|ep〉〈gp| − â†�|gp〉〈ep|

))
, (9)

i
d

(|i p〉〈i p|
)

dt
=

∑

p

(
λ
p
1

( − â�|ep〉

×〈i p| + â†�|i p〉〈ep|
))

, (10)

i
d

(|gp〉〈gp|
)

dt
=

∑

p

λ
p
2

( − â�|ep〉

×〈gp| + â†�|gp〉〈ep|
)
, (11)

where Ô is any operator. According to the Heisenberg
equation, the conservation of atomic probability is given
by

∑

p

(|ep〉〈ep| + |i p〉〈i p| + |gp〉〈gp|
) = Î (12)

and the conservation of excitation numbers is obtained
as

â†â − �
∑

p

(|i p〉〈i p| + |gp〉〈gp|
) = N̂ . (13)

Using these conservations, the effective Hamiltonian (1)
is

Ĥ = χ(â†â)2 +
∑

p

(
�

p
1 |i p〉〈i p| + �

p
2 |gp〉〈gp|

)

+
∑

p

(
λ
p
1

(
â�|ep〉〈i p| + â†�|i p〉〈ep|

))

+
∑

p

(
λ
p
2

(
â�|ep〉〈gp| + â†�|gp〉〈ep|

))

+ Î

( ∑

p

ω1 p + �N̂

)
, (14)

where �
p
s = ω

p
s+1 − ω

p
s + � (s = 1, 2) is the detuning

parameter of two different atoms and Î is the identity
operator. Obviously, the last two terms of (14) are con-
stants. From now, we will ignore the two constant terms,
and the effective Hamiltonian can be written as

Ĥeff = χ(â†â)2 Î + ĤAF (15)

where ĤAF is given by

ĤAF =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λA
1 â

l λA
1 â

l λB
2 â

l 0 0 λB
2 â

l 0 0
λA

1 â
†l �A

1 0 0 λB
1 â

l 0 0 λB
2 â

l 0
λA

1 â
†l 0 �A

2 0 0 λB
2 â

l 0 0 λB
2 â

l

λB
2 â

†l 0 0 �B
1 λA

1 â
l λA

1 â
l 0 0 0

0 λB
2 â

†l 0 λA
1 â

†l �A
1 + �B

1 0 0 0 0
0 0 λB

2 â
†l λA

1 â
†l 0 �A

2 + �B
1 0 0 0

λB
2 â

†l 0 0 0 0 0 �B
2 λA

1 â
l λA

1 â
l

0 λB
2 â

†l 0 0 0 0 λA
1 â

†l �A
1 + �B

2 0
0 0 λB

2 â
†l 0 0 0 λA

1 â
†l 0 �A

2 + �B
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)
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In the next section, we turn our attention to drive the
exact solution of the wave function for the considered
model when the atom is initially prepared in their excited
states.

3. The wave function

It is well-known that to obtain the explicit form of the
wave function at any time t > 0 of the whole sys-
tem, we solve the Schrödinger equation. We assume that
every atom absorbs and emits � photons in the cavity
|�〉 = |�A〉 ⊗ |�B〉 where |�p〉 (p = A, B) are the
wave functions for the atoms and the field, which can
be written as

|�p〉 =
∑

n

Qn

× (
ψ

p
1 |ep, n〉 + ψ

p
2 |i p, n + �〉 + ψ

p
3 |gp, n + �〉) .

(17)

The wave function can be written as a linear com-
bination of the basis vectors |eA, eB, n〉, |eA, iB, n +
�〉, |eA, gB, n + �〉, |i A, eB, n + �〉, |i A, iB, n + �〉,
|i A, gB, n + 2�〉, |gA, eB, n〉, |gA, iB, n + 2�〉 and
|gA, gB, n + 2�〉. Under theses conditions, the wave
function takes the following form:

|�〉 =
∑

n

qn{�1(n, t)|eA, eB, n〉

+�2(n + �, t)|eA, iB, n + �〉
+�3(n + �, t)|eA, gB, n + �〉
+�4(n + �, t)|i A, eB, n + �〉
+�5(n + 2�, t)|i A, iB, n + �〉
+�6(n + 2�, t)|i A, gB, n + 2�〉
+�7(n + �, t)|gA, eB, n + �〉
+�8(n + 2�, t)|gA, iB, n + 2�〉
+�9(n + 2�, t)|gA, gB, n + 2�〉}, (18)

