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Causes of energy density inhomogenisation with f (G) formalism
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Abstract. Here, we analyse the distribution of self-gravitating collapsing fluid to identify the factors accountable
for the energy–density inhomogeneity with the systematic construction in modified Gauss–Bonnet (GB) gravity,
by taking the space–time which is spherically symmetric. The modified Einstein’s equations help us to observe the
variation in the mass function due to different quantities. The dynamical equations and two differential equations for
Weyl curvature are formulated, and used to explore the quantities responsible for the inhomogeneity. Irregularity in
the fluid is analysed by taking various cases of fluid, under the effects of f (G) theory, where G is a Gauss–Bonnet
term.
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1. Introduction

Dark energy (DE) that could be one of the reasons
behind the accelerating expansion of the Universe, is the
mysterious force that exerts a negative or repulsive pres-
sure. It can be considered as a fundamental ingredient in
the study of expanding Universe. Moreover, 68% of the
Universe is made up of dark energy and rest of it with
dark matter (DM) and 5% of baryonic matter. Survey of
DE has been extensively explained in [1–3]. Due to new
outcomes observed in the field of high-energy physics
and cosmology, the modification in the theory of grav-
ity has gained significant attention. The observational
proofs of the expansion of the Universe motivate us to
modify the theories of gravity. In the field equations,
Einstein’s constant can describe the acceleration in the
Universe [4], but the dynamical effects [5] enforce the
modifications in the action integral. Thus, various modi-
fications have been made in Einstein’s general relativity
by introducing different functions in the Lagrangian.

The simplest theory of gravity is f (R), in which f (R)

is used in place of R [6]. Faulkner et al [7] calculated
the f (R) gravity with scalar tensor theories. It is known
that weak-field solar system constraints [8,9] are not
satisfied by most of the f (R) models. Model of a stable
neutron star was discussed by Astashenok et al [10].
They also discussed the viability of neutron star [11]

theory in f (R)gravity. Olmo and Garcia [12] studied the
existence as well as the formation of stellar structures,
such as black holes in f (R) gravity. Recently, Malik et
al [13] explained the energy bounds in f (R, φ) gravity.
Yousaf [14] defined the complexity factor in the Palatini
f (R) theory in his recent work.

This simplest generalisation is replaced with f (R, T )

to include the matter contents, where the trace of the
stress-energy tensor is denoted by T . It was proposed
in 2011 by Harko and collaborators. New degree of
freedom in the Lagrangian is the indication of this mod-
ification and such Lagrangians are much remarkable
to analyse the DM and DE complications. This the-
ory yields testable and interesting results by applying it
to cosmology and astrophysics and acceleratory phase
of the Universe is described by eliminating the cosmo-
logical constant (for more information about modified
theories, see [15–27]. Bianchi-1 and Bianchi-3 Uni-
verse models have also been studied in f (R, T ) gravity
[28,29].

Another extension of the Einstein’s Universe is the
f (G) theory of gravity, where G = RαβμνRαβμν −
4RαβRαβ + R2 is the Gauss–Bonnet (GB) invariant.
It plays a vital role in analysing the expanding Uni-
verse and formulated in the absence of scalar field
coupling by the addition of f (G) (a generic function)
in the Lagrangian. This theory describes the transition
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of the Universe from deceleration to acceleration and
regarded as the alternate of DE. The important advan-
tage of f (G) gravity compared to the other modified
theories is that, the usable f (G) models remain consis-
tent with solar system limitations. Also in this theory, the
highest degree of derivative in the modified field equa-
tions is two. The GB gravity was proposed by Nojiri and
Odintsov [30], which represents the main attributes of
the Universe [31,32]. This modification is connected to
the string-inspired dilation (SID) theory [33]. The viable
model of f (G), which remains consistent with solar
system constraints, was discovered by Felice and Tsu-
jikawa [34,35]. Nojiri et al [36] explained how different
theories can be considered to describe our Universe.
Moreover, Olmo et al [37] explained the models of stel-
lar structure by using different modified theories. Bhatti
et al [38] have done the dynamical analysis of stars in
GB gravity.

The phenomena of evolution of new heavenly bodies
like stars, galaxies and clusters are due to the gravita-
tional collapse of burning stars. Pressure anisotropy is
another significant factor for analysing the distribution
of matter in compact self-gravitating objects under dif-
ferent circumstances. Irregularity in the fluid plays a
vital role in gravitational collapse. Collapsing phenom-
ena in the fluid, appearing in a highly inhomogeneous
initial state, can be described in terms of distribution of
the inhomogeneity.

For the compact self-gravitating fluid, the role of
energy–density inhomogeneity has been extensively
discussed in the literature. The Tolman–Bondi model
was examined by Dwivedi and Joshi [39] for observing
the naked singularities for inhomogeneous gravitational
collapse. Transport equation for the collapsing fluid
was discovered by Triginer and Pavón [40]. Gravita-
tional collapse of spherically symmetric self-gravitating
compact fluid with the Weyl tensor was discussed by
Herrera et al [41]. Its importance in dust collapse was
observed by Mena and Tavakol [42]. Yousaf et al [43]
discussed the causes of irregular energy–density. Forma-
tion of inhomogeneity factors under f (R) theory was
discussed by Yousaf et al [44]. Bamba et al [45] dis-
cussed the energy conditions in f (G) gravity. Bhatti et
al [46] studied the effect of f (G) on the complexity
of self-gravitating relativistic fluids. Bhatti and Yousaf
[47] explored the causes of instability and stability of
a self-gravitating anisotropic fluid. Sharif and Yousaf
[48,49] studied the dynamical instability of stars under
an electromagnetic field in modified gravity. Moreover,
Yousaf [50] discussed the stability of energy–density for
a charged dissipative system. Yousaf et al [51] proposed
that curvature terms affect the dynamics of the evolving
charged fluid in f (R, T ) gravity.

