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Torque on the slow rotation of a slightly deformed slip sphere
in a Brinkman medium
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Abstract. This article presents an analytical solution for the creeping flow of steady rotation of a slightly deformed
slip sphere. The shape of the particle is slightly varied from that of a sphere and is embedded in a porous medium.
Brinkman’s equation is employed to govern the flow in the porous region. The solution was obtained to the first
order in terms of the deformation parameter. An application to the present analysis is to evaluate the torque acting
on an oblate spheroid (a prolate spheroid) embedded in the porous medium. The graphs and tables envision the
effects of permeability, slip and deformation parameters of the particle. In the limiting cases, the hydrodynamic
torque acting on the sphere saturated with the porous medium is reduced in no-slip and slip conditions.
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1. Introduction

The mathematical modelling of fluid flow through a
porous medium is of great importance due to its many
practical applications in medicine and industry. The
torque exerted by slowly rotating a solid particle in an
incompressible Newtonian, non-Newtonian or porous
medium has applications in chemical, biomedical, envi-
ronmental engineering and science. Jeffrey [1] solved
the problem of slow and steady rotation of spheroids
in an unbounded Newtonian fluid. Later, Kanwal [2]
studied the slow steady rotation of axisymmetric bodies
placed in an incompressible viscous liquid.

In recent years, several investigators studied the effect
of slip condition for different fluid flow problems involv-
ing solid–liquid, solid–porous interfaces since it is
accepted theoretically and experimentally [3–7]. The
slip boundary condition was proposed by Navier [8].
According to Navier, fluid slippage exists on the solid
boundary. Basset [9] studied translation and rotation
problems of a slip sphere and derived the couple and drag
expressions exerted by the fluid. The couple exerted on
a slip solid sphere of radius a rotating in an unbounded
fluid of viscosity μ and density ρ at a vanishing small
angular Reynolds number (Re = a2�ρ/μ) was first
derived by Basset (1888) as

T∞
z = −8πμ�a3

[
λ

λ + 3

]
, (1)

where λ = βa/μ is the slip parameter (dimensionless),
β is the coefficient of sliding friction and � is the angular
velocity of the particle. When the slip parameter λ →
∞, there is no slip and eq. (1) becomes Stokes result.
When λ = 0, there is a perfect slip, i.e., the particle
behaves like an inviscid gas bubble in a liquid and the
torque disappears. Hu and Zwanzig [10] calculated the
torque generated by the viscous fluid on a prolate or an
oblate spheroid using the slipping condition.

Srinivasacharya and Iyengar [11] investigated the
rotary oscillations of an approximate sphere in an
incompressible micropolar fluid. Tekasakul and Loyalka
[12] examined the rotary oscillations of axisymmetric
bodies in a viscous flow with slip using the Green’s
function technique. They found that slip reduces torque.
Ashmawy [13] examined the creeping flow of steady
rotational flow of a general axisymmetric particle in a
viscous fluid. He observed that the couple acting on the
axisymmetric particle depends on the shape and dimen-
sions of the particle. Senchenko and Keh [14] studied
the resistance forces for the slow flow around a slightly
deformed slip sphere. They found that the drag force is
an increasing function of the slip parameter. Chang and
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Keh [15] studied the Stokes flow rotation of a spheroid
about its axis of revolution in a viscous fluid with the
slip effect. They observed that for a spheroid with a
fixed aspect ratio, torque is monotonically decreasing
with an increase in the slip parameter. Sherief et al
[16] investigated the axisymmetric rotary and rectilinear
oscillations of a spheroid in an unbounded micropolar
fluid under the influence of slip. They concluded that the
hydrodynamic couple acting on the rotary spheroid is
an increasing function of micropolarity and slip param-
eters. Lee and Keh [17] examined the effect of weak fluid
inertia on the slow steady rotation of a slip sphere. They
noticed that torque is a decreasing function of the slip
parameter and is an increasing function of the Reynolds
number. Dehgan et al [18] experimentally investigated
the effects of particle size, fluid viscosity, particle den-
sity and rotational viscosity, on the terminal velocity of
the free-falling rotating and non-rotating spherical par-
ticles in a viscous fluid.