where � j ( j = 1, . . . , 9) are the probability amplitudes
and the field is in a coherent state

|ψ(0)〉 = |eA, eB〉 ⊗ |α〉, (19)

where

|α〉 =
∞∑

n=0

qn|n〉, qn = αn

√
n! exp

(
−|α|2

2

)
, (20)

where |α|2 is the mean photon number. The Schrödinger
equation for the probability amplitudes is

i
∂

∂t
|�(t)〉 = Ĥeff |�(t)〉. (21)

For Schrödinger equation (21), we have the following
coupled differential equations for the probability ampli-
tudes:

ı �̇1(n, t) = ϒ1�1(n, t) + f1�2(n, t)

+ f3�3(n, t) + f5�4(n, t) + f7�7(n, t),

ı �̇2(n, t) = ϒ2�2(n, t)

+ f1�1(n, t) + f6�5(n, t) + f8�8(n, t),

ı �̇3(n, t) = ϒ3�3(n, t)

+ f3�1(n, t) + f6�6(n, t) + f8�9(n, t),

ı �̇4(n, t) = ϒ4�4(n, t)

+ f2�5(n, t) + f4�6(n, t) + f5�1(n, t),

ı �̇5(n, t) = ϒ5�5(n, t)

+ f2�4(n, t) + f6�2(n, t),

ı �̇6(n, t) = ϒ6�6(n, t)

+ f4�4(n, t) + f6�3(n, t),

ı �̇7(n, t) = ϒ7�7(n, t)

+ f2�8(n, t) + f4�9(n, t) + f7�1(n, t),

ı �̇8(n, t) = ϒ8�8(n, t)

+ f2�7(n, t) + f8�2(n, t),

ı �̇9(n, t) = ϒ9�9(n, t) + f4�7(n, t) + f2�7(n, t)

+ f8�3(n, t), (22)

where

ϒ1 = χn2,

ϒ2 = χ(n + �)2 + �A
1 ,

ϒ3 = χ(n + �)2 + �A
2 ,

ϒ4 = χ(n + �)2 + �B
1 ,

ϒ5 = χ(n + 2�)2 + �A
1 + �B

1 ,

ϒ6 = χ(n + 2�)2 + �A
2 + �B

1 ,

ϒ7 = χ(n + �)2 + �A
2 ,

ϒ8 = χ(n + 2�)2 + �A
1 + �A

2 ,

ϒ9 = χ(n + 2�)2 + �A
2 + �B

2 , (23)

f1 = λA
1

√
(n + �)!

n! ,

f2 = λA
1

√
(n + �)!

n! ,

f3 = λA
2

√
(n + �)!

n! ,

f4 = λA
2

√
(n + �)!

n! ,

f5 = λB
1

√
(n + �)!

n! ,

f6 = λB
1

√
(n + �)!

n! ,
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f7 = λB
2

√
(n + �)!

n! ,

f8 = λB
2

√
(n + �)!

n! . (24)

Case 1: Two identical atoms are taken, and the solution
for this system in the resonant case is�

p
s = 0.0,χ = 0.0

and λ
p
s = λ. In this case, the probability amplitudes are

given as

�1(n, t) = 1

γ

[
γ 2+ + γ 2− cos

(
2
√

γ τ
)]

,

�s(n + �, t) = iγ
sin

(
2
√

γ τ
)

2
√

γ
, s = 2, 3, 4, 7,

�h(n + 2�, t) = γ+γ−
2γ

(
cos

(
2
√

γ τ
) − 1

)
,

h = 5, 6, 8, 9, (25)

where

γ = γ 2+ + γ 2−, τ = λt. (26)

Case 2: We concentrate on the special case in which
the detuning parameters and non-linearity are taken into
account. Also, in this stage �2 = �3 = �4 = �7 and
�5 = �6 = �8 = �9. Thus, system (22) is condensed
to three differential equations. According to the method
[26], the probability amplitudes are