Einstein–Hilbert action can be made more general
by incorporating higher-order curvature elements that
logically follow from the diffeomorphism characteris-
tic of the action. One of the candidates in the higher
curvature gravitation theory is the Gauss–Bonnet, or
more generally the Lanczos–Lovelock gravity. As the
star continues to collapse, the curvature inside a star
gradually increases and at the final stage of the col-
lapse, it becomes very large. The greater curvature terms
are therefore anticipated to be significant for a collaps-
ing geometry. This concept served as the inspiration for
the recent discussions about collapsing scenarios in the
context of F(R) gravity [52–54]. Further, researchers
extend the idea of collapse in the regime of GB the-
ory. The benefit of GB gravity is the absence of higher
derivative terms (greater than two) of the metric in the
equations, resulting in ghost-free solutions. Moreover,
f (G) theory could be viewed as an intriguing gravita-
tional model for the systematic description of relativistic
fluid and DE. These theories are suitable for under-
standing a variety of phenomena, including inflation,
dynamics of the cosmos and accelerated nature of the
cosmos.

Kanti et al [55] investigated the wormhole solutions in
the context of the dilatonic Einstein- f (G) gravity, with-
out introducing any exotic matter, demonstrating that
observations are entirely dependant on the higher curva-
ture f (G) components. They explored the solutions and
stability of the wormhole in the regime of dark source
terms. They also discussed the stability of the corre-
sponding solutions. The early evolution of the cosmos
was the focus of Kanti et al [56] and they demonstrated
that the Ricci scalar (R) is sub-dominant to the GB term
and so may be ignored. They noticed that the scalar field
reduced exponentially during inflation, and that the GB
terms themselves supply the required potential for the
particular scalar field. The idea of bounce cosmology
offers a fascinating substitute for the usual inflationary
model. These theories are very tempting because they
do not suffer from the most serious flaw of inflationary
paradigm – the initial singularity problem. Oikonomou
[57] observed how f (G) gravity behaved at the region of
bouncing, particularly at a specific bounce that included
a type-IV singularity. Kanti et al [58] discussed the
dynamics of the early cosmos and looked for cosmic
solutions. They showed that the coupled system of the
scalar field and f (G) terms, rather than the presence of
R, dominates and controls the cosmic evolution in the
initial stages when the curvature is strong. It could be
possible to analyse the early cosmos thoroughly using
all their calculated solutions.

In this paper, we continue the work of Herrera [59]
and study the energy–density inhomogeneity and how
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different factors affect the inhomogeneity in the modi-
fied GB gravity.

The paper is designed as follows. The modified field
equations and kinematical variables are explained in §2.
The Misner mass function and variation in mass function
due to different quantities are given in §3. Sections 4 and
5 consist of Bianchi identities and two differential equa-
tions for Weyl tensor from which we get help to study the
inhomogeneity in the fluid. The non-zero components
of Weyl curvature tensor and its combination with field
equations and mass functions are described in the same
section. It also contains the transport equation which is
obtained from the casual dissipative theory of Müller–
Israel–Stewart. Section 6 is dedicated to the study of
different causes of energy–density inhomogeneity by
taking different aspects of fluids in the modified GB
theory. Finally, in the end we talk about the results of
our work.

2. Spherically symmetric fluid distribution with
f (G) formalism

We have considered the distribution of the collapsing
fluid in a spherically symmetric space–time, bounded
by a surface� which is spherical. The considered locally
anisotropic fluid goes through dissipation in the shape
of null radiation and flow of heat. The line element of
the co-moving coordinates inside � is given by

ds2 = −X2dt2 + Y 2dr2 + C2(dθ2 + sin2 θdφ2), (1)

where X , Y , Z are assumed to be positive and functions
of r and t. The coordinates are numbered as x1 =
t , x2 = r , x3 = θ , x4 = φ.

The modified field equations for f (G) theory can be
written as [30]

Gαβ

8π
= T (tot)

αβ = T (G)
αβ + T (m)

αβ , (2)

where the superscript (G) and (m) indicate the f (G) and
matter parts of T (tot)

αβ , respectively. T (G)
αβ is the modified

contribution in eq. (2), which is written as

κT (G)
αβ = [(4RαμβνR

μν + 4RαμR
μ
β − 2RRαβ

− 2RαμηνR
μην
β

)
fG + (

4Rαβ − 2Rgαβ

)∇2 fG

+ 1

2
gαβ f (G) − 4Rμ

α ∇β∇μ fG + 2R∇α∇β fG

+ 4gαβR
μν∇μ∇ν fG

− 4Rμ
β ∇α∇μ fG − 4Rαμβη∇μ∇η fG], (3)

where ∇2 = ∇η∇η is the d’Alembert opera-
tor, fG = d f (G)

dG , ∇η shows contravariant and ∇η

represents the covariant derivatives. T (m)
αβ inside the

spherical surface � is described as

T (m)
αβ = (P⊥ + μ)VβVα + gαβ P⊥ + (−P⊥ + Pr )χβχα

+ qβVα + Vβqα + lβlαε, (4)

where qα is the heat flux which indicates the dissipation
in the diffusion approximation, μ is the energy den-
sity, ε, the energy density of the null fluid indicates the
dissipation in the free streaming approximation, P⊥ is
the tangential pressure and Pr is the radial pressure. All
the above quantities are functions of r and t .

We have assumed co-moving coordinates,

lη = X−1δ
η
1 + Y−1δ

η
2 , χη = Y−1δ

η
2 ,

qη = qY−1δ
η
2 , V η = X−1δ

η
1 , (5)

with q satisfying qη = qχη.

