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Abstract. In this article, we have obtained a gravitationally decoupled Class-I anisotropic solution for compact
stars using the Buchdahl-type space–time geometry. The anisotropic solution is obtained by solving Einstein’s field
equations via a complete geometric deformation (CGD) approach. This CGD approach transforms both gravitational
potentials by introducing two unknown functions that govern the equations of motion for extra sources. The solutions
for these deformation functions are derived using mimic constraint to density and equation of state (EoS) between
extra source components rather than imposing a particular ansatz for them. To ensure that the solution describes a
physically realisable stellar structure, we have tested the physical viability of the solution based on its regularity
and stability conditions. We observed that the decoupling parameter suppresses the pressure, energy density and
mass of the stellar objects. Also, the radii for several known astrophysical objects have been predicted for different
values of the decoupling constant. The obtained results show that gravitational decoupling yields more compact
objects than pure Einstein’s GR.

Keywords. General relativity; gravitational decoupling; embedding Class-I space–time; compact stars.

PACS Nos 04.40.Dg; 04.40.-b; 04.20.-q

1. Introduction

Compact stars are fascinating objects of study for var-
ious reasons. As they have extremely dense matter
inside them, it is very interesting to study the physics
of what goes on inside these compact stars. Although
they have been studied by various researchers for several
decades, their exact nature is yet to be completely under-
stood. Solving Einstein’s field equations by considering
various cases, such as isotropic, anisotropic, charged-
isotropic and charged-anisotropic fluid distributions,
several researchers tried to understand the nature of
compact stars. Although isotropic perfect fluids are used
quite a lot to portray the construction of various stellar
bodies, the existence of anisotropy cannot be discarded
while dealing with the nuclear matter at extremely high
pressures and densities (for example, see refs [1–5]). In
extremely dense conditions, pressure can be split into
two components, namely radial, and tangential pres-
sure, which gives pressure anisotropy. As discussed by
Herrera [6], we can find that even if initially the matter

distribution was isotropic, due to energy dissipation dur-
ing stellar evolution, the matter will eventually become
anisotropic. This energy dissipation happens as a result
of the emission of various massless or low-mass parti-
cles such as photons or neutrinos and it is one of the
important features of the evolution of massive stars. In
very high- and very low-density matter distributions,
there can be so many factors that can lead to anisotropy.
This has been explained in detail by Herrera and San-
tos [7]. Exotic phase transitions can happen in these
extremely dense systems, which can lead to gravitational
collapse. One such significant exotic phase transition
is the pion condensed state. It effectively softens the
equation of state (EoS) by releasing a huge amount of
energy. This has a substantial impact on the collaps-
ing configurations. Sawyer and Scalapino [8] pointed
out that because of the π− modes, the pion condensed
phase can, in fact, be the cause of the pressure anisotropy
itself. Some researchers [9,10] argued that the flux lines
of a type-II superconductor are related to the anisotropic
part of the stress tensor and is associated with the
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neutron star configuration. The presence of solid core
[11,12], type-P superfluid and boson stars [13,14] is
also associated with the anisotropic factor. Viscosity
can be one possible source of local anisotropy. How-
ever, when the Fermi energy exceeds the temperature,
the matter can be considered isentropic by neglecting
the dissipative processes for the relativistic calculation
of gravitational collapse. But this approximation does
not hold for some particular scenarios of stellar evolu-
tion. One such example is neutrino trapping which can
happen when the central density reaches the order of
1011–1012 g/cm3 [15]. Due to the long mean free path,
high energy density and small radiative Reynolds num-
ber, these trapped neutrinos make the core fluid more
viscous [16,17], eventually leading to local anisotropy.
In this regard, Ruderman [18] showed that when the
density exceeds 1015g/cm3, the two components of
pressure no longer have the same value and nuclear mat-
ter becomes anisotropic. In this connection, a condition
of pressure anisotropy (Pt − Pr = gq2r2) was proposed
by Herrera and Varela [19], with g being a non-zero con-
stant that comes from the electromagnetic mass model,
under a specific case. So it can be said that, for com-
pact stellar objects or more specifically, where matter is
extremely densely packed, considering anisotropic mat-
ter distribution gives more realistic results. In fact, in
this scenario, pressure isotropy can be called an approx-
imation in cases where pressure anisotropy is negligible
enough for the key physical aspects of a given model
to remain unchanged. Considering anisotropic matter
distribution, compact stars have been studied by sev-
eral researchers [20–24]. On the other hand, Delgaty
and Lake [25] listed several exact solutions which have
been found over the last century. However, only a few
of them satisfy the physical requirements for realistic
self-gravitating compact objects in general relativity. In
this regard, a well-behaved space–time geometry was
proposed by Buchdahl [26] that satisfies all require-
ments of physical acceptability of the realistic model.
A specific form of the Buchdahl metric in the context
of embedding of 3-hypersurface as a spheroid in four-
dimensional space was studied by Vaidya and Tikekar
[27] and Tikekar [28]. This study provides the geometric
meaning of the Buchdahl metric. Later on, several pio-
neering works on the Buchdahl metric have been done
by several researchers in different contexts [29–37].

On the other hand, obtaining new exact solutions to
Einstein’s field equations for different scenarios has
always been a challenge for researchers. The situa-
tion becomes more complicated when we introduce an
extra source, say θβγ , in the original matter distribu-
tion (Tβγ ). In this regard, the gravitational decoupling
approach is a very efficient approach for solving such
complicated systems. This approach allows us to solve

this complicated energy–momentum tensor by splitting
two comparatively simpler components for Tβγ and θβγ