�1(n, t) =
3∑

m=1

Cmeiμmt ,

�s(n + �, t) = − 1

4 f1

3∑

m=1

Cmμmeiμmt ,

s = 2, 3, 4, 7

�h(n + 2�, t) = 1

8 f1 f2
3∑

m=1

Cm
(
μ2
m+ϒ1μm−4 f 2

1

)
eiμmt, h=5, 6, 8, 9, (27)

where

μm = −1

3
x1 + 2

3

√
x2

1 − 3x2

× cos

(
ζ + 2

3
( j − 1)π

)
, j = 1, 2, 3

ζ = 1

2
cos

(
9x1x2 − 2x3

1 − 27x3

2(x2
1 − 3x2)3/2

)
(28)

and

x1 = ϒ1 + ϒ4

x2 = ϒ1ϒ4 − f 2
1 − f 2

2

x3 = −ϒ2 f
2
2 , Cq = μqμr + f 2

1

μqwμqr
. (29)

Case 3: We suppose the two atoms are symmetric,
the detuning parameters are not taken into account,
λ
p
1 = λ

p
2 = λp and λA �= λB and the ratio between

the coupling constants is taken υ = λA/λB . The prob-
ability amplitudes are

�1(n, t) = 1

2ζ

[
(ζ − 2η+γ 2− + β1) cos(ξ+t)

+(ζ − 2η−γ 2− − β1) sin(ξ−t)
]
, (30)

�2(n + �, t) = �3(n + �, t)

= (iγ+ζ − 2η−γ 2− + β1)

ζ

×
(

sin(ξ+t)
ξ+

+ sin(ξ−t)
ξ−

)
, (31)

�r (n + 2�, t) = υγ−γ+
ζ

(exp((ξ− + ξ+)t) − 1) (32)

×(((cos(ξ−t) − cos(ξ+t))
+i(sin(ξ−t) − sin(ξ+t)))
× exp((ξ− + ξ+)t)), r = 5, 6, 8, 9 (33)

�4(n + �, t) = �7(n + �, t) = −υ�2(n + �, t), (34)

where

ξ± =
√

β1 ± ζ√
2

, ζ = √
β1 − 4β2

β1 = η+
√

γ 2+ + γ 2−, β2 = 2η2−γ 2−γ 2+,

η± = 2(υ2 ± 1). (35)

Finally, we suppose the general case, where the atoms
are non-identical and the detuning parameters and the
non-linearity are taken into account. We assume that
A ⊂ Mn is a matrix with eigenvalue μ(A). Now we
define f (A) as follows:

F(A) =
n∑

i=1

f [μ1, μ2, . . . , μn]

×
i−1∐

j=1

(
∑

n,m

Anm |n〉〈m| − μ j

∑

n

|n〉〈n|
)

, (36)

where f [μ2, . . . , μn] is the divided difference at
μ2, . . . , μn . If μ2, . . . , μn are distinct, we compute the
divided difference, respectively by

f [μ1] = f (μ1) (37)

f [μ1, μ2] = f (μ2) − μ1

μ2 − μ1
(38)

f [μ1, μ2, ...., μn]
= f ([μ2, . . . , μn]) − f ([μ1, . . . , μn])

μn − μ1
, n ≥ 1 (39)
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|�(t)〉 = exp(−ı Ĥ t)|�(0)〉 (40)

and after some minor calculation, this leads to an
equation of the ninth order which contains nine eigen-
functions. The general solution for the wave function is
obtained as

|�(t)〉 = e−ıμ1t
∑

n

|n〉〈n| +
9∑

i=1

exp[μ1, μ2, . . . , μi ]