χηχη = 1, qηV
η = 0, V ηVη = −1, (6)

lηlη = 0, Vηl
η = −1, Vηχ

η = 0. (7)

In eqs (6) and (7), χη is in radial direction and denotes
the unit four vector, V η is the four-velocity of the col-
lapsing fluid and lη is a null radial four vector. The
expansion � and the four-acceleration aη of the col-
lapsing fluid are written as

� = V η

;η, aη = V βVη;β (8)

and shear tensor (σηβ) is given by

σηβ = a(ηVβ) − 1

3
�hηβ + V(η;β), (9)

where hηβ = VβVη + gηβ . The shear viscosity and/or
bulk viscosity are not added explicitly here, because Pr
and P⊥ absorbed them. From eqs (5) and (8) we have
scalar a and a non-zero component of four-acceleration,

a2 = aηa
η =

(
X ′

Y X

)2

, a2 = X ′

X
, (10)

where aη = aχη and

� =
(

Ẏ

2Y
+ Ċ

C

)
2

X
. (11)

Here dot and prime stand for the t differentiation and r
differentiation, respectively. The non-zero components
for the shear by using eqs (5) and (9) are

σ22 = 2

3
σY 2, σ33 = σ44

sin2 θ
= −1

3
σC2, (12)

where

σ =
(
Ẏ

Y
− Ċ

C

)
1

X
(13)
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and shear scalar is given by

σηβσηβ = 2

3
σ 2. (14)

The non-zero components of eq. (2) using eqs (1)–(5)
are

8πT (tot)
11 = 8π

[
(ε + μ) − f

2
+ T eff

11

]

= 1

Y 2

(
−

(
C ′

C

)2

− 2C ′′

C
+

(
Y

C

)2

+ 2Y ′C ′

YC

)
+ Ċ

C

(
Ċ

C
+ 2Ẏ

Y

)
1

X2 , (15)

where

T eff
11 = χ2

X2 + χ3

X2 + χ4

X2 ,

8πT (tot)
22 = 8π

[
(ε + Pr ) + f

2
+ T eff

22

]

=
[
C ′

C

(
C ′

Y 2C
+ 2X ′

XY 2

)
− 1

C2

− 1

X3

(
2XC̈

C
+

(
Ċ

C
− 2Ẋ

X

)
XĊ

C

)]
, (16)

where

T eff
22 = Z2

Y 2 + Z3

Y 2 + Z4

Y 2 ,

8πT (tot)
12 = 8π [−(ε + q) + T eff

12 ]
= 2

X2Y 2

(
ĊY X ′

CX
− XYĊ ′

C
+ Ẏ XC ′

YC

)
, (17)

where

T eff
12 = D3

XY
,

8πT (tot)
33 = 8π

sin2 θ
T (tot)

44 = 8π

[
P⊥ + f

2
+ T eff

33

]

=
[
C ′′

Y 2C
+ 1

Y 2

(
X ′

X
− Y ′

Y

)
C ′

C
+ X ′′

Y 2X
− X ′Y ′

Y 3X

]

−
[

C̈

X2C
+ Ÿ

X2Y
+ Ẏ Ċ

X2YC
− Ẋ

X

(
Ċ

C
+ Ẏ

Y

)
1

X2

]
.

(18)

Here

T eff
33 = F2

C2 + F3

C2 + F4

C2 ,

and the formulated values of T eff
αβ can be seen in

Appendix.

3. Variation in mass function

The mass function m(t, r) is stated as [60]

m = R232
3

C

2
= 1

2

[
1 −

(
C ′

Y

)2

+
(
Ċ

X

)2]
C. (19)

The radial derivative is written as

DC = 1

C ′
∂

∂r
, (20)

where C is the areal radius and DT denotes the proper
time given by

DT = 1

X

∂

∂t
. (21)

Equation (22) expresses the velocity of the fluid obtained
with eq. (21) as

U = DTC. (22)

Then eq. (19) is redefined as

E ≡ C ′

Y
=

(
U2 + 1 − 2m

C

) 1
2

. (23)

The variation in Misner and Sharp mass is specified as
follows, by using eqs (15)–(17) with eqs (20) and (21)

DTm = −4π

[
U

(
P̃r + f

2
+ T eff

22

)

− E(T eff
12 − q̃)

]
C2, (24)

DCm = 4π

[(
μ̃ − f

2
+ T eff

11

)
− U

E
(T eff

12 − q̃)

]
C2,

(25)

where μ̃ = μ+ε, P̃r = Pr +ε, q̃ = q+ε. Integrating
eq. (25) gives

m = 4π

∫ r

0

[(
μ̃ − f

2
+ T eff

11

)

− U

E
(T eff

12 − q̃)

]
C2C ′dr, (26)

with m(0) = 0, by considering the distribution to be
regular at the centre. Now integrating eq. (26) we obtain

3m

C3 − 4πμ̃ = −4π

C3

∫ r

0
C3

[(
DC μ̃ + 3 f

2C
− 3T eff

11

C

)

+ 3U

EC
(T eff

12 − q̃)

]
C ′dr. (27)
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4. Modified Bianchi identities and Ellis equations

Our work highly depends on two equations relating the
Weyl curvature tensor to physical quantities. The pio-
neer of these equations is Ellis [61]. Before this, we
obtain the expressions of two independent components
[62] for Bianchi identities:

˜̇μ + 2
(
μ̃ + P⊥

) Ċ
C

+ (
μ̃ + P̃r

) Ẏ
Y

+ 2q̃
(XC)′

YC
+ q̃ ′ X

Y

+ f

2
, 1 + f

2
, 2 + Z0 = 0, (28)

˜̇q + 2q̃

(
Ċ

C
+ Ẏ

Y

)
+ P̃r

′ X
Y

+ 2�
XC ′

YC
+ (

μ̃ + P̃r
) X ′

Y

+ f

2
, 1 + f

2
, 2 + Z1 = 0, (29)

where � = −P⊥ + P̃r . The formulated values of Z0
and Z1 can be seen in Appendix.