individually. After solving both systems separately, the
linear combination of those solutions will provide the
solution for the initial energy–momentum tensor. In this
regard, a direct approach of gravitational decoupling
(GD) via minimal geometric deformation (MGD) [38]
and its extended version, known as complete geomet-
ric deformation (CGD) [39] has been used by several
researchers in recent times to investigate various models.
This methodology was first developed by Ovalle [40,41]
and it was then applied to Randall–Sundrum brane-
world framework to deform Schwarzschild space–
time. Using MGD, several well-known solutions of
Einstein’s field equations were investigated by sev-
eral researchers considering several conditions such as
isotropic, anisotropic, charged-isotropic matter distri-
butions in different gravities including higher dimen-
sions [42–74]. Technically, MGD transformation is
performed over the metric potential by using a decou-
pler function along with the radial component of the
line element. Therefore, a great advantage of MGD is
that it simplifies a complex system. However, MGD can
also be used to generalise a simple system to more com-
plex ones as well with the addition of an extra source
(θβγ ) with the energy–momentum tensor via coupling
with a dimensionless parameter. According to Ovalle
and his collaborators, one disadvantage of MGD is that
considering only radial transformation is inadequate
to explain the existence of a stable black hole hav-
ing a well-defined horizon. To address this issue, the
MGD was further extended by deforming both radial
and temporal metric functions [39] which introduce two
known deformation functions f (r) and g(r). These new
degrees of freedom appear in the θ -sector. In this regard,
several approaches have been taken for solving the sys-
tem, such as using the mimic approach along with a
particular form of f (r) or using the mimic approach
along with EoS approach to solve the θ -sector [75–77].
Moreover, it is worth mentioning that the hydrostatic
balance gets affected due to the deformation. So, to
check the viability of the solution, the hydrostatic bal-
ance is an essential parameter for study. In recent times,
gravitational decoupling CGD approaches have been
used to investigate the solution in GR and modified
gravity theory including higher dimensions [78–81].
Recently, the gravitational decoupling methodology is
applied to see the effect on the complexity of the self-
gravitating stellar objects [82–88]. Another great tool
for solving Einstein’s field equations is the embedding
Class-I condition. It is a methodology where an n-
dimensional pseudo-Riemannian space–time is embed-
ded into an (n + p)-dimensional pseudo-Euclidean
space, with p being the class of the embedded manifold.
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For example, in Class-I condition, the embedding of a
four-dimensional pseudo-Riemannian space–time into a
five-dimensional pseudo-Euclidean space is performed.
The mathematical derivation of this approach was done
by Karmarkar [89]. An additional differential equation
is obtained from this Class-I condition called the Kar-
markar condition, which will be discussed in detail
in later sections. It has been proven very potent for
generating new exact solutions for relativistic astro-
physics and cosmology [90]. Mathematically, by means
of the curvature components, the Karmarkar condition
takes the following form: R1212R3030 +R1220R1330 =
R1010R2323. Pandey and Sharma [91] argued that the
above-mentioned condition is inadequate for being a
Class-I condition and they suggested that an additional
condition R2323 �= 0 is required for being the Class-I
condition. These conditions together then lead to a dif-
ferential equation that relates the two metric potentials
W (r) and H(r). So, only one of the metric potential is
needed to be defined and the other can be easily obtained
from the differential equation obtained from the Class-I
condition. Many researchers have used this methodol-
ogy to find useful solutions to Einstein’s field equations
in various scenarios [92–105]. Furthermore, Bhar et al
[106] obtained an anisotropic star for the compact star
model using the Chaplygin equation of state.

The present article is organised as follows: In §2, the
decoupled field equations in CGD are discussed, which
are divided into two parts, the system of field equations
under CGD and the embedding Class-I condition. In §3,
a new CGD solution under the embedding Class-I con-
dition is obtained. Section 4 describes the boundary con-
dition using well-known Israel–Drmois junction condi-
tions. Section 5 describes the detailed physical analysis
of the thermodynamical parameters as well as the sta-
bility analysis. Section 6 gives the concluding remarks.

2. Decoupled field equations in CGD

Under gravitational decoupling, for the decoupled sys-
tem, with the addition of extra sources θαγ the general
equation of motion can be expressed via coupling con-
stant α as

Gβγ = −8π(Tβγ + αθβγ ), (1)

where the anisotropic matter distribution is denoted by
Tβγ and Einstein’s tensor is expressed as Gβγ . Tβγ can

Gβγ = Rβγ − 1

2
gβγ R (2)

Tβγ = (ρ + pt )uβuγ − ρt gβγ + (pr − pt )ζβζγ . (3)

Here, the 4-velocity is denoted by the covariant compo-
nent uγ which satisfies the condition uγ uγ = 1, while

ζγ , the unit space-like vector satisfies ζγ ζ γ = −1 and
uγ ζ γ = 0. Here, the radial and tangential pressure com-
ponents and matter density are described as pr , pt and
ρ, respectively.

The following metric form is considered to specify
the space–time geometry in MGD for the stellar body,

ds2 = H(r)dt2 − W (r)dr2 − r2(dθ2 + sin2 θdφ2),

(4)

where H and W are gravitational potentials that depend
solely on the radial component r . So, keeping eqs (2) and
(3) in mind, the following set of differential equations
are obtained from eq. (1):

8πε = 1

W

(
W ′

Wr
− 1

r2

)
+ 1

r2 , (5)

8π Pr = 1

W

(
H ′

Hr
+ 1

r2

)
− 1

r2 , (6)

8π P⊥ = 2WH ′ − 2HW ′ − H ′W ′r
4HW 2r

+ 2H ′′

4WH
− H ′2

4WH2 , (7)

where

ε=(ρ+αθ0
0 ), Pr = (pr − αθ1

1 ), P⊥ = (pt − αθ2
2 ).

(8)

As the Bianchi identity is satisfied by Gβγ ,

− dPr
dr

− H ′

2H
(ε + Pr ) + 2(Pt − Pr )

r
= 0. (9)

For anisotropic matter distribution, this is the form of
Tolman–Oppenheimer–Volkof (TOV) equation. More-
over, using

H ′ = H
2m + 8π Prr3

r(r − 2m)
, (10)

where m(r) is the mass function, which is defined as

m(r)= r

2W
(W − 1) or m(r)=4π

∫ r

0
x2 ε(x) dx,

(11)

the TOV equation can be written as

dPr
dr

= −m + 4π Prr3

r(r − 2m)
(ε + Pr ) + 2(Pt − Pr )

r
. (12)

2.1 System of field equations under CGD

As can be seen, the field equations (5)–(7) contain eight
unknowns, such as, ρ, pr , pt , H(r),W (r), θ0

0 , θ1
1 and

θ2
2 and are significantly non-linear in nature. The gravita-

tional decoupling in the form of the CGD technique will
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be used to solve these equations, which can be expressed
as

ln H(r) −→ ln X (r) + α f (r), (13)
1

W (r)
−→ Y (r) + α g(r), (14)

where the radial and temporal deformation functions are
given by f (r) and g(r), respectively. By using CGD, it
enables us to fix g(r) �= 0 and f (r) �= 0. After putting
these transformations into eqs (5)–(7), the original sys-
tem bifurcates into two systems such as

8πρ(r) = 1

r2 − Y

(
1

r2 + Y ′

Yr

)
(15)

8πpr (r) = − 1

r2 + Y

(
1

r2 + X ′

Xr

)
(16)

8πpt (r)= Y

4

[
2
X ′′

X
− X ′2

X2 + X ′Y ′

XY
+ 2

r

(
X ′

X
+ Y ′

Y

)]

(17)

and

8πθ0
0 = − g

r2 − g′

r
(18)

8πθ1
1 = −g

(
1

r2 + X ′

Xr

)
− Y f ′

r
(19)

8πθ2
2 = −g

4

(
2H ′′

H
− H ′2

H2 + 2H ′

H r

)
− g′

4

(
H ′

H
+ 2

r

)

−Y

4

(
2 f ′′ + α f ′2 + 2 f ′

r
+ 2

X ′ f ′

X

)
− Y ′ f ′

4
. (20)

Here, the first system accounts for Einstein’s system
in the anisotropic framework and the second one is a
quasi-Einstein system. For these systems, the subse-
quent conservation equations are expressed as

−dpr
dr

−mGR+4πprr3

r(r − 2m)
(ρ + pr ) + 2(pt − pr )

r
=0,

(21)

m + 4π Prr3

r(r − 2m)
(θ1

1 − θ0
0 ) + dθ1

1

dr
− 2

r
(θ2

2 − θ1
1 )

= f ′ (pr + ρ)

2
, (22)

where the mass function of systems (15)–(17) is denoted
by mGR. Then,

m(r) = mGR − α g(r)

2
. (23)

Now, the main task is to solve both systems of equa-
tions. Here, we have ten unknown parameters but only
six independent equations. So to solve the system and
reduce the number of free variables, the embedding

Figure 1. Schematic diagram of an extended version of
embedding Class-I anisotropic solution via the CGD
approach.