×
8∐

j=1

(
∑

n,m

Anm |n〉〈m| − μ j

∑

n

|n〉〈n|
)

|�(0)〉,(41)

where μn is the eigenvalue of matrix A

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϒ1 f1 f3 f5 0 0 f7 0 0
f1 ϒ2 0 0 f6 0 0 f8 0
f3 0 ϒ3 0 0 f6 0 0 f8
f5 0 0 ϒ4 f2 f4 0 0 0
0 f6 0 f2 ϒ5 0 0 0 0
0 0 f6 f4 0 ϒ6 0 0 0
f7 0 0 0 0 0 ϒ7 f2 f4
0 f8 0 0 0 0 f2 ϒ8 0
0 0 f8 0 0 0 f4 0 ϒ9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

where μ are the roots of the following ninth-order
polynomial. Accordingly, the analytical solution of
the wave function |�〉 (41) is obtained. We are in a
position to investigate and discuss the interesting and
important statistical aspects of the formulated model
such as collapse–revival phenomena, Shannon entropy,
Von Neumman entropy, the second-order correlation
function, the normal squeezing and quasi-probability
distribution Q-function. We shall implement our calcu-
lations for all the previous cases in the next sections.

4. Collapse–revival phenomenon

It is well-known that the expectation value of any oper-
ator Ô is 〈Ô〉 = Tr ρ̂atom Ô = 〈�(t)|Ô|�(t)〉, the
behaviour of the collapse and revival phenomenon can
be studied by the mean photon number 〈â†(t)â(t)〉.
From the state vector, we have the following expression
for the mean photon number:

〈â(t)†â(t)〉 = n̄

+
∑

n

Pn

⎡

⎣�
∑

r=2,3,4,7

|�r (n + �, t)|2

+2�
∑

s=5,6,8,9

|�s(n + 2�, t)|2
⎤

⎦ , (43)

where Pn is the initial probability distribution of the
field mode. Based on the analytical solution in the per-
vious section, we shall investigate the influence of the
setting of the second atom υ, the detuning parameters
and the Kerr-like medium (nonlinearity) on the evolu-
tion of 〈â(t)†â(t)〉 for the considered system. For all our
plots, we have taken the initial photon number n̄ = 25
and �

p
s = �.

In figures 2a–2c, we have plotted 〈â(t)†â(t)〉 as a
function of the scaled time τ for the second atom in
the absence of both detuning parameter and Kerr-like
medium when υ = 0, 1 and 2, respectively. We noticed
that the collapses and revivals appear clearly and the
mean photon number will experience quantum collapses
and revivals. Moreover, the collapse time decreases as
the rate υ increases which means that the rate of energy
interchange between the atoms and the field decreases
by increasing υ. Also, we noticed that the oscillation of
the mean photon number is around 25 and the oscilla-
tion in the presence of the second atom is around 0 and
this result is the same as in [7] because in this case the
two three-level atoms in our system behave similar to
the two two-level atoms interacting with a single-mode
cavity field.

Figures 3a–3c show the effect of the detuning param-
eter for two identical atoms when χ = 0, when the
detuning parameter � = 5, 10 and 15, respectively. We
remarked that as the detuning increases, the collapse
time increases. Also, we find that the value of the mean
photon number decreases, while the amplitude of the
fluctuations increases.

To see the effect of the Kerr medium, we plot W (t) vs.
τ taking � = 0.0 (the exact resonance case) and χ = 0.2,
0.4 and 0.6 as shown in figures 4a–4c. We observed that
the amplitude of oscillations becomes smaller but with
more revivals and periodically when the Kerr medium is
present. Also, the maximum value of the mean photon
number increases as Kerr parameter increases and the
fluctuations are shifted upwards.

In what follows, we shall study the entanglement
using the Shannon and Von Neumman entropies.

5. Shannon entropy

It is well known that the Shannon entropy is concerned
with the correlations between the states of two atoms and
the statistical properties of a system, and any semantic
content of those states, is defined as

SH (t) = −
∑

n

ln
{
P̂(n, t)P̂(n,t)

}
(44)

with

P̂(n, t) = 〈n|ρ̂AB
F |n〉, (45)
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Figure 2. Plot of 〈n̂(τ )〉 vs. scaled time τ with |α| = 5, � = 0 and χ = 0 and (a) υ = 0, (b) υ = 1 and (c) υ = 2.

Figure 3. Plot of 〈n̂(τ )〉 vs. scaled time τ with |α| = 5, υ = 1, χ = 0.0 and (a) � = 5, (b) � = 10 and (c) � = 15.