The following equation represents the expression for
Weyl tensor as

Cη
μνρ = Rη

μνρ − 1

2
Rη

ν gμρ + 1

2
Rμνδ

η
ρ − 1

2
Rμρδη

ν

+ 1

2
Rη

ρgμν + 1

6
R
(
gμρδη

ν − gμνδ
η
ρ

)
. (30)

Equations (31) and (32) represent the electric part and
its non-zero components, respectively

Eμν = CμανβV
αV β (31)

and

E22 = 2

3
EY 2, E33 = −1

3
EC2, E44 = E33 sin2 θ,

(32)

where

E = 1

2Y 3

[
C ′Y
C

(
C ′

C
+ Y ′

Y

)
− YC ′′

C

]
− 1

2C2

+ C

2

[
C̈

C2 − Ÿ

CY
− Ċ

C2

(
Ċ

C
− Ẏ

Y

)]
. (33)

Equation (31) can be expressed as

Eμν = E
(

χμχν − 1

3
hμν

)
. (34)

Equation (35) is obtained by using eqs (15), (16), (18)
with eqs (19) and (33) as

E + 3m

C3 = 4π

[
− (

� − μ̃
) − f

2

+ T eff
11 − T eff

22 + T eff
33

]
. (35)

Eventually, the two differential equations are written as
[
E − 4π

(
(μ̃ − �) − f

2
+ T eff

11 − T eff
22 + T eff

33

)].

= 3Ċ

C

[
4π

(
μ̃ + P⊥ + T eff

11

+ T eff
33

) − E] + 12π
(
q̃ − T eff

12

) XC ′

YC
, (36)

[
E − 4π

(
(μ̃ − �) − f

2
+ T eff

11 − T eff
22 + T eff

33

)]′

= −3C ′

C

[
4π

(
� − T eff

33

+ T eff
22

) + E] − 12π
(
q̃ − T eff

12

)Y Ċ
XC

. (37)

The heat transport equation is obtained by using Müller–
Israel–Stewart theory. All theories presented in the past
provide us a transport equation of heat in which relax-
ation time is the key quantity (to know more about this,
see [63–67]).

The transport equation for the heat flux is given as

τhρηV αqη;α + qρ = −κhρη(T,η + Taη)

− 1

2
κT 2

(
τV η

κT 2

)

;η
qρ, (38)

where τ (relaxation time) represents the time of the sys-
tem to get back its steady state after it has been suddenly
removed from it, T is the temperature and κ denotes the
thermal conductivity. Equation (38) has only one inde-
pendent component which is given by

q̇τ = −qX − κ

Y
(T X)′ − 1

2
τq�X − 1

2
κqT 2

(
τ

κT 2

)
.

(39)

One can obtain Eckart–Landau equation when τ = 0.
When the last term in eq. (38) is absent, we get the
truncated version of the theory

Xq + q̇τ = − κ

Y

(
XT

)′
. (40)

5. Matching conditions for f (G) formalism

Now we discuss the matching of the interior metric with
an appropriate exterior metric. The Darmois conditions,
in which the extrinsic curvatures and metric coefficients
are matched at the boundary of the given sphere, are
employed to achieve the necessary matching. An exte-
rior boundary is thought to be Vaidya space–time. The
interior geometry is given as follows:

ds2− = −X2dt2 + Y 2dr2 + C2(dθ2 + sin2 θdφ2),

(41)
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while the geometry outside the boundary (�) is [68]

ds2+ = −
(

1 − 2M(R, ν)

R

)
dν2

+ 2dνdR + R2(dθ2 + sin2 θdφ2), (42)

where R, ν, θ and φ are considered as exterior coor-
dinates and M is the generalised mass function of the
system. The associated metrics on � are defined as

ds2−� = −dτ 2 + C2(dθ2 + sin2 θdφ2) (43)

and

ds2+� = −dτ 2 + R2(dθ2 + sin2 θdφ2). (44)

The unit normal vector for the interior region is taken as

η−
t = 0, η−

r = Y, η−
θ = η−

φ = 0. (45)

The above expression leads to the extrinsic curvature for
the corresponding interior region as follows:

K−
νμ = −η−

σ

[
∂2xσ

∂ξν∂ξμ
+ �σ

i j
∂xi

∂ξν

∂x j

∂ξμ

]
. (46)

The non-zero components of eq. (46) are found to be

K−
00 = − X ′

XY
, K−

22 = CC ′

Y
, K−

33 = CC ′

Y 2 sin2 θ. (47)

Similarly, the unit normal vector for the exterior metric
takes the from

η+
ν = − Ṙ

X
, η+

R = ν̇

X
, η+

θ = η+
φ = 0. (48)

For the exterior region, the non-vanishing components
of the corresponding extrinsic curvature are written as

K+
00 =

[
d2ν

dτ 2

(
dν

dτ

)−1

− M

R2

dν

dτ

]
,

K+
22 = dν

dτ
(R − 2M) + R

dR

dτ
,

K+
33 =

[
dν

dτ
(R − 2M) + R

dR

dτ

]
sin2 θ. (49)

By equating the extrinsic curvature for the interior and
exterior regions, we obtain after using the field equation
and mass function as follows:

M(ν, R) = m(t, r), (50)

Pr = −
[
T eff

22

Y 2 + T eff
12

XY

]
, (51)

M

R2 − R

[
T eff

12

XY
+

(
Pr + T eff

22

Y 2

)]
= 0. (52)

Equation (50) provides the relationship between mass
function of the exterior and the interior metric. Equa-
tion (51) expresses the relationship between the radial

pressure and modified terms whereas the interaction of
the exterior mass with modified terms arising from the
considered theory is described using eq. (52).