Class-I condition is used. The embedding Class-I con-
dition is very popular among researchers nowadays. It
is discussed below.

2.2 Embedding Class-I condition

The four-dimensional space–time can be said to be
embedding Class-I condition if it satisfies Karmarkar
condition [89] which is given as follows:

R1414R2323 = R1212R3434 + R1224R1334. (24)

It is important to mention that the condition R2323 �= 0
must be satisfied to represent four-dimensional space–
time to be a Class-I space–time [107]. For spherically
symmetric space–time, the relationship between two
metric potentials can be provided by the Karmarkar con-
dition (24), which can be obtained as

X ′Y ′

(1 − Y )X
= X ′2

X2 − X ′Y ′

XY
− 2

X ′′

X
. (25)

This condition is basically the embedding of a four-
dimensional space–time given by eq. (4) into a five-
dimensional pseudo-Euclidean space. Its solution for
X (r) can be provided as

X =
(
A1 + B1

∫ √
1 − Y

Y
dr

)2

, (26)

where A1 and B1 are integration constants. The schematic
diagram of the extended version of the embedding Class-
I anisotropic solution via CGD approach is shown in
figure 1.

3. New CGD solution under embedding Class-I
condition

This section is devoted to the solution of the field equa-
tions (15) and (20) using CGD techniques. For this
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purpose, we consider a well-behaved ansatz for the met-
ric function Y (r) as

Y (r) = 1 + ar2

1 + br2 , (27)

where a and b are constants with b > a. This ansatz
was originally proposed by Buchdahl [26] which is non-
singular for any finite value of r and unity at the centre.
Furthermore, the mass function defined by Y (r),

mGR = (b − a)r3

2(1 + br2)
, (28)

is monotonically increasing for positive r . Therefore,
this metric is suitable for modelling a physically viable
self-gravitating system. Substituting the value of Y (r)
into Class-I condition given by eq. (24), we have

X (r) = [A + B
√

1 + ar2]2, (29)

where

A = A1 and B = B1
√
b − a

a
.

8πρ = − (a − b)(br2 + 3)(
br2 + 1

)2 , (30)

8πpr

=
a

(
3B

√
ar2 + 1 + A

)
− b

(
B

√
ar2 + 1 + A

)
(
br2 + 1

) (
B

√
ar2 + 1 + A

) , (31)

8πpt

=
pt1(r) − b

(
A2

√
ar2 + 1 + B2

√
ar2 + 1 + 2AB

)
√
ar2 + 1

(
br2 + 1

)2
(
B

√
ar2 + 1 + A

)2 , (32)

where

pt1(r)=a2Br2
(
B

√
ar2 + 1(br2 + 3)+A(br2 + 4)

)

+a
(
A2

√
ar2 + 1+3B2

√
ar2 + 1+AB(4 − br2)

)
.

We already have the complete geometry of the seed sys-
tem required to get the solution for the quasi-Einstein
system (18)–(20). It can be seen that the system pre-
dominantly depends on two unknown functions which
are deformation functions f (r) and g(r). So two dif-
ferent ways will be adopted to determine these two
functions: (i) By mimicking the density constraints,
i.e. ρ(r) = θ0

0 (r), the function g(r) will be obtained,
while f (r) will be obtained by taking an EoS between
θ -sectors. These approaches are discussed in the next
subsections.

3.1 Mimicking the density constraints [ρ(r) = θ0
0 (r)]

approach for determining g(r)

Using eqs (15) and (18) we obtain a differential equation
of g(r) as

g′ + 1

r
g − (a − b) r

(
br2 + 3

)
(
br2 + 1

)2 = 0. (33)

Integrating the above-mentioned differential equation
leads to an equation describing the deformation function
g(r) as

g(r) = r2(a − b)

1 + br2 + C

r
, (34)

where C is an integration constant. Here, the value of
the integration constant is taken to be zero. It is
important to mention that mimicking the density con-
straints has been taken by keeping the following facts in
our mind:

(i) As the mass of the object depends on the density
and when we take ρ(r) = θ0

0 , then the gravita-
tionally decoupled massm(r)will become (1+α)

times the seed mass (mGR). In this way, we can
control the mass through the decoupling constant.

(ii) This mimicking the density constraints approach
will give a first-order linear differential equation
in g whose solution can be obtained easily com-
pared to other constraints.

Now using a linear EoS relating the θ -components
will fetch another deformation function f (r), which is
described in the following section.

3.2 Equation of the state (EoS) approach for
determining f (r)

The following EoS relating the θ -components will be
used to obtain f (r) as

θ1
1 (r) = βθ0

0 (r) + γ, (35)

where β and γ are constants. (Here we would like to
mention that if we involve θ2

2 component in the above
EoS, then we will get second-order nonlinear differen-
tial equation in f (r) whose exact solution cannot be
obtained.) A first-order linear differential equation will
be obtained by this EoS and by solving that, the follow-
ing expression for f (r) can be obtained:

f (r) = 1

2a2A2

[
A
{

− a2 4B√
ar2 + 1

+ ab
( 4B√

ar2 + 1

−Aγ r2
)

− Abγ
}

+ ln(ar2 + 1)
[

− a(a − b)(A2

+2B2)+aA2β(3a − b)+A2γ (b − a)
]

− 2a
[
aA2β
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× ln(a + abr2) + 2(a − b)(A − B)(A + B)

× ln(A + B
√

1 + ar2)
]] + F, (36)

where F is an arbitrary constant of integration.

θ0
0 (r) = −(a − b)(3 + br2)(

1 + br2
)2 , (37)

θ1
1 (r) = (1 + ar2)−3/2 [θ11(r) + θ12(r)]

(1 + br2)2
(
A
√
ar2 + 1 + aBr2 + B

) .

(38)

Writing the expression of θ2
2 is avoided here because it

is too cumbersome.