Figure 4. Plot of 〈n̂(τ )〉 vs. scaled time τ with |α| = 5, υ = 1, � = 0 and (a) χ = 0.2, (b) χ = 0.4 and (c) χ = 0.6.

where

SH (t) =
∑

n

|�1(n, t)|2 ln |�1(n, t)|2

+
∑

r=2,3,4,7

|�r (n + 2�, t)|2 ln |�1(n, t)|2

+
∑

h=5,6,8,9

|�h(n + 4�, t)|2 ln �1(n, t)|2. (46)

Based on the previous results, we shall investi-
gate SH (t) of the present model. We have plotted the
behaviour of SH (t) with various parameters in figures
2–4.

In figure 5, the detuning parameter � = 0 and in
the absence of non-linearity, we observed that the maxi-
mum value of Shannon entropy is 1.2 and the maximum
value increases as υ increases. Also, we noticed that
the revival–collapse phenomenon over the envelope is
not clear because of the high fluctuations. When the
detuning parameters are taken into account in figure
6, the situation is different, SH (t) evolves periodically
and the oscillations increase whereas the amplitudes
decrease as the scaled time increases. By considering
the non-linearity as in figure 7 it is seen that the minima
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Figure 5. The same as in figure 2 but for Shannon entropy.

Figure 6. The same as in figure 3 but for Shannon entropy.

Figure 7. The same as in figure 4 but for Shannon entropy.

of the curves are slightly shifted above and the fluctua-
tions decrease.

6. Von Neumann entropy

It is well known that the Hilbert space H in which the
density operator represented in a Hilbert–Schmidt basis
is as follows:

ρ̃AB = 1

d2

⎡

⎣ Î ⊗ Î +
d2−1∑

i=1

ai σ̂i ⊗ I

+
d2−1∑

i=1

bi Î ⊗ σ̂i +
d2−1∑

i, j

Ri j σ̂i ⊗ σ̂ j

⎤

⎦ , (47)

where I is the 2 × 2 identity operator and {σ }3
n = 1 are

the Pauli matrices. The reduced density matrices are

ρ̂A = TrB{ρ̂AB} =
Na∑

j

( ÎA ⊗ 〈φ j |)ρ̂AB( ÎA ⊗ 〈φ j |)†

(48)
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Figure 8. The same as in figure 3 but for the von Neumann entropy.

and

ρ̂B = TrA{ρ̂AB} =
Na∑

j

(〈φ j | ⊗ ÎA)ρ̂AB(〈φ j | ⊗ ÎA)†.

(49)

(A detailed procedure for obtaining the partial reduced
density matrix is given in eqs (47) and (48)). The expres-
sion S f (t) is

S f (t) = Tr
{
ρ̂ ln(ρ̂)

}
, (50)

where ρ̂ is the density operator and the entropy is zero,
i.e., satisfy ρ̂ = ρ̂2 which means that the entropy is in
pure states. The density operator is

ρ̂ f (t)|ψ f (t)〉 = λif |ψ f (t)〉, i = 1, 2, 3. (51)

The quantum entropy is

S(p)
f (t) = −

2∑

i=1

λ
i(p)
f (t) ln(λ

i(p)
f (t)), p = A, B.

(52)

Figure 8 corresponds to the field entropy in the
absence of detuning and the Kerr-like medium in the
presence of two atoms. In figure 8a, we notice that the
entropy is zero which means that the system is in a pure
state. By increasing the value of υ, we observed that the
field entropy evolves periodically and the oscillations
increase whereas the amplitude decreases as the scaled
time increases.

The effect of detuning on the entropy of the field
in the presence of Kerr nonlinearity can be seen in
figure 9. We observe in this figure that the collapse
and reactivation take the longest when the amplitude
increases and the oscillation decreases. Visualising the
effect of the Kerr-like medium in the absence of detun-
ing with the same data from figure 4 as in figure 10
for different values of χ of the nonlinearity of the

Kerr-like medium, we see that the nonlinear weak inter-
action of the Kerr-like medium with the field mode
involves increasing the values of the minimum entropy
and the maximum entropy holding time. In this case, the
field and the atom are almost strongly entangled, and
the field entropy amplitude decreases with increasing
χ .