6. Irregularities in energy–density

We shall now proceed by taking different cases to
analyse the factors responsible for energy–density inho-
mogeneity.

6.1 Locally isotropic non-dissipative fluid

Firstly, we take locally isotropic fluid which is non-
dissipative. In this, we take P = P⊥ = Pr , q̃ = � = 0.
Then eqs (36) and (37) are given as
[
E − 4π

(
− f

2
+ T eff

11 − T eff
22 + T eff

33 + μ

)].

+ 3Ċ

C

[E − 4π
(
μ + P + T eff

11

+ T eff
33

)] + 12π
XC ′

YC
T eff

12 = 0 (53)

and
[
E − 4π

(
μ − f

2
+ T eff

11 − T eff
22 + T eff

33

)]′

= −3C ′

C

[E + 4π
( − T eff

33

+ T eff
22

)] + 12π
Y Ċ

XC
T eff

12 . (54)

Now using eqs (13) and (28) in eq. (53), we get

Ė + 3Ċ

C
E + 4π

(
μ + P

)
Xσ = ξ0 (55)

and its solution is written as

E = −4π

∫ t
0 C3(P + μ)Xσ

C3 dt +
∫ t

0
ξ1 dt, (56)

where E(0, r) = 0 is the integration function. If we
consider the fluid to be shear-free without considering
conformal flatness, then eq. (55) takes the form

E =
∫ t

0
ξ1 dt + f (r)

C3 ≡ F(r), (57)

where F(r) is considered to be arbitrary, satisfying
F(0) = 0. The expressions for ξ0 and ξ1 are

ξ0 = −4π

[(
f

2
, 1 + f

2
, 2 + Z0

)

−
(

− f

2
+ T eff

11 − T eff
22 + T eff

33

).]
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+ 12π

[
Ċ

C

(
T eff

11 + T eff
33

) − XC ′

YC
T eff

12

]

and

ξ1 = C3ξ0

C3 .

Initial homogeneous configuration at t = 0 implies
E(0, r) = 0. Then, F(r) = 0 and for any time t, E = 0
then homogeneous condition will hold. If we take a
small Weyl tensor which is non-vanishing, then it will
stand small with the expansion of the fluid.

6.2 Non-dissipative geodesic dust (q̃ = P⊥ = Pr = 0)

In this case, we take A = 1 because fluid is assumed to
be geodesic. Equations (36) and (37) may be written as
[
E − 4π

(
μ − f

2
+ T eff

11 − T eff
22 + T eff

33

)].

+ 3Ċ

C

[E − 4π
(
μ + T eff

11 + T eff
33

)]

+ 12π
C ′

CY
T eff

12 = 0 (58)

and
[
E − 4π

(
μ − f

2
+ T eff

11 − T eff
22 + T eff

33

)]′

= −3C ′

C

[
4π

( − T eff
33

+ T eff
22

) + E] + 12π
Y Ċ

C
T eff

12 . (59)

Also, in this case only Weyl tensor is not responsible for
energy–density inhomogeneity. Equation (60), which
shows that conformal flatness and shear-free condition
do no imply each other, is obtained by using eqs (13)
and (28) in eq. (58), and we get

Ė + 3Ċ

C
E + 4πμσ = ξ2. (60)

The solution of eq. (60) is given by

E = −4π

∫ t
0 σμC3

C3 dt +
∫ t

0
ξ3 dt, (61)

where

ξ2 = −4π

[(
f

2
, 1 + f

2
, 2 + Z0

)

−
(

− f

2
+ T eff

11 − T eff
22 + T eff

33

).]

+ 12π

[
Ċ

C

(
T eff

11 + T eff
33

) − C ′

YC
T eff

12

]
,

ξ3 = C3ξ2

C3

and E(0, r) = 0 is the integration function.

6.3 Non-dissipative locally anisotropic fluid

Now we consider the effect of pressure anisotropy in
the system under observation. To proceed, we shall take
� �= 0 but q̃ = 0. Then, eqs (36) and (37) take the form
[
E − 4π

(
(μ − �) − f

2
+ T eff

11 − T eff
2 + T eff

33

)].

+ 3Ċ

C

[E − 4π
(
μ + P⊥

+ T eff
11 + T eff

33

)] + 12π
XC ′

YC
T eff

12 = 0 (62)

and
[
E − 4π

(
(μ − �) − f

2
+ T eff

11 − T eff
2 + T eff

33

)]′

+ 3C ′

C

[E + 4π
(
� − T eff

33

+ T eff
22

)] − 12π
ĊY

XC
T eff

12 = 0. (63)

Equation (64) is obtained by using eqs (13) and (28)
in eq. (62). The evolution equation for the quantities
responsible for inhomogeneity is

Ċ

C

(
3E + 4π�

) + 4π
(
μ + Pr

)
Xσ + (E + 4π�

). = ξ0,

(64)

where the term (E +4π�) is referred to as the structure
scalars (XT F ) [59].

The tensor (Xμν) is defined as

Xμν =∗ R∗
μανβV

αV β = 1

2
ηεγ

μα R∗
εγ νβV

αV β, (65)

where R∗
μναβ = 1

2ηεγαβR
εγ
μν and ηεγαβ denotes the

Levi–Civita tensor. This can also be written as

Xμν = 1

3
XT hμν + XT F

(
χμχν − 1

3
hμν

)
. (66)

Equation (66) shows the decomposition of Xμν into its
trace and trace-free parts.