4. Boundary condition

To determine the constants involved in the anisotropic
solution, it is necessary to match the interior (r < R) and
exterior (r > R) space–time at the pressure-free bound-
ary of the star. In the current scenario, the extended
geometric deformed metric represents the interior stellar
space–time

ds2 = −
(

1 − 2m(r)

r

)−1

dr2

−r2(dθ2 + sin2 θ dφ2) + Xeα f (r) dt2, (39)

where m(r) is the internal mass for original system (1)
for anisotropic matter distribution given by eq. (23).
The inner metric (39) has to be smoothly matched with
the exterior metric, where isotropic fluid is non-existent
(both isotropic pressure p+ and density ρ+ vanish).
As some new fields may be present in the exterior
space–time (r > R) due to the θi j -sector, the exterior
space–time no longer remains vacuum in the current sce-
nario. The general exterior space–time can be provided
as

ds2 =−W+(r)dr2−r2(dθ2+sin2 θ dφ2)+H+(r) dt2,

(40)

where the exact Schwarzschild solution is used to deter-
mine the gravitational potentials W+(r) and H+(r).
To join the inner and outer geometries smoothly at the
boundary r = R, the well-known Israel–Darmois junc-
tion conditions [108,109] are being used. Across the
boundary �, these equations are known as the continu-
ity of the first and second fundamental forms. This is
given as[
ds2]

�
= 0. (41)

By writing its explicit form, we have

X (R)eα h(R) = H(R), (42)

1 − 2MGR

R
+ αg(R) = 1

W (r)
, (43)

where at boundary r = R, where MGR = mGR(R),
f (R) and h(R) are the deformation functions. It is
derived from the continuity of the second fundamen-
tal which states that the radial pressure vanishes at the
boundary, i.e.,

[pr − α θ1
1 (r)]� = 0. (44)

Expression (40) can be expressed in its final form as

pr (R) − α (θ1
1 )−(R) = −α (θ1

1 )+(R), (45)

where pr (R) = p−
r (R). Equation (45) is also known

as the second fundamental form linked with Einstein’s
field equations as referred to in eqs (5)–(7). Now, if the
extra contribution is assumed to be confined within the
compact object itself, then the corresponding second
fundamental form (45) can be expressed as (refer to [77]
for more information),

pr (R)+α

[
− g

8π

(
1

r2 + X ′

Xr

)
− Y f ′

r

]
r=R

=0. (46)

For finding the arbitrary constants involved in the sys-
tem, conditions (42)–(44) are necessary and sufficient.
Using the boundary conditions, we find the expression
for the constants

A

B
= A1(R) + A2(R) + A3(R) + A4(R)(

aR2 + 1
) [A5(R) + A6(R)] , (47)

B = (bR2 + 1)−1/2
√
a(α + 1)R2 − bαR2 + 1√(

2A1
√
aR2 + 1 + aR2 + A12 + 1

)
e

1
2 α B1(R)

,

(48)

M = (1 + α)R3(b − a)

2bR2 + 2
. (49)

5. Physical analysis

In this section, we discuss the physical analysis of the
solution to check the physical viability of the solution.
Before starting the analysis, we would like to highlight
some other important points for deformation functions
and decoupling constant α [110], which are as follows:

Case I: For α > 0

1. If g(r) ≥ 0, f (r) ≥ 0 and for all r ∈ [0, R], both
are increasing, then the deformed metric functions
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W (r) > 0, H(r) > 0 and mass functionm(r) > 0
also increase if the growth of Y (r) is more than
g(r).

2. If g(r) ≤ 0, f (r) ≤ 0 and for all r ∈ [0, R], both
are decreasing, then the deformed metric function
W (r) > 0, H(r) > 0 and mass functionm(r) > 0
will increase when the growth of X (r) is more than
f (r).

3. If g(r) ≤ 0, f (r) ≥ 0 for all r ∈ [0, R] then the
deformed metric functions W (r) > 0, H(r) > 0
and mass function m(r) > 0 will increase auto-
matically.

4. If g(r) ≥ 0, f (r) ≤ 0 for all r ∈ [0, R], then
the growth of Y (r) and X (r) must be respectively
faster than deformation functions g(r) and f (r),
to maintain the increasing behaviour and positive-
ness of the deformed metric functions W (r), H(r)
and the mass function m(r).

Case II: For α < 0

1. For non-negative and increasing g(r) and f (r), ∀
r ∈ [0, R], the deformed metric functions W (r),
H(r) and the mass function m(r) will be positive
and increasing, when the growth of X (r) is more
than f (r).

2. If g(r) and f (r) are non-positive and decreasing
for all r ∈ [0, R], then growth of Y (r) must be
higher than g(r) to preserve the increasing and
positive behaviour of W (r), H(r) and the mass
function m(r).

3. If g(r) ≤ 0 and f (r) ≥ 0, ∀ r ∈ [0, R] then
the deformed metric function W (r), H(r) and the
mass functionm(r) will be positive and increasing,

if the growth of Y (r) and X (r) are higher than g(r)
and f (r), respectively.

4. If g(r) ≥ 0 and f (r) ≤ 0, ∀ r ∈ [0, R], then it
yields positive and increasing behaviour of W (r),
H(r) and m(r), automatically.

In our case, the deformation function g(r) is negative
and f (r) is positive for α ≥ 0. Then from the above
discussion, the deformed metric functions W (r) > 0,
H(r) > 0 and mass function m(r) > 0 will also show
a monotonic increasing behaviour automatically for all
r ∈ [0, R].

5.1 Physical behaviour of energy density, radial
pressure, tangential pressure and anisotropic factor

All the physical analyses have been done for the com-
pact star PSR J1416-2230 having 1.97±0.04 M� mass.
From figure 2 (left panel), it can be seen that the defor-
mation function g(r) = 0 at the centre and as one moves
towards the surface, it becomes negative and its magni-
tude initially increases slowly and steeply afterwards.
Moreover, it can be seen that the curves of g(r) are not
affected by α whatsoever. Figure 2 (right panel) indi-
cates that the deformation function varies very slightly
as one moves from the centre towards the surface and
has its maximum value at the centre and minimum value
as it approaches the surface. Also, it can be seen that the
value of α affects f (r) significantly, as it is inversely
proportional to the magnitude of α. Now, while studying
the energy density ε(r), from figure 3 (top left panel),
we observe that it is maximum at the centre and then
starts to decrease as one moves outwards. Also, it can
be seen that the energy density is directly proportional

Figure 2. The behaviour of deformation functions g(r) (left panel) and f (r) (right panel) with respect to r/R for different
values of α. We set the numerical values a = 0.0001/km2, b = 0.0095/km2, R = 10.99 km, β = 1.4 and γ = −0.001 for
plotting these figures.
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Figure 3. Top panels show the energy density [ (ε × 104)] and radial pressure (Pr × 104)], while the bottom panels describe
tangential pressure (P⊥ × 104) and anisotropy (� × 104) with respect to r/R for different values of α. We set the numerical
values a = 0.0001/km2, b = 0.0095/km2, R = 10.99 km, β = 1.4 and γ = −0.001 for plotting these figures.

to the value of α. Now, while studying the nature of vari-
ation of the radial pressure Pr (r), we see from figure 3
(top right panel) that it is maximum at the centre and
monotonically decreases as one goes outwards. Also,
one can see the interesting feature that the radial pres-
sure is directly proportional to α and the influence of α

is maximum at the centre and all the curves of the radial
pressure for different values of α converge at the surface.
While looking into the tangential pressure P⊥, we can
see from figure 3 (bottom left panel) that like the radial
pressure, P⊥ also attains its maximum value at the centre
and monotonically decreases towards the surface. More-
over, the tangential pressure is also directly proportional
to the value of α and at the centre, the influence is maxi-
mum and near the surface, the curves for different values
of α tend to converge, but unlike the radial pressure, they
do not actually converge. The anisotropic factor �(r) is
zero at the centre as we can see from figure 3 (bottom
right panel) and it gradually increases as one moves out-
wards. Moreover, the anisotropy is directly proportional
to α towards the surface and the influence of α decreases

as one moves inwards towards the centre and becomes
negligible at the centre as all the curves of the anisotropic
factor converge to zero at the centre.