Brinkman [19] was the first to model the flow through
porous medium of high porosity. The momentum equa-
tion has two viscous terms: Darcy viscous term and
viscous diffusion term together with the balanced pres-
sure gradient and neglecting the inertial terms. When
one wishes to compare the results of the flows in porous
medium with that of the clear fluid, the Brinkman equa-
tion has a permeability parameter. If the permeability
parameter tends to infinity, the momentum equation
reduces to Darcy equation. If the permeability parame-
ter approaches zero, the momentum is simply a Stokes
equation [20]. Solomentsev and Anderson [21] exam-
ined the effect of permeability on the torque exerted
on the sphere in a Brinkman fluid. They found that
the effect of the Brinkman term is much smaller for
rotation than for translation. Feng et al [22] studied
the arbitrary motion of a circular disk in a Brinkman’s
medium. They found that the effect of dimensionless
permeability parameter on the torque of the particle is
weaker than for the drag at small values of permeabil-
ity parameter. Feng et al [23] obtained the solutions for
the motion of a spherical particle bounded by a solid
wall or a planar free surface in a Brinkman’s medium.
They found that the torque on a rotating sphere because
of the confining boundary is a lower-order effect than
the drag. Seki [24] examined the effect of permeabil-
ity on the free motion of a sphere in a tube. Cortez et
al [25] developed the exact solution for incompress-
ible flow driven by regularised forces. Leiderman and
Olson [26] derived a method to compute swimming in
2D Brinkman flow driven by a regularised point force.
They observed that a solo swimmer over each beat
period had constant efficiency and when they consid-
ered two swimmers interacting by the Brinkman flow,
they observed the efficiency of two swimmers over each

beat period. They found that the solo swimmer has less
efficiency than the two swimmers in a Stokesian fluid
at baseline stiffness. El-Sapa et al [27,28] investigated
the steady translational motion of two spherical parti-
cles in a porous medium without and with the magnetic
field. She observed that when the value of permeabil-
ity parameter increases, the interaction effect between
two spherical particles decreases and also normalised
drag force decreases. Leshansky [29] developed the
theoretical framework of propulsion in heterogeneous
viscous medium. He noticed that the optimal velocity
of the rotating helix moving through heterogeneous vis-
cous medium increases as scaled resistance increases.
Jung [30] investigated the locomotive behaviour of
caenorhabditis elegans swimming in a saturated par-
ticulate system. After the experiments, he found that
caenorhabditis elegans can achieve efficient locomotion
in their natural environment by using the nearby porous
medium. Nganguia and Pak [31] considered the canoni-
cal model swimmer, the squirmer, to study locomotion in
a heterogeneous viscous medium by the Brinkman equa-
tion. Jeznach and Olson [32] investigated the dynamics
of the swimmers. They noticed that when the head radius
is increased, the speed of the swimmer decreases regard-
less of the resistance parameter and because of the large
drag on the cell body, beating tails of two swimmers
causes the cell body to rotate slightly downward for the
bottom swimmer (and upward for the top swimmer).
Recently, Chen et al [33] examined the dynamics of
the swimmer model in a porous medium. They showed
that when scaled resistance increases, scaled swimming
speed also increases monotonically in the Brinkman
medium. El-Sapa [34] investigated the permeability
effect of Brinkman’s porous medium on thermophoretic
velocity of a spherical particle in a spherical cavity.
She observed that when permeability increases, the nor-
malised thermophoretic mobility of a spherical particle
decreases. Faltas et al [35] investigated the sphere strad-
dling the flat interface of a semi-infinite Brinkman flow
region. They found the resistance coefficient for the rota-
tional axisymmetric motion increasing with slip for all
finite values of permeability. Prasad et al [36] derived
the hydrodynamic drag on the slip spheroid immersed in
a porous medium. They analysed that the value of drag
force increases as the slip parameter increases. El-Sapa
[37] studied the non-concentric rigid sphere interaction
in a micropolar fluid with slip effect. She also investi-
gated the translational motion of two spherical particles
in a magneto-micropolar fluid [38].