By using eqs (30), (33), (34) and field equations, the
above component takes the form

XT F = −(4π� + E). (67)

We would like to mention that in the above equations,
we have taken GR XT F . In term of XT F the evolution
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equation (64) is expressed as

˙XT F + 3
Ċ

C
XT F + 8π

Ċ

C
� − 4π

(
Pr + μ

)
σ X = −ξ0.

(68)

The solution of eq. (68) is

XT F = −4π
∫ t

0 C2
[
2Ċ� − (

Pr + μ
)
XσC + ξ∗

0

]

C3 dt,

(69)

where ξ∗
0 = ξ0C

4π
. Our fluid which is initially regular

in the energy–density will be affected by the pressure
anisotropy, f (G) terms and shear by the time according
to eq. (69).

6.4 Dissipative dust

Lastly, we take a geodesic dissipative pressureless fluid
to highlight the role of dissipation in the evolution of
inhomogeneities of the energy–density.

Hence we have A = 1 and P⊥ = Pr = 0 in this case.
Then, eqs (36) and (37) are written as
[
E − 4π

(
− f

2
+ μ̃ + T eff

11 − T eff
22 + T eff

33

)].

+ 3Ċ

C

[E − 4π
(
μ̃ + T eff

11

+ T eff
33

)] + 12π
(
T eff

12 − q̃
) C ′

YC
= 0 (70)

and
[
E − 4π

(
μ − f

2
+ T eff

11 − T eff
22 + T eff

33

)]′

= −3C ′

C

[E + 4π
(
T eff

22

− T eff
33

)] + 12π
(
T eff

12 − q̃
)Y Ċ
C

. (71)

Equation (71) gives

� ≡ E + 12π

∫ r
0 Y Ċq̃C2

C3 dr −
∫ r

0
ξ∗

4 dr, (72)

where

ξ4 = 4π

[(
− f

2
+ T eff

11 − T eff
22 + T eff

33

)′
− 3C ′

C

(
T eff

22

− T eff
33

) + 3T eff
12

ĊY

C

]

and

ξ∗
4 = C3ξ4

C3 ,

which shows that μ̃′ = 0 if and only if � = 0. An
evolution equation for � is obtained from eq. (70) by
using eqs (13), (28) and taking

� = 12π

∫ r

0
ĊC2q̃Ydr −

∫ r

0
ξ∗

4 dr.

Thus, eq. (70) becomes

�̇ + 3Ċ�

C
= −4π

q̃ ′
Y

− 4πσμ̃ + �̇

C3 + 4π q̃
C ′

YC
+ ξ0,

(73)

whose solution is

� =
∫ t

0

[(
4π

q̃C ′
YC + �̇ − 4π

q̃ ′
Y − 4πσμ̃

)
+ ξ0

]
C3

C3 dt.

(74)

Equation (29) yields

q̃ = φ(r)

Y 2C2 −
∫ t

0 ξ5

Y 2C2 dt,

q̃ = �(r)

C2Y 2 , (75)

where we have taken �(r) to be arbitrary satisfying
�(0) = 0 and

ξ5 =
(

f

2
, 1 + f

2
, 2 + Z1

)
.

Thus, eq. (74) shows that the factors which are respon-
sible for inhomogeneity are the shear, f (G) terms and
dissipative terms. We shall now take the shear-free case,
in which we may put C = rY , then we obtain from eq.
(74) by using eq. (75)

� =
∫ t

0

[
8π�(r)

r2

C3

(
− C + 5C ′r

2

)
− 4π

r3

C2 �′(r)

+ 4π

∫ r

0

(
�̇�(r)r − ξ∗

5

)
dr

]
1

C3 dt +
∫ t

0
ξ1 dt,

(76)

where ξ∗
5 = ξ∗

4 /4π .
Now we observe the role of τ in the development of

�. In the diffusion approximation (ε = 0) we have,
μ̃ = μ and q̃ = q. Hence, eq. (29) may be written as

q̇ = −
(

4�q

3
+ ξ5

)
. (77)

Combining eq. (77) with eq. (40) we get

q = (ξ5τ − T ′κ r)
( − 4 τ

3� + 1
)
C

. (78)



Pramana – J. Phys.           (2023) 97:27 Page 9 of 12    27 

Now by using eq. (75), we have

�(r) = ξ5τC3

r2
( − 4 τ

3� + 1
) − κT ′C3

r
( − 4 τ

3� + 1
) . (79)

If we insert eq. (79) in eq. (76) then we can observe
the impact of τ on � in f (G) theory.

7. Concluding remarks

In this work, we have pointed out the different character-
istics of the fluid distribution which are accountable for
the inhomogeneity in the modified GB gravity. We have
also found the expressions for the evolution equations
for the quantities illustrating those features.

1. For non-dissipative locally isotropic fluid and dust,
we have discovered that Weyl tensor and f (G)

terms are responsible of energy–density irregular-
ity and homogeneity is controlled by conformal
flatness conditions.

2. However, in the case of non-dissipative locally
anisotropic fluid, we have observed that an extra
factor is also responsible for inhomogeneity. We
have also found the expression of evolution equa-
tion for those variables. And the additional term is
identified as the structure scalar.

3. Lastly, we considered the dissipative dust and
deduced that it is also a source of energy–density
inhomogeneity. To deal with this problem, we took
geodesic dust and its subcase was the shear-free
case. The local and non-local roles of dissipation
in inhomogeneity and the contribution of τ are the
most significant outcomes of this portion.

Now, we conclude that different variables considered
here affect the energy–density inhomogeneity. However,
the particular form of these variables is not clear. In
fact, we may take the cases in which any of the above-
mentioned variables and their combinations in eqs (61),
(69) and (76) vanish to get the stability of homogeneity.
All our results reduce to [59] under GR limits.