5.2 Energy conditions

The energy conditions with regard to the classical rela-
tivistic gravitational field theories are discussed in this
subsection. Briefly speaking, these energy conditions
are certain relations between matter density and pres-
sure. Several energy conditions have been studied and
analysed by various researchers including the censor-
ship theorem [111,112], positive mass theorem [113],
singularity theorems [114] and so on, but the most
prominent ones are (i) the null energy condition (NEC),
(ii) the weak energy condition (WEC), (iii) the strong
energy condition (SEC), (iv) the dominant energy con-
dition (DEC) and (v) the trace energy condition (TEC).

NEC : ε ≥ 0, (50)

WEC : ε + Pr ≥ 0, ε + P⊥ ≥ 0, (51)
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Figure 4. The behaviour of energy conditions [(ε − Pr ) × 104], [(ε − Pt ) × 104] and [(ε − Pr − 2Pt ) × 104] with respect
to r/R for different values of α. We set the same numerical values for constant parameters as in figure 3.

SEC : ε + Pr + 2 P⊥ ≥ 0, (52)

DEC : ε − Pr ≥ 0, ε − P⊥ ≥ 0, (53)

TEC : ε − Pr − 2P⊥ ≥ 0. (54)

It can be clearly seen that ε, Pr , P⊥ are positive in
each point within the model, implying that inequali-
ties (50)–(52) are automatically satisfied. From figure 4
it can be seen that all ε − Pr , ε − P⊥, ε − Pr − 2P⊥
remain positive everywhere throughout the model, indi-
cating that inequalities (53) and (54) are also satisfied.
So it can be concluded that all the energy conditions are
satisfied everywhere within the stellar model.

5.3 Stability via adiabatic index

To analyse the stability of a system, the radial com-
ponent of the adiabatic index () plays an important
role, especially when the system becomes anisotropic,
as its spherically symmetric form gets changed to avoid
gravitational collapse. The condition for the collapse of
isotropic and non-relativistic fluid distribution is given
as  < 4/3 [115,116].

Figure 5. The behaviour of adiabatic index r with respect
to r/R for different values of α. We set the same numerical
values for constant parameters as used in figure 3.

If the relativistic condition is considered, the condi-
tion becomes [117,118],



   13 Page 10 of 18 Pramana – J. Phys.           (2023) 97:13 

Table 1. Numerical values of physical quantities, such as central density, surface density, central pressure, mass-radius ratio
(M/R), critical value of adiabatic index (crit), central value of adiabatic index (r0), and surface redshift (Zs) for different
values of a.

α Central density Surface density Central pressure M/R crit r0 Zs

(g/cm3) (g/cm3) (dyne/cm2)

0.0 1.51436 × 1015 4.53343 × 1014 1.74497 × 1035 0.264576 1.57271 1.49906 0.4573
0.05 1.59006 × 1015 4.76006 × 1014 1.94752 × 1035 0.277802 1.58468 1.47415 0.5001
0.10 1.66577 × 1015 4.98673 × 1014 2.27519 × 1035 0.29103 1.59665 1.47935 0.5467
0.15 1.74149 × 1015 5.21340 × 1014 2.77885 × 1035 0.304259 1.60862 1.52497 0.5982
0.20 1.81721 × 1015 5.44007 × 1014 3.53310 × 1035 0.317488 1.62058 1.62103 0.6552

 <
4

3
+

[
1

3
κ

ρ0 pr0

|p′
r0|

+ 4

3

pt0 − pr0

|p′
r0|r

]
max

. (55)

Here, the second term on the right-hand side takes care
of the relativistic correction, whereas the third term
incorporates anisotropy and both of them vanish if the
isotropic, non-relativistic case is considered. Also, the
increase in anisotropy slows down the rise in instability
[115] and the stability condition is modified to the form
of  > 4/3 by the anisotropic factor (� = P⊥ − Pr ).
It must also be noted that considering the relativistic
correction for the adiabatic index may also lead to insta-
bilities inside the compact object [119,120]. To address
this, another strict condition was imposed by Mous-
takidis [121] where the concept of a critical value of the
adiabatic index (crit) was introduced, which depends
on the Lagrangian displacement amplitude (ξ ) and com-
pactness factor. crit is defined as

crit = 4

3
+ 19M

21R
. (56)

So, in this context, the condition  ≥ crit must be
fulfilled. The adiabatic index can be obtained from the
expression

 = ε + Pr
Pr

dPr
dε

. (57)

From figure 5 we see the nature of the adiabatic index r
and it can be seen that it has a non-zero minimum at the
centre and as one moves outwards, it tends to increase
slowly initially and then towards the surface, it increases
sharply. The r > 4/3 condition is maintained every-
where. Moreover, the magnitude of the central values of
r is increasing with α. From table 1, it is seen that the
condition crit > r0 is being satisfied for α = 0.20.
So, it can be concluded that the current gravitational
decoupling approach is more suitable for modelling a

stable compact star model than for modelling in a pure
GR scenario.

5.4 Causality

The stability with regard to the velocity of sound within
the stellar models is discussed in this section. For any
stellar model to be physically acceptable, the velocity of
sound must not exceed the velocity of light at any point
within the stellar model. This basically means that the
radial and tangential sound velocity components (v2

r and
v2
t ) must lie within [0, 1]. This is known as the causality

condition. From figure 6 it is seen that both v2
r and v2

t
lie well within the range 0 ≤ v2

r ≤ 1 and 0 ≤ v2
t ≤ 1

which signifies that the causality condition is satisfied
everywhere within the stellar model. Moreover, while
studying the nature of the v2

r curve, from figure 6 (left
panel), it is seen that it initially increases and then attains
a maximum value closer to the surface and then slowly
decreases. Moreover, the variation in v2

r is directly pro-
portional to the variation in α. Looking into the nature of
variation of v2

t , from figure 6 (right panel) it can be seen
that the curves slowly increase, but at different rates as
one moves from the centre to the surface and the nature
of variation is directly proportional to the value of α.
Moreover, the curve of v2

t for α = 0.20 shows a little
different behaviour from the other curves for different
values of α.

5.5 Stability via cracking

Now, the stability of the solution will be checked using
the criterion given by Herrera [122] and Abreu et al
[123]. The concept behind this is to check the stability of
the system under cracking instability using the sublimi-
nal tangential and radial velocity components of sound.
When anisotropy is present in self-gravitating systems,
the cracking method becomes a useful way to investi-
gate instability. As Abreu et al described, the cracking
concept can be expressed in terms of the perturbation
magnitude of density (|δε|), anisotropy (|δ�|) and their
ratio |δ�/δε| as
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Figure 6. The radial velocity (v2
r ) (left panel) and tangential velocity (v2

t ) (right panel) with respect to r/R for different
values of α. We set the numerical values a = 0.0001/km2, b = 0.0095/km2, R =11.5 km, β = 1.4 and γ = −0.001 for
plotting the figures.