The purpose of the current work is to examine the
effects of permeability, deformation and slip parameters
on the torque generated by the flow of viscous fluid past
a deformed slip sphere immersed in a porous medium.
Also, to obtain a correction factor to eq. (1) for the
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rotation of a deformed slip sphere in the Brinkman’s
medium which is not available yet. We have extended
the previous work of Solomentsev and Anderson [21]
for the rotation of a sphere in the porous medium to the
case of rotation of a deformed sphere in the Brinkman’s
medium. The slip condition is applied on the spheroid
surface. The flow in a porous medium is governed by
Brinkman’s equation.

2. Analysis

Consider the creeping flow of steady rotational motion
of the viscous fluid through a slip which occurs on
the surface of the slightly deformed sphere immersed
in Brinkman’s medium, as depicted in figure 1. The
shape of a deformed sphere varies slightly from that
of a sphere.

Let the equation of a deformed sphere surface be r =
a[1 + f (ζ )] [16], where

f (ζ ) =
∞∑
i=1

αi Pi (ζ ).

Here, Pi (ζ ) is the Legendre function and ζ = cos θ .
If all the αi are zero, the deformed sphere reduces to

a sphere of radius a. � is the angular velocity about the
z-axis.

The fluid flow is governed by Brinkman’s equation
[19,22]

∇ · �v = 0, (2a)

∇ p + μ∇ × ∇ × �v + μ

k
�v = 0, (2b)

where �v, p, k are the fluid velocity, dynamic pressure
and permeability of the porous medium, respectively.

For axisymmetric slow steady rotational flow, the
dynamic pressure is constant and the non-zero veloc-
ity vector �v is in the form

�v = vφ(r, θ)�eφ. (3)

Figure 1. Sketch of the problem.

Substituting eq. (3) in eq. (2) and then inserting the
non-dimensional variables vφ = � a ṽφ , r = a r̃ in the
resulting equations, we have the dimensionless equation
after dropping the tildes

(E2 − α2) r
√

1 − ζ 2vφ = 0, (4)

where

E2 = ∂2

∂r2 + 1 − ζ 2

r2

∂2

∂ζ 2 ,

α = a√
k
.

We can express the solution of eq. (4) in the form

vφ = a1 r
− 1

2 K3/2(αr)P
1
1 (ζ )

+
∞∑
n=2

Anr
− 1

2 Kn+1/2(αr) P
1
n (ζ ), (5)

where P1
n (ζ ) represents the associated Legendre func-

tion of the first kind of order n and degree 1, Kn+1/2(αr)
is the modified Bessel’s function of the second kind of
order n + 1/2 where n is a positive integer. For n ≥ 2,
the unknowns a1, An are to be found.

We obtain the solution with respect to the boundary
r = 1 + αi Pi (ζ ). Consider that values of αi are very
small and therefore higher powers can be neglected, so
that, r δ ≈ 1+δ αi Pi (ζ ) where δ is positive or negative.

On the boundary surface r = 1+ αi Pi (ζ ), the normal
vector is

�n = �er − αi a ∇ Pi (ζ ) = �er + αi P
1
i (ζ ) �eθ . (6)

The slip condition on the slightly deformed sphere
surface r = 1 + αi Pi (ζ ) [16,35,36,39] is

λ (vφ − r
√

1 − ζ 2) = trφ + αi tθφ P1
i (ζ ), (7)

where the sliding friction λ = β a/μ is the slip coeffi-
cient.

Applying boundary condition eq. (7), we get

[((λ + 3) K3/2(α) + αK1/2(α)
)
a1 − λ] P1

1 (ζ )

−[((α2 + 2λ + 9) K3/2(α)

+α(λ + 3)K1/2(α)) a1 + λ]

× αi Pi (ζ ) P1
1 (ζ ) +

∞∑
n=2

[
(λ + n + 2) Kn+1/2(α)

+α Kn−1/2(α)
]
An P

1
n (ζ ) = 0. (8)

Solving the leading terms of eq. (8), we have

a1 = λ

(λ + 3) K3/2(α) + α K1/2(α)
. (9)
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Using this value in eq. (8), we obtain

ξ1 αi Pi (ζ ) P1
1 (ζ ) +

∞∑
n=2

[
(λ + n + 2) Kn+1/2(α)

+α Kn−1/2(α)
]
An P

1
n (ζ ) = 0, (10)

where

ξ1 = −[((α2 + 2λ + 9) K3/2(α)