Appendix

In eq. (15) we have χ2, χ3 and χ4, which are given as

χ2 =
(

8Ċ ′2

Y 2C2 + 16Ċ ′C ′Ẏ
C2Y 3 + 16Ċ ′Ċ X ′

Y 2C2X

+ 16C ′Ċ X ′Ẏ
C2XY 3 + 8Ċ2X ′2

C2X2Y 2 + 8Ẏ 2C ′2

C2Y 4

+ 8C ′′C ′X ′X
Y 4C2 + 8C ′′Ċ Ẋ

XY 2C2 − 4R′2Ÿ
C2Y 3

− 12C ′2Y ′X ′X
C2Y 5

+ 8Y ′C ′C̈
Y 3C2 − 8C ′Y ′Ċ Ẋ

C2Y 3X

− 12Ċ2Ẏ Ẋ

YC2X3 + 8C̈ĊẎ

YC2X2 − 8C ′X ′Ċ Ẋ

C2Y 2X2

− 8C ′X ′ĊẎ

C2Y 3X
− 8C ′′C̈

C2Y 2 − 4Ẏ 2 Ẋ Ċ

Y 2X3C
+ 4Ÿ

C2Y

− 4X ′′X
C2Y 2 − 4Ẏ Ẋ

YC2X
+ 4Y ′X ′X

C2Y 3 + 4C ′2X ′′X
C2Y 4

+ 4C ′2Ẏ Ẋ

C2Y 3X
+ 4Ċ2Ÿ

C2X2Y
− 4Ċ2X ′′

C2Y 2X

+ 4Ċ2Y ′X ′

C2Y 3X
+ 8X ′′X ′Y ′

Y 5
+ 4Ẏ 2 Ẋ2

X4Y 2

)
fG,

χ3 =
(

4X2G′′

C2Y 2 − 4Ẏ Ġ
YC2 − 4Y ′X2G′

C2Y 3

+ 8C ′′ĊĠ
Y 2C2 − 8C ′′X2C ′G′

C2Y 4 − 4C ′2X2G′′

Y 4C2

+ 12C ′2X2Y ′G′

Y 5C2
+ 8C ′Y ′ĊĠ

Y 3C2 + 4Ċ2G′′

Y 2C2

− 4Ċ2Y ′G′

C2Y 3 + 8Ċ2C ′G′

Y 2C3 − 12Ċ2Ẏ Ġ
YC2X2

+ 4Ċ2G′2

Y 2C2 + 8ĊẎC ′G′

C2Y 3

)
fGG,

χ4 =
(

4X2

Y 2C2 − 4X2C ′2

C2Y 4

)
fGGGG′2.

In eq. (16) we have Z2, Z3 and Z4 whch are given as

Z2 =
(

− 8Ċ ′2
C2X2 + 16Ċ ′C ′Ẏ

X2C2Y
+ 24Ċ ′Ċ X ′

X3C2

− 8C ′2Ẏ 2

X2Y 2C2 − 8C ′Ċ X ′Ẏ
C2X3Y

− 8Ċ2X ′2

C2X4

− 4Ċ2Y ′X ′

C2X3Y
− 4Ÿ Y

X2C2 + 4X ′′

XC2 + 4Ẏ ẊY

C2X3

− 4Y ′X ′

XYC2 + 4C ′2Ÿ
C2X2Y

− 4C ′2X ′′

XC2Y 2 + 12C ′2X ′Y ′

XC2Y 3

− 4C ′2Ẏ Ẋ

C2Y X3 − 8C ′′C ′X ′

Y 2C2X
+ 8C̈C ′′

X2C2

− 8C̈C ′Y ′

X2C2Y
− 8C̈ĊẎ Y

X4C2 − 4Ċ2Ÿ Y

X4C2 + 12Ċ2Ẏ ẊY

C2X5

+ 4Ċ2X ′′

C2X3 − 8C ′′Ċ Ẋ

X3C2 − 4Ẏ 2 Ẋ2

X6

)
fG,

Z3 =
(

4Y 2G̈
C2X2 − 4Y 2 Ẋ Ġ

C2X3 − 4X ′G′

C2X

− 4C ′2G̈
X2C2 + 4C ′2 Ẋ Ġ

C2X3 − 12C ′2X ′G′

C2Y 2X
− 8C ′X ′ĊĠ

C2X3
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− 8C̈C ′G
C2X2 + 8C̈Y 2ĊĠ

C2X4 − 12Ċ2 ẊY 2Ġ
X5C2

+ 4Ċ2Y 2G̈
C2X4 − 4Ċ2X ′G′

C2X3 + 8Ċ ẊC ′G′

C2X3

)
fGG,

Z4 =
(

4Y 2

C2X2 − 4C ′2

X2C2 + 4Ċ2Y 2

C2X4

)
fGGGĠ2.

D3 in eq. (17) is given by

D3 =
(

8Ċ ′ĊĠ
C2X2 − 8Ċ ′C ′G′

C2Y 2 − 8C ′Ẏ ĊĠ
Y X2C2

+ 8C ′2ẎG′

C2Y 3 − 8Ċ2X ′Ġ
C2X3 + 8Ċ X ′C ′G′

C2XY 2

+ 4ĠG′

C2 − 4C ′2ĠG′

C2Y 2 + 4Ċ2ĠG′

C2X2 + 4Ġ′
C2

− 4C ′2Ġ′
Y 2C2 + 4Ċ2Ġ′

C2X2 − 4X ′Ġ
C2X

+ 4C ′2X ′Ġ
C2Y 2X

− 4Ċ2X ′Ġ
C2X3 + 4C ′2ẎG′

C2Y 3 − 4Ċ2ẎG′

C2X2Y

)
fGG .