∣∣∣∣δ�δε
∣∣∣∣ 

∣∣∣∣δ (P⊥ − Pr )

δε

∣∣∣∣ 
∣∣∣∣δP⊥

δε
− δPr

δε

∣∣∣∣
 ∣∣v2

t − v2
r

∣∣ . (58)

Since it is already shown in the previous subsection
that the causality conditions are well satisfied within
the model, we have 0 ≤ v2

r ≤ 1 and 0 ≤ v2
t ≤

1. But in addition to that, another condition should
also be applied, such as the perturbation magnitude
of anisotropy must never exceed that of density, i.e.
|δ�| ≤ |δε| �⇒ |v2

t − v2
r | ≤ 1. Also, an unstable

region is found for |δ�/δε| > 0. So, the stable and
unstable regions can be distinguished by the following
relation:

0 ≤ |v2
t − v2

r | ≤ 1 =
{

−1 ≤ v2
t − v2

r ≤ 0

0 < v2
t − v2

r ≤ 1
. (59)

So, the region −1 ≤ v2
t − v2

r ≤ 0 is a stable region and
0 < v2

t −v2
r ≤ 1 provides an unstable region. However,

if there is no sign change for −1 ≤ v2
t −v2

r ≤ 0, then this
also falls in the stable region. From figure 7 it is seen that
the quantity v2

r −v2
t always lies within the range [0,1]. So

it can be said that v2
t − v2

r lies within the range [−1, 0].
So the model always stays within the stable region of
−1 ≤ v2

t − v2
r ≤ 0. Hence, it is inferred that the system

is completely stable everywhere. While observing the
nature of variation of the v2

r − v2
t curves, it is seen that

for α = 0, 0.05, 0.10 the magnitude of v2
r − v2

t steadily
decreases as one moves from the centre to the surface
and after a certain point, the rate of decrease enhances
near the surface. However, for α = 0.15, 0.20 it is seen

Figure 7. The behaviour of stability factor (v2
r − v2

t ) with
respect to r/R is shown for different values of α. The same
numerical values for constant parameters have been used as
in figure 3.

that the curves behave somewhat irregular near the cen-
ter, as their magnitudes sometimes slightly increase,
sometimes decrease, and then attain a peak and after
that steadily decrease near the surface. Also, the varia-
tion of v2

r −v2
t is directly proportional to the variation of

α barring the α = 0.20 curve, where initially, the curve
starts off from a much lower value than the expected
pattern.

5.6 Hydrostatic equilibrium via modified TOV
equation

The hydrostatic equilibrium through the modified
Tolman–Oppenheimer–Volkoff (TOV) equation is a
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very important aspect to study any stellar model. The
general form of the modified TOV equation is given as

−dpr
dr

− mGR + 4πprr3

r(r − 2m)
(ρ + pr ) + 2(pt − pr )

r

+α
[m + 4π Prr3

r(r − 2m)
(θ1

1 − θ0
0 ) + dθ1

1

dr
− 2

r
(θ2

2 − θ1
1 )

− f ′ (pr + ρ)

2

]
= 0. (60)

It is noted that if α = 0, i.e. in the absence of gravita-
tional decoupling, the above conservation equation (60)
reduces into a standard Tolman–Oppenheimer–Volkoff
(TOV) equation in GR for charged matter distribution.
To satisfy this conservation equation (60), we spilt this
TOV equation into different forces like Feff

h , Feff
g , Feff

a

and Feff
e such that Feff

h + Feff
g + Feff

a = 0, where

Feff
h = −p′

r + α (θ1
1 )′, (61)

Feff
g = −mGR + 4πprr3

r(r − 2m)
(ρ + pr )

−α
m + 4π Prr3

r(r − 2m)
(θ0

0 − θ1
1 ) − α h′

2
(pr + ρ), (62)

Feff
a = 2(pt − pr )

r
− 2α

r
(θ2

2 − θ1
1 ). (63)

When all three forces add up to be zero, then the
system is said to be in hydrostatic equilibrium. From
figure 8 it is seen that the gravitational force (Feff

g ) is
negative, while the anisotropic and hydrostatic forces
(Feff

a and Feff
g , respectively) are positive throughout. All

three forces are zero at the centre and their magnitudes
increase as one moves outwards and after attaining a
peak, they steadily decrease. Also, the magnitudes of
the forces are directly proportional to the value of α.
Moreover, it must also be noted that the strong, negative
(i.e. attractive) gravitational force (Feff

g ) is balanced by
the positive (i.e. repulsive) anisotropic force (Feff

a ) and
hydrostatic force (Feff

a ) to maintain the hydrostatic bal-
ance. So, for all values of α, all three forces add up to be
zero and thus it can be said that the hydrostatic balance
is maintained throughout the model.

5.7 Compactness (mass–radius) relation and surface
gravitational red-shift

An essential component for studying any stable self-
gravitating compact stellar model is to study the com-
pactness (mass–radius ratio). Moreover, to determine
the upper limit of the surface red-shift of the compact
stars, the effective mass–radius ratio plays a pivotal role.

• The following formula can be used to determine the
effective mass in GR for perfect fluid or uncharged

Figure 8. The behaviour of different forces (Fg – black
curves, Fh – green curves and Fa – magenta curves) with
respect to r/R for different values of β. We set the same
numerical values for constant parameters as used in figure 3.

anisotropic matter distribution,

[MGR]eff = 4π

∫ R

0
r2ρ(r)dr

= R

2
[1 − Y (R)] = MGR, (64)

where MGR is the total mass of the compact star having a
radius of R with the matter distribution being anisotropic
when gravitational decoupling is absent. When gravita-
tional decoupling is present, the total mass MGR can be
expressed as

M = MGR − αR

2
g(R) = 4π

∫ R

0
r2ε(r)dr

= R

2

[
1 − 1

W (R)

]
.

Then the effective mass under gravitational decoupling
can be given as

Meff = [MGR]eff − α R

2
g(R). (65)

In this context, Buchdahl [26] proposed the maximum
allowable mass–radius ratio for isotropic uncharged
fluid distribution, considering the decreasing density
as
MGR

R
≤ 4

9
.

It is worth mentioning that the total mass gets affected
by the gravitational decoupling as well. For a fixed
radius R, the condition M ≥ MGR will always hold
true, as g(r) remains negative throughout the star. The
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Figure 9. The behaviour of gravitational red-shift Z with
respect to r/R for different values of α. We set the same
numerical values for constant parameters as used in figure 3.

mass–radius ratio for 13 compact star models under the
gravitational decoupling is obtained for different values
of the decoupling constant α as mentioned in table 3.
As can be seen from this table, the mass–radius ratio
increases when α increases which implies that we get
more compact objects when we introduce the gravita-
tional decoupling in the self-gravitating system. On the
other hand, the mass–radius ratio for each object did not
go beyond the Buchdahl limit. Moreover, the following
formula can be used to calculate the surface red-shift Zs
for compact stars:

Zs = (1 − 2u)−1/2 − 1, (66)

where

u ≡ Meff

R
= [MGR]eff

R
− α R

2
g(R).