In the next section, we discuss the photon Poissonian
statistics. Also, the effect of the existence of the two
atoms, the detuning and the nonlinearity on the second-
order correlation function will be investigated.

7. The second-order correlation function

In this section, we study the influence of detuning
parameter and Kerr-like medium on the photon Pois-
sonian statistics. It will be achieved by using the
second-order correlation function g2(t), which is given
by

g2(t) = 〈n̂2(t)〉 − 〈n̂(t)〉
〈n̂(t)〉2 (53)

particularly, if g2(t) < 1 (g2(t) > 1) exhibits sub
(super-Poissonian) statistics, respectively. Also, n̂r (t)
can be written as

〈n̂r 〉 =
∑

n
Pn

⎡

⎣ (n + �)r + [
nr − (n + �)r

]

×|�1(n, t)|2 + [
(n + 2�)r − (n + �)r

]

×
∑

r=5,6,8,9

|�r (n + 2�, t)|2
⎤

⎦ . (54)

Now let us discuss the affect of the physical param-
eters at the Poissonian statistics of the present atomic
system. For this reason, we have plotted the second-
order correlation function of the system as opposed
to the scaled time with the identical initial situations
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Figure 9. The same as in figure 2 but for the von Neumann entropy.

Figure 10. The same as in figure 4 but for the von Neumann entropy.

taken previously. In figure 11a–c, we notice that the
system exhibits sub-Poissonian statistics and also the
the system oscillates between super-Poissonian and sub-
Poissonian statistics and the second atom increases the
sub-Poissonian statistics.

In figure 12, we noticed that the detuning parameters
increase the super-Poissonian statistics, which means
that the detuning punched the photons. To study the
influence of nonlinearity on the Poissonian statistics,
we plot g2(t) as shown in figure 12. We observed
that increasing the nonlinearity leads to an increase in
the sub-Poissonian statistics,which means that the non-
linearity causes antibunching of the photons. In what
follows, we will investigate the evolution of the normal
squeezing for the considered atomic system (figure 13).

8. The normal squeezing

To study the normal squeezing phenomenon, we intro-
duced the field operators Ŷ1 = (â+â†)/2 and Ŷ2 = (â−
â†)/2i . These Hermitian operators satisfy [Ŷ1, Ŷ2] = i

2 .
This commutation relation implies the uncertainly rela-
tion (�Y1)

2 < 1
4 and (�Y2)

2 < 1
4 . We can rewrite

theses conditions as follows:

S1 = (�Y1)
2 − 1

4
, S2 = (�Y2)

2 − 1

4
. (55)

We can write the variances (�Y1)
2 and (�Y2)

2 in the
following forms:

(�Y1)
2 = 1

4
[〈â†2〉 + 〈

â2〉 + 2〈â†â〉
+1 − (〈â†〉 + 〈

â
〉
)2], (56)

(�Y2)
2 = −1

4
[〈â†2〉 + 〈â2〉 + 2〈â†â〉

+1 − (〈â†〉 − 〈
â

〉
)2]. (57)

The expectation value of the field operator â†m can be
given in the general form

〈â†m〉 = |α|m
∑

n

P(n)(�∗
1(n + m, t)�1(n, t)

+V1

∑

r=2,3,4,7

�∗
r (n + m + 1, t)�r (n, t)

+V2

∑

s=5,6,8,9

�∗
s (n + m + 2, t)�s(n, t)) (58)
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Figure 11. The same as in figure 2 but for the second-order correlation function.

Figure 12. The same as in figure 3 but for the second-order correlation function.

Figure 13. The same as in figure 4 but for the second-order correlation function.