+α(λ + 3)K1/2(α)) a1 + λ]. (11)

To solve eq. (10) for An (n ≥ 2), we require the
following identity [16]:

P1
1 (ζ ) Pi (ζ ) = 1

2 i + 1
P1
i+1(ζ )

− 1

2 i + 1
P1
i−1(ζ ). (12)

Here, we compare the terms in eq. (10) and taking all
An as zero except when n = i − 1 or n = i + 1, we get

ξ1 cn + [
(λ + n + 2) Kn+1/2(α)

+α Kn−1/2(α)
]
An = 0, (13)

where

ci−1 = −αi

2 i + 1
, ci+1 = αi

2 i + 1
. (14)

Solving eq. (13), we get expression An for n = i − 1
and n = i + 1.

3. Application to an immersed slightly deformed
sphere

Consider the slow steady rotation of a solid prolate or
a solid oblate spheroid immersed in a porous medium.
The equation of the spheroid [16] is described in the
Cartesian coordinate system (x , y, z) as

x2 + y2

a2 (1 − ε/2)2 + z2

a2 (1 + ε)2 = 1. (15)

Equation (15) is an oblate spheroid if ε < 0 and a
prolate spheroid if 0 < ε < 1. The polar form of eq.
(15) is r = 1 + ε P2(ζ ) to O(ε). Here, it is necessary to
take i = 2, α2 = ε. Hence, the velocity component is

vφ = (a1 + A1) r
− 1

2 K3/2(αr) P
1
1 (ζ )

+A3 r
− 1

2 K7/2(αr) P
1
3 (ζ ). (16)

4. Torque on the body

The hydrodynamic torque exerted on the rotating
spheroid is given by [16]

Tz = 2π a3
∫ π

0
r3

(
trφ + 3

2
ε tθφ sin 2θ

)

×∣∣
r=1+ε P2(ζ )

sin2 θ dθ (17)

T2 = −8

3
π μ� a3

[
α K5/2(α) (a1 + A1)

+ε

5
α2 K3/2(α) a1

]
, (18)

where

A1 = ε

5
ξ1

[
(λ + 3) K3/2(α)+α K1/2(α)

]−1 (19)

Tz =−8

3
π μ � a3 λ

[
(α2+3α+3)

α2 + (λ + 3)(α + 1)
− ε

5

× (4(α2+3α+3)2+λ(2α+3)(2α2+4α+3))

(α2+(λ+3)(α+1))2

]
.

(20)

5. Special cases

For spheroid (ε 
= 0):

1. When λ → ∞ in eq. (20), we have the torque
acting on the no-slip spheroid embedded in the
porous medium

T∞
z = −8

3
π μ� a3

[
(α2 + 3α + 3)

(α + 1)

− ε

5

(2α + 3)(2α2 + 4α + 3)

(α + 1)2

]
. (21)

2. When α → 0 in eq. (20), we have the torque
exerted by the spheroid in the unbounded medium
[14]

T∞
z = −8 π μ � a3

[
λ

λ + 3
− 3 ε λ(λ + 4)

5(λ + 3)2

]
.

(22)

For perfect sphere (ε = 0):

1. The torque acting on a rotating slip sphere embed-
ded in an unbounded porous medium

T∞
z = −8

3
π μ � a3 λ

[
(α2 + 3α + 3)

α2 + (λ + 3)(α + 1)

]
.

(23)
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Exactly half the value of the torque matches with
the sphere straddling the interface of a semi-infinite
Brinkman flow [35]. For the case of no-slip, the torque
agrees with the result obtained by Solomentsev and
Anderson [21].

6. Results and discussion

The non-dimensional torque is calculated as

T = Tz
−8π μ� a3 .