6. Concluding remarks

In this paper, a new solution has been obtained for
self-gravitating systems having anisotropic matter dis-
tribution. Using the complete geometric deformation,
i.e., considering both radial and temporal deformation,
the highly non-linear field equations could be split into
two subsystems, Einstein’s system in the anisotropic
framework and the quasi-Einstein’s system containing
the deformation functions. Then, the embedding Class-
I condition was used to find the relationship between
the metric potentials to solve Einstein’s system in the
anisotropic framework. To solve the second system
or the quasi-Einstein’s system, the density constraints
[ρ(r) = θ0

0 (r)] were mimicked to obtain g(r). Then, a
linear equation of state (EoS) relating the θ components

was used to find a first-order differential equation and it
was solved to obtain another deformation function f (r).
Thus, the system was solved. Due to the anisotropic dis-
tribution, matching the exterior and interior boundaries
is important and well-recognised Israel–Darmois junc-
tion conditions were used to smoothly join the inner
and outer geometries at the boundary r = R. The
physical behaviour of various thermodynamic param-
eters and along with it, energy conditions and stability
analysis were studied afterwards to check the viabil-
ity of the model. The compact star PSR J1416-2230
having 1.97 ± 0.04M� mass was considered for the
analysis. It was seen in figure 2 (left panel) that the
deformation function g(r) remains negative through-
out the model and does not get affected by α at all,
whereas, from figure 2 (right panel) it is seen that the
deformation function f (r) remains positive throughout
and is significantly affected by the variation in α. Both
radial (Pr ) and tangential (P⊥) pressures have their max-
ima at the centre which monotonically decrease as one
moves outwards, as can be seen from figure 3 and vari-
ation in α affects both the radial and tangential pressure
in a directly proportional manner. The anisotropic fac-
tor � is zero at the centre and keeps on increasing as
one moves towards the surface as can be seen from fig-
ure 3 (bottom right panel). This means that, at the core,
the matter distribution is predominantly isotropic and
anisotropy grows as one moves outwards. Moreover, α

affects the anisotropy in a directly proportional man-
ner. The study of energy density ε(r) showed that it
has its maximum value at the centre and decreases as
one move towards the surface and it varies with α in
a directly proportional manner, as seen in figure 3 (top
left panel). While analysing the energy conditions, it was
seen that all the energy conditions such as NEC, WEC,
SEC, DEC and TEC are satisfied everywhere within the
stellar model as can be seen from figure 4. Looking into
the stability via the adiabatic index, from figure 5 it was
seen that the condition for stability, i.e.  > 4/3, is
satisfied everywhere and from table 1 it is seen that
for α = 0.20, the condition crit > r0 is fulfilled.
This shows that the model is stable for higher values of
the decoupling constant, implying that the gravitational
decoupling approach is a powerful technique to investi-
gate a stable model. Studying the causality condition, it
has been found that the velocity of sound never exceeds
the speed of light, which can be verified from figure 6.
This assures that the causality condition is maintained
everywhere in the model. The stability of the solution
in terms of the cracking instability was checked and it
was found that the model always stays within the stable
range of −1 ≤ v2

t − v2
r ≤ 0 as can be seen in fig-

ure 7. The geometric deformation approach can affect
the hydrostatic balance of the system also. Therefore, the
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Table 2. Predicted radii R for different compact stars.

Objects Mass R for R for R for R for R for
(M/M�) α = 0.0 α = 0.05 α = 0.10 α = 0.15 α = 0.20

PSR J1416-2230 [124] 1.97 ± 0.04 10.99+0.12
−0.11 10.72+0.11

−0.11 10.47+11
−0.10 10.24+0.11

−0.10 10.03+0.10
−0.10

Vela X-1 [125] 1.77 ± 0.08 10.41+0.24
−0.24 10.16+0.23

−0.23 9.93+0.22
−0.22 9.72+0.21

−0.22 9.52+0.20
−0.21

4U 1608-52 [126] 1.74 ± 0.14 10.32+0.41
−0.42 10.07+0.4

−0.4 9.85+0.38
−0.38 9.72+0.29

−0.46 9.44+0.36
−0.37

PSR J1903+327 [127] 1.667 ± 0.021 10.10+0.063
−0.064 9.86+0.060

−0.061 9.639+0.0589
−0.059 9.434+0.057

−0.057 9.244+0.055
−0.055

4U 1820-30 [128] 1.58 ± 0.06 9.84+0.18
−0.18 9.61+0.171

−0.18 9.395+0.168
−0.174 9.196+0.165

−0.166 9.013+0.160
−0.162

Cen X-3 [125] 1.49 ± 0.08 9.560+0.246
−0.25 9.338+0.240

−0.240 9.134+0.230
−0.233 8.945+0.223

−0.226 8.77+0.216
−0.221

EXO 1785-248 [129] 1.3 ± 0.2 8.96+0.631
−0.664 8.76+0.610

−0.642 8.58+0.583
−0.630 8.40+0.573

−0.606 8.24+0.557
−0.590

LMC X-4 [125] 1.29 ± 0.05 8.927+0.161
−0.163 8.727+0.155

−0.158 8.542+0.151
−0.153 8.370+0.147

−0.148 8.211+0.142
−0.145

SMC X-1 [125] 1.04 ± 0.09 8.09+0.310
−0.319 7.915+0.300

−0.309 7.76+0.285
−0.306 7.605+0.282

−0.293 7.465+0.276
−0.285

SAX J1808.4-3658 [130] 0.9 ± 0.3 7.59+1.043
−1.19 7.43+1.018

−1.16 7.282+0.983
−1.31 7.145+0.956

−1.10 7.02+0.93
−1.08

4U 1538-52 [125] 0.87 ± 0.07 7.48+0.255
−0.265 7.322+0.249

−0.255 7.177+0.243
−0.250 7.043+0.236

−0.244 6.918+0.230
−0.239

Her X-1 [131] 0.85 ± 0.15 7.403+0.547
−0.587 7.249+0.530

−0.570 7.107+0.515
−0.556 6.9738+0.509

−0.540 6.850+0.490
−0.529

GW170817 [132] 2.25+0.42
−0 11.789+1.165

−0 11.487+1.118
−0 11.21+1.075

−0 10.953+1.038
−0 10.716+1.003

−0

Table 3. Mass–radius ratio (M/R) for different compact stars.

Objects Mass M/R for M/R for M/R for M/R for M/R for
(M/M�) α = 0.0 α = 0.05 α = 0.10 α = 0.15 α = 0.20

PSR J1416-2230 1.97 ± 0.04 0.264349 0.271127 0.277623 0.283925 0.290119
Vela X-1 1.77 ± 0.08 0.20619 0.20784 0.20957 0.21121 0.21260
4U 1608-52 1.74 ± 0.14 0.20398 0.20564 0.20731 0.20894 0.21032
PSR J1903+327 1.667 ± 0.021 0.19855 0.20016 0.20175 0.20334 0.20468
4U 1820-30 1.58 ± 0.06 0.19193 0.19348 0.19502 0.19654 0.19782
Cen X-3 1.49 ± 0.08 0.18492 0.18643 0.18789 0.18935 0.19058
EXO 1785-248 1.30 ± 0.2 0.16955 0.17091 0.17219 0.17358 0.17468
LMC X-4 1.29 ± 0.05 0.16873 0.17007 0.17140 0.17271 0.17381
SMC X-1 1.04 ± 0.09 0.14698 0.14815 0.14930 0.15042 0.15137
SAX J1808.4-3658 0.9 ± 0.3 0.13392 0.13498 0.13597 0.13701 0.13785
4U 1538-52 0.87 ± 0.07 0.13104 0.13206 0.13307 0.13406 0.13489
Her X-1 0.85 ± 0.15 0.12909 0.13010 0.13108 0.13207 0.13288
GW170817 2.25+0.42