Values of F2, F3 and F4 in (18) are given as follows:

F2 =
(

− 8C̈C ′Y ′

Y 3X2 − 4X ′′C ′2

Y 4X
+ 4X ′′Ċ2

Y 2X3

+ 4X ′′

XY 2 − 8C ′′C ′X ′

Y 4X
+ 12C ′2X ′Y ′

Y 5X

− 4X ′Y ′Ċ2

Y 3X3 − 4X ′Y ′

XY 3 + 8C̈C ′′

X2Y 2 + 4ŸC ′2

Y 3X2

− 4Ÿ Ċ2

Y X4 − 4Ÿ

Y X2 − 8C̈ĊẎ

Y X4 + 8Ċ X ′C ′Ẏ
X3Y 3

+ 8Ċ2Ẏ Ẋ

Y X5
− 8C ′′Ċ Ẋ

X3Y 2 + 8Ċ ẊC ′Y ′

X3Y 3

− 4C ′2 Ẋ Ẏ
X3Y 3 + 4Ẋ Ẏ

X3Y
− 8Ċ ′2

X2Y 2 − 8C ′2Ẏ 2

X2Y 4

− 8X ′2Ċ2

X4Y 2 + 16C ′Ċ ′Ẏ
X2Y 3 + 16X ′ĊĊ ′

X3Y 2

)
fG,

F3 =
(

− 4C ′′CG̈
X2Y 2 + 4C ′′C Ẋ Ġ

X3Y 2 + 4C ′′CX ′G′

XY 4

− 4C̈CG′′

X2Y 2 + 4C̈CẎ Ġ
Y X4 + 4C̈CY ′G′

Y 3X2

+ 16C̈ĊĠ
X4 − 16C̈C ′G′

X2Y 2 + 4C ′Y ′CG̈
Y 3X2

− 4C ′Y ′C
Y 3X3 − 4C ′Y ′CX ′G′

XY 5
+ 4C ′X ′CG′′

Y 4X

− 4C ′X ′CẎ Ġ
Y 3X3 − 4C ′X ′CY ′G′

Y 5X
+ 4ĊẎCG̈

Y X4

− 4ĊẎC Ẋ Ġ
Y X5

− 4Ẏ ĊCX ′G′

X3Y 3 + 4Ċ ẊCG′′

X3Y 2

− 4Ċ ẊCẎ Ġ
Y X5

− 4Ċ ẊCY ′G′

Y 3X3 + 8Ċ2 Ẋ Ġ
X5

− 8Ċ ẊC ′G′

X3Y 2 − 4X ′′ĊCĠ
Y 2X3 + 4X ′′CC ′G′

Y 4

+ 4X ′Y ′CĊĠ
X3Y 3 − 4X ′Y ′C ′CG′

XY 5
+ 4ŸCĊĠ

Y X4

− 4ŸC ′CG′

Y 3X2 − 4Ẋ Ẏ ĊĠ
X5Y

+ 4Ẋ ẎC ′G′

X3Y 3

− 8C ′2ĊĠ
CY 2X2 + 8C ′3G′

CY 4 − 8Ṙ2 Ẋ Ġ
X5

+ 8Ċ ẊC ′G′

X3Y 2

+ 8C ′2ĊĠ
CX4 − 8C ′3G′

CX2Y 2 + 8Ċ ′CĠG′

X2Y 2

+ 8Ċ ′CĠ′
X2Y 2 − 8X ′CĊ ′Ġ

X3Y 2 − 8Ċ ′CẎG′

X2Y 3

− 8C ′ẎG′Ġ
X2Y 3 − 8C ′ẎCĠ′

X2Y 3 + 8C ′ẎC X ′Ġ
X3Y 3

+ 8C ′CẎ 2G′

X2Y 4 − 8ĊCX ′ĠG′

Y 2X3 − 8CĊX ′Ġ′
X3Y 2

+ 8CĊX ′2Ġ
Y 2X4 + 8ĊCX ′ẎG′

Y 3X3

)
fGG,

F4 =
(

− 4C ′′CĠ2

Y 2X2 + 4C ′Y ′CĠ2

X2Y 3 + 4ĊẎCĠ2

Y X4

− 4C̈CG′2

X2Y 2 + 4C ′X ′CG′2

Y 4X

+ 4Ċ ẊCG′2

X3Y 2

)
fGGG .

In eqs (28) and (29) we have Z0 and Z1, which are
written as

Z0 =
(
T 11(eff)

, 1 + T 22(eff)
, 2

)

+
(
Ẋ

X
+ 3X ′

2X
+ Ẏ

2Y
+ Y ′

2Y
+ Y Ẏ

2X2 + Ċ

C
+ C ′

C

+ (1 + sin2 θ)
CĊ

2X2

)
f +

(
2Ẋ

X
+ Ẏ

Y
+ 2Ċ

C

)
T 11(eff)

+
(

3X ′

X
+ Y ′

Y
+ 2C ′

C

)
T 12(eff)

+ Y Ẏ

X2 T
22(eff) + CĊ

X2 T 33(eff) + CĊ

X2 sin2 θT 44(eff)
,

Z1 =
(
T 22(eff)

, 2 + T 21(eff)
, 1

)

+
(
XX ′

2Y 2 + 3Ẏ

2Y
+ Y ′

Y
+ Ċ

C
+ C ′

C
+ X ′

2X
+ Ẋ

2X
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− cos2 CC ′

2Y 2

)
f +

(
3Ẏ

Y
+ 2Ċ

C
+ Ẋ

X

)
T 12(eff)

+
(

2Y ′

Y
+ 2C ′

C
+ X ′

X

)
T 22(eff)+

+ XX ′

Y 2 T 11(eff) − CC ′

Y 2 T 33(eff) + CC ′

Y 2 sin2 θT 44(eff)
.
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