V1 =
√
n + m + 1

n + 1
,

V2 =
√

(n + m + 2)(n + m + 1)

(n + 2)(n + 1)
. (59)

Now, we turn to take a look at the normal squeez-
ing for the considered system in figures 14–16 with the
values of the parameters the same as in figures 2–4,
respectively. Figures 14–16 show that the impact of the
time-dependent coupling is weak at the regular squeez-
ing phenomenon in the absence of detuning parameters
as seen in those figures. In figure 12, it is seen that the

increase in detuning parameter leads to an increase in the
amount of oscillations and squeezing. Furthermore, the
non-linearity increases the maximum value of squeez-
ing. In the next section, we shall focus on Q-function.
Also, the effect of parameters on the quasiprobability
distribution will be given.

9. Quasiprobability distribution Q-function

The Q-function (Husimi Q distributions) is one of the
quasiprobability distribution in phase space. It is widely
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Figure 14. The same as in figure 2 but for normal squeezing.

Figure 15. The same as in figure 3 but for normal squeezing.

Figure 16. The same as in figure 4 but for normal squeezing.

used in quantum optics and tomographic purposes and
applied to study the quantum effects in superconductors.
The Q-function can take the form

Q(β, t) = 1

π
|〈β|�(t)〉|2 = 1

π

9∑

j=1

|〈β|� j (t)〉|2, (60)

where

〈β|�1(t)〉 =
∑

n

exp

[−|β|2
2

]
βn

√
n!qn�1(n, t),

〈β|�r (t)〉 =
∑

n

exp

[−|β|2
2

]
βn+�

√
(n + �)!

×qn�r (n + �, t), r = 2, 3, 4, 7,
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Figure 17. The contour plots of Q(β, t) for the same data as in figure 2 but for α0 = 5 and τ = π/2.

Figure 18. The contour plots of Q(β, t) for the same data as in figure 3 but for α0 = 5 and τ = π/2.

〈β|�s(t)〉 =
∑

n

exp

[−|β|2
2

]
βn+2�

√
(n + 2�)!

×qn�s(n + 2�, t), s = 5, 6, 8, 9. (61)

In figures 17–20, we investigated the dynamical behavi-
our of the Q-function. We sketch the contour plots of
this function in complex planes.

In figures 17a–17c, we plot the contour plots for the
same data as in figure 2 with α0 = 5 and τ = π/2. We
noticed that the Q-function is represented by one-peak,
the shapes of the peak change as the existence via the
second atom υ. To investigate the influence of detuning
parameter on the temporal behaviour of the Q-function,
we sketch the contour plots in figure 15 for the same data
as in figure 3. We observed that the detuning parameter
decreases the peak area, and for large detuning it has a
circular shape. On the other hand, the broadening occurs
in the distribution of Q-function in figures 16a–16c in
the presence of the Kerr-like medium. This broadening
increases as the Kerr-like medium parameter increases.

Also, the influence of non-linearity on the dynamical
behaviour of theQ-function can be seen in figure 17. We
remark that the Q-function has one peak in the absence
of Kerr-like medium as in figure 17a. Furthermore, we

observed that the peak rotates in the anticlockwise direc-
tion when nonlinearity is present. Also, we noticed that
as χ increases the broadening of peak increases as in
figure 17g. Moreover, in figure 17i, when χ = 1.0, we
observe that the plot takes a ring-shape and Q-function
has four peaks.

10. Conclusion

In the present work, we have studied the model which
describes the interaction between the two three-level �-
type atoms and a single-mode cavity field. The system
includes the presence of the second atom, the detun-
ing parameter and non-linearity. The exact solution
of the wave function is found in Schrödinger picture.
The atomic inversion, Shannon entropy, Von Neum-
man entropy, second-order correlation function, normal
squeezing and quasiprobability distribution Q-function
have been calculated and investigated. These investi-
gations show that the presence of the second atom,
non-linearity and detuning parameters lead to changes
in the properties of the mean photon number. Fur-
thermore, these parameters imply useful changes in
Shannon entropy, Poissonian statistics and Q-function
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Figure 19. The contour plots of Q(β, t) with the same data as in figure 4 but for α0 = 5 and τ = π/2.

Figure 20. The contour plots of Q(β, t) but for α0 = 5, υ = 1.0, � = 0 and τ = π/4 for different values of non-linearity.
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of the considered system. In the same manner, these
investigations can be done in other states. In future, we
shall extend this study to two-mode systems.
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