−0 0.28150 0.28890 0.29605 0.30300 0.30970

hydrostatic equilibrium in terms of the modified TOV
equation is also checked and it is seen in figure 8, that
the negative or attractive gravitational force (Feff

g ) is
balanced by the positive and repulsive anisotropic force
(Feff

a ) and hydrostatic force (Feff
a ) and thus the hydro-

static equilibrium is maintained and also it can be seen
that all three forces combine to cancel each other, i.e.
Feff
h +Feff

g +Feff
a = 0. The effect of gravitational decou-

pling on the original mass is also analysed in this paper.
For this, the total gravitationally decoupled mass (M) is
taken as the combination of two separate mass compo-
nents, which are the GR mass function (MGR) and the

mass component coming from the gravitational decou-
pling (MEGD). Thus, how the original mass (MGR) is
modified due to the extra component of MEGD can be
easily probed. The expression for the total mass after
gravitational decoupling is MGR − αR

2 g(R). It can be
clearly seen that the factor −αR

2 g(R) will be positive
for all values for r > 0 as g(R) is negative. Therefore,
it can be concluded that this extra factor will enhance the
total mass (M) of the stellar model. In this connection, it
is well-known that the massive object warps and curves
space–time, while the gravitational field is basically the
result of the curving of space–time. This implies that
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more massive objects create a stronger gravitational field
around the objects. Furthermore, gravitational time dila-
tion also happens due to objects with a lot of mass
that produce a strong gravitational field (i.e. stronger
gravity). Then, it is clear that the introduction of CGD
approach in the self-gravitating model may help us to
understand the reason for the stronger gravitational field
around the black hole, i.e. stronger gravity.

From tables 2 and 3, it is found that with the increase
in the value of α, the radius decreases, and subsequently,
the mass–radius ratio increases. Moreover, it is also seen
that the mass–radius ratio is higher for heavier compact
stars. From figure 9 it is seen that the gravitational red-
shift has its maximum value at the centre and it decreases
as one moves towards the surface and is affected by α

in a directly proportional manner. On the other hand,
the expected gravitational red-shift for static spherically
symmetric perfect fluid distribution can reach up to 2,
i.e. zs ≤ 2 [26,133], while this value can be high as
≤3.84 [134,135] for the anisotropic case and it can go
on up to 5 and 5.211 as studied by Böhmer-Harko [136]
and Ivanov [137], respectively. In our study, we found
that the gravitational surface red-shift of the star PSR
J1614-2230 as mentioned in table 1 for different values
of α is less than 2, i.e. Zs ≤ 2 which is physically
acceptable.
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Appendix

θ11(r) = −a3r4

×
(
B

√
ar2 + 1

(
β(α + 1)

(
br2 + 3

)
−3

(
bαr2 + α

)) + A
(
β(α + 1)

(
br2 + 3

)
−α

(
br2 + 1

))) + a2r2

×
[
B

√
ar2 + 1

(
β

(
br2 + 3

) (
α

(
2br2 − 1

)
+br2 − 2

) + (
br2 + 1

) (
bγαr4 + bγ r4

−6bαr2 + γαr2 + γ r2 + α
))

+A
(
β

(
br2 + 3

) (
α

(
2br2 − 1

) + br2 − 2
)

+ (
br2 + 1

) (
bγαr4 + bγ r4 − 2bαr2 + γαr2

+γ r2 + α
)) ]

,

θ12(r) = a
[
B

√
ar2 + 1

( − β
(
br2 + 3

)
×(

b2αr4 − 2b(α + 1)r2 + 1
)

−(
r2(br2 + 1

)(
γ
(
br2 + 1

)(
bαr2 − α − 2

)
+bα

(
2 − 3br2))))

+A
{ − β

(
br2 + 3

)(
b2αr4 − 2b(α + 1)r2 + 1

)
−[

r2(br2 + 1
)(

γ
(
br2 + 1

)
+(

bαr2 − α − 2
) + bα

(
2 − br2))]}]

−(
B

√
ar2 + 1 + A

)[
b3αr4(β + γ r2 − 1

)
+b2r2(β(3α − 1) + 2γαr2 − γ r2 − α

)
+b

(
γ (α − 2)r2 − 3β

) − γ
]
,

A1(R) = −b3α2R4
√
aR2 + 1

(
β + γ R2 − 1

)
+b

√
aR2 + 1

(
3βα − γ (α − 2)αR2 + 1

) + γα
√
aR2 + 1,

A2(R) = −
√
a2

(
aR2 + 1

) (
bR2 + 1

)2 (
a2

(
α2 − 1

)
R4 − 2a

(
bα2R4 + R2

) + b2α2R4 − 1
)2

−a3(α + 1)R4
√
aR2 + 1

(
α

(
bβR2 − 2bR2 + 3β − 2

) + 2bR2 + 2
) + b2R2

√
aR2 + 1

× (
β

(
α − 3α2) + α2 (

1 − 2γ R2) + γαR2 + 1
)
,

A3(R) = a
√
aR2 + 1

[ − βα
(
bR2 + 3

) (
b2αR4 − 2b(α + 1)R2 + 1

) − (
bR2 + 1

)
×(

b2α2R4 (
γ R2 − 2

) − 2bR2(γ αR2 − α2 + 1) − γα(α + 2)R2 + 2
)]

,
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A4(R) = a2R2
√
aR2 + 1

×[
βα

(
bR2+3

) (
α

(
2bR2−1

)+bR2 − 2
)

+(
bR2+1

) (
α2 (

bγ R4 − 4bR2 + γ R2 + 1
)

+γαR2 (
bR2 + 1

) + bR2 − 4
)]

,

A5(R) = a2(α + 1)R2(
α

(
β

(
bR2 + 3

) − bR2 − 1
) + bR2 + 1

)
+b3α2R4 (

β + γ R2 − 1
) + b2R2(β(3α − 1)α

+α2 (
2γ R2 − 1

) − γαR2 − 1
)

+b
(−3βα + γ (α − 2)αR2 − 1

) − γα,

A6(R) = −a
(
βα

(
bR2 + 3

) (
b(2α + 1)R2 − 1

)
+ (

bR2 + 1
) (
bR2 (

α2 (
γ R2 − 2

) + γαR2 + 1
)

+γα(α + 1)R2 − 1
))

,

B1(R) = ln
(
aR2 + 1

) [bγ
a2

+
2b
a − 2( A
B

)2 − b(β − 1) + γ

a
+ 3β − 1

]

+ B2

a2A2

{
A

B

(
4a(b − a)√
aR2 + 1

− A

B
bγ

(
aR2 + 1

))

−4a

[(
A

B

)2

− 1

]
(a − b) log

(√
aR2 + 1+ A
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) }

−2β ln
(
abR2 + a

)
.
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