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Abstract. We construct a new exact model for a dense stellar object utilising the Einstein–Maxwell system of
equations. The model comprises three interior regions with distinct equations of state (EoS): the polytropic EoS at
the core region, linear EoS at the intermediate region and Chaplygin EoS at the envelope region. Our model can
regain earlier solutions. A physical analysis reveals that the matter variables, metric functions and other physical
conditions are well behaved and consistent in the study of dense stellar objects. Matching of the boundary layers is
done with help of the Reissner–Nordstrom exterior space–time. An interesting feature is that the innermost region
is outfitted with a polytropic EoS, and this study extends a core–envelope model developed by Mardan, Noureen
and Khalid into a three-layered model.
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1. Introduction

Construction of stellar models in a multilayered set-
ting has drawn the attention of many researchers. It has
been noted that the interior structure of a massive stellar
object has several layers leading to an interior struc-
ture which is complex. In the past, several models have
been formulated to demonstrate a variety of physical
features in the interior of dense stellar objects. Treat-
ment of the interior structure of the stellar sphere with
multilayers yields interesting physical features related to
the matter variables and metric functions. Stellar objects
with concentric interior layers are massive and possess
strong magnetic and gravitational fields (Durgapal and
Bannerji [1], Itoh [2]). Gravitating stellar objects with
such properties include white dwarfs, quark stars, pul-
sars, neutron stars, quasars and gravastars. These dense
stellar objects have a unique interior structure which
need further gravitational investigation. According to
Pant et al [3], the total mass and density of the compact
objects are approximately 1.0–2.0 M� and 1015 g cm−3

respectively. Jasim et al [4] considered dense objects

with masses 1.4–2.0M� and radii 11.0–15.0 km. A thor-
ough investigation of the multilayered stellar object is
required with these values.

The idea of establishing a multilayered stellar model
is possible in the Einstein general theory of relativity
which relies on the space–time curvature (Mardan et
al [5]). A variety of stellar models are known show-
ing importance of the field equations in the study of
gravitating objects. This includes the works of Das et
al [6] and Herrera [7] who developed stellar models
to describe the stability in the interior. The presence
of electromagnetic field in the stellar object increases
stability, and slows gravitational collapse (Rahaman et
al [8]). According to Bhatia et al [9], electric charges
are created as a result of the electrons shifting from
the inner layer of the stellar object. Many papers show
that the charge affects masses, red-shifts, luminosities
and causal signals. The effects of electric charge have
been discussed in the works of Bonnor [10], Sharma
and Maharaj [11], Rao et al [12], Jape et al [13],
Sharma and Mukherjee [14], Lighuda et al [15], Ray
et al [16], Sunzu and Danford [17], Mathias et al [18]
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and Thirukannesh and Maharaj [19,20]. Modelling of
relativistic anisotropic stellar objects requires an EoS
according to the composition in the interior of the star.
Researchers choose a suitable EoS for a particular layer
depending on the density of the matter contained (Mar-
dan et al [5]). Most studies use linear EoS, quadratic
EoS, polytropic EoS, Chaplygin EoS and Van der Waal
EoS. Linear EoS are contained in the treatments of
Sharma and Maharaj [11], Sunzu and Danford [17],
Thirukannesh and Maharaj [19,20], Maharaj et al [21],
Sunzu et al [22,23], Varela et al [24], Chaisi and
Maharaj [25,26]. Some stellar models with polytropic
EoS are contained in Maharaj and Mafa Takisa [27],
Freitas and Goncalves [28], Sunzu [29], Tooper [30] and
Chavanis [31]. Models developed with Chaplygin EoS
include Rahaman et al [8], Lighuda et al [15], Gorini
and Moschella [32], Singh and Baruah [33], Bhar [34,
35] and Bhar et al [36].

Two-layered models describing an inner region and
the envelope region have been constructed utilising the
Einstein–Maxwell field equations with EoS. Recently,
Mardan et al [5] utilised a polytropic EoS in the core
region, and the envelope region has a linear EoS. Stellar
models with linear EoS at the core and quadratic EoS at
the envelope demonstrate, that the envelope region con-
sists of less dense material, were established by Mafa
Takisa and Maharaj [37] and Mafa Takisa et al [38].
Thomas et al [39] described an isotropic fluid at the
core region and anisotropic fluid at the envelope region.
In the treatment by Paul and Tikekar [40], the core layer
is considered anisotropic and the corresponding enve-
lope is assumed to be isotropic. The model developed
by Metcalfe et al [41] discusses the physical charac-
teristics of white dwarf stars. The studies of Pant et
al [42] and Gedela et al [43] describe the physical
behaviour of dense objects utilising linear EoS at the
core and quadratic EoS at the envelope. Other stellar
models describing the physical properties of the dense
object comprising two regions are the works of Sharma
and Mukherjee [14], Hansraj et al [44], Montgomery
et al [45], Tikekar and Jotania [46] and Ramesh and
Thomas [47].

Three-layered models describing the interior regions
of dense stellar objects are now being considered by
many researchers. The interior structure of the stellar
object comprises three layers which are determined by
their density profiles. Realistically, one layer is not suf-
ficient to describe the whole interior of the stellar object.
The recent models developed by Pant et al [3] and
Bisht et al [48] demonstrate that there exists a subre-
gion between the core and the envelope regions. In their
study, the analysis is done by using linear EoS for the
quark matter at the core region, the particular quadratic
EoS convenient for Bose–Einstein condensate matter in

the intermediate region, and the general quadratic EoS
in the envelope region. The charged model established
by Lighuda et al [15] describes the core region utilising
linear EoS, the intermediate region with quadratic EoS
and the envelope with Chaplygin EoS. Another charged
stellar model comprising three regions, linear EoS, the
Bose–Einstein EoS and quadratic EoS at the core region,
intermediate region and the envelope region, respec-
tively, was developed by Lighuda et al [49].