Numerical results are computed for the torque coeffi-
cient T experienced by the viscous fluid by slow steady
rotation of a slip spheroidal particle embedded in a
Brinkman’s medium, assuming different values of the
permeability parameter k1 = 1/α2, the slip coefficient λ
and the deformity parameter ε. Figure 2 shows the varia-
tion of T with k1 for various values of the slip parameter
λ and the deformity parameter ε. The curve λ → ∞ rep-
resents no-slip flow and the curves λ = 1 and λ = 10
represent the effect of slip flow. The curves ε = −0.3
and ε = 0.3 represent an oblate spheroid and a prolate
spheroid, respectively. The curve ε = 0 indicates that
there is no deformation and particle is a sphere. The
position of this curve indicates that the torque on the
sphere is higher than the torque on an oblate spheroid
and lower than the torque on a prolate spheroid. It is
observed that the torque coefficient decreases as the per-
meability parameter k1 increases and increases with the
increase in the slip parameter λ. The torque exerted by
the slip spheroid is less than that of the no-slip spheroid.
The torque exerted by the sphere is larger than the torque
on a prolate spheroid and smaller than the torque on an
oblate spheroid.

Figure 2. The torque coefficient T against permeability k1
for different values of λ for an oblate spheroid (ε = −0.3), a
sphere (ε = 0) and a prolate spheroid (ε = 0.3)

Table 1. Numerical values for the torque coefficient T
of an oblate spheroid embedded in the porous medium
against permeability for varying deformations.

T

k1 ε = −0.3 ε = −0.15 ε = −0.1 ε = 0

Slip λ = 1

0.1 0.347593 0.314432 0.303378 0.281271
0.25 0.334036 0.302435 0.291901 0.270833
1 0.318765 0.289012 0.279095 0.259259
2.5 0.312802 0.283806 0.274141 0.25481
7 0.309137 0.280621 0.271116 0.252105

Slip λ = 10

0.1 1.42937 1.29928 1.25591 1.16919
0.25 1.22473 1.11624 1.08008 1.00775
1 1.04143 0.952812 0.923274 0.864198
2.5 0.980176 0.898421 0.871169 0.816666
7 0.944934 0.867226 0.841323 0.789517

No-slip λ → ∞
0.1 2.18458 1.99271 1.92875 1.80083
0.25 1.73999 1.59222 1.54296 1.44444
1 1.39166 1.27916 1.24166 1.16666
2.5 1.28428 1.18297 1.14921 1.08167
7 1.22435 1.12945 1.09782 1.03455

The numerical results are presented in tables 1 and 2.
It is observed that the torque coefficient generated by
the Brinkman fluid on an oblate spheroid, a sphere and
a prolate spheroid decreases with an increase in the per-
meability parameter k1. The torque coefficient increases
as the slip parameter increases and it reaches high in the
case of a no-slip spheroid. In the case of the perfect
slip, the torque vanishes. The Brinkman effect on slow
steady rotation of an oblate spheroid, a sphere and a pro-
late spheroid is weaker than on slow steady translational
flow past an oblate spheroid without rotation, sphere and
a prolate spheroid, respectively [36] for any value of k1.

7. Conclusions

An analytic solution for the torque acting on a slip-
deformed sphere embedded in a porous medium under-
going slow and steady rotation in a viscous fluid is
investigated. The torque is a decreasing function of
deformation and permeability parameters and is an
increasing function of slip parameter. Hence, we have
seen that there is a significant effect of the slip param-
eter on the torque coefficient. The result obtained can
be used in helical locomotion in a Brinkman’s medium
by considering the head of the swimming bacterium as
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Table 2. Numerical values for the torque coefficient T of
a prolate spheroid embedded in the porous medium against
permeability for varying deformations.

T

k1 ε = 0.1 ε = 0.15 ε = 0.3
Slip λ = 1

0.1 0.259163 0.248109 0.214948
0.25 0.249766 0.239232 0.20763
1 0.239424 0.229506 0.199753
2.5 0.23548 0.225814 0.196819
7 0.233095 0.223589 0.195074

Slip λ = 10

0.1 1.08246 1.0391 0.909007
0.25 0.935425 0.899261 0.79077
1 0.805121 0.775583 0.686968
2.5 0.762163 0.734911 0.653156
7 0.737712 0.711809 0.6341

No-slip λ → ∞
0.1 1.67292 1.60896 1.41709
0.25 1.34592 1.29666 1.14888
1 1.09166 1.05416 0.941663
2.5 1.01414 0.980371 0.879069
7 0.971288 0.939655 0.844756

non-spherical and applying the equilibrium conditions
[33].
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