In the current work, we formulate a three-layered
model following the approach in a two-layered model
generated by Mardan et al [5]. A notable feature in our
three-layered model is the existence of a polytropic EoS
at the core region and Chaplygin EoS in the third layer.
In this paper, we develop a three-layered model with a
linear EoS in the intermediate layer. We construct a new
charged model with three interior regions. In our study,
we specify one of the metric functions and electric field
which makes a detailed physical analysis possible .

2. Field equations

The interior of the stellar object is described by
a static spherically symmetric space–time utilising
Schwarzschild coordinates (x ι = t, r, θ, φ) as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2).

(1)

The exterior space–time is represented by a line element
described in Reissner–Nordstrom geometry given in the
form

ds2 = −
(

1− 2ε

r
+ q2

r2

)
dt2+

(
1 − 2ε

r
+ q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2), (2)

where ν(r) and λ(r) are the metric functions, q stands
for the total charge and ε represents the total mass of the
sphere.

We take the energy–momentum tensor for the charged
stellar object as

Ti j = diag

(
− ρ − 1

2
E2, pr − 1

2
E2, pt + 1

2
E2,

pt + 1

2
E2

)
, (3)

where ρ is the energy density, E is the electric field, pr
and pt are the radial and tangential pressures, respec-
tively. With G = c = 1 in the Einstein–Maxwell field
equations, we get

8πρ + 1

2
E2 = 1

r2 (1 − e−2λ) + 2λ′

r
e−2λ, (4a)
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8πpr − 1

2
E2 = − 1

r2 (1 − e−2λ) + 2ν′

r
e−2λ, (4b)

8πpt + 1

2
E2 = e−2λ

(
ν′′ + ν′2 − ν′λ′ + ν′

r
− λ′

r

)

+ 2λ′

r
e−2λ, (4c)

σ = 1

r2 e−λ(r2E)′, (4d)

where primes (′) denote derivatives.
We utilise new variables, as given in Durgapal and

Bannerji [50] in the form

x = r2, Z(x) = e−2λ, e2ν = A2y2(x). (5)

Substituting eq. (5) into (4), the field equations become

8πρ = 1 − Z

x
− 2Ż − 1

2
E2, (6a)

8πpr = −1

x
(1 − Z) + 4Z

ẏ

y
+ 1

2
E2, (6b)

8πpt = 4x Z
ÿ

y
+ (

4Z + 2x Ż
) ẏ

y
+ Ż − 1

2
E2, (6c)

� = 8π(pt − pr )

= 4x Z
ÿ

y
+ (

4x Z + 2x Ż − 4Z
) ẏ

y
+ Ż

+1

x
(1 − Z) − E2, (6d)

σ = 2
(
x Ė + E

) √
Z

x
. (6e)

System (6) has eight variables (ρ, pt , pr , �, Z, y, σ , E).
From system (6), two physical variables may be speci-
fied to find the solution for the others.

In our model, we assume one of the metric functions
in the form

Z(x) = e−2λ = 1 − αx + βx2 + ηx3, (7)

where α, β and η are the arbitrary real constants. The
specified metric function Z is finite and continuous
everywhere at the interior. The choice of Z in eq. (7)
implies that no singularity assists at the centre. Inserting
η = 0 from (7), we regain the metric function utilised
in the models by Mardan et al [5], Pant et al [3,42] and
Lighuda et al [49]. In this study, we choose the electric
field in the form

E2 = κx Z = κx(1 − αx + βx2 + ηx3), (8)

where κ is an arbitrary real constant. The assumed elec-
tric field E2 in eq. (8) is physically reasonable and
vanishes at the centre. It ensures continuity from the
centre towards the surface. If we choose electric field
with κ = 0, then we may recover the earlier uncharged
models.

3. Classification of the interior regions

Interior layers of the dense stellar object are classified
in terms of three regions: the core (I), the intermediate
(II) and the envelope (III). These regions are given by
the core layer (Region I): 0 ≤ r ≤ RI, the intermediate
layer (Region II): RI ≤ r ≤ RII, and the envelope layer
(Region III): RII ≤ r ≤ RIII. For the three regions, line
element (1) becomes

ds2|I = −e2νIdt2 + e2λIdr2 + r2(dθ2

+ sin2 θdφ2), (9a)

ds2|II = −e2νIIdt2 + e2λIIdr2 + r2(dθ2

+ sin2 θdφ2), (9b)

ds2|III = −e2νIIIdt2 + e2λIIIdr2 + r2(dθ2

+ sin2 θdφ2). (9c)

3.1 Layer I (core)

The basic postulate in the theory of polytropes indicates
that the pressure forces of the gravitating sources rely
upon the density profile (Mardan et al [5]). We choose to
utilise the polytropic EoS to investigate the dynamical
properties of polytropes in the core layer. The polytropic
EoS has also been shown to be relevant in the core region
in the stellar distributions of Maharaj and Matondo [51].
This is given in the form

prI = μρ
1+1/n
I , (10)

where μ and n are the arbitrary real constants for n > 0.
Combining (6a) and (10) yields

prI = μ

(
1 − Z

8πx
− Ż

4π
− 1

16π
E2

)1+1/n

. (11)

Equating (6b) and (11) gives

ẏ

y
= μ

4Z

(
1 − Z

8πx
− Ż

4π
− 1

16π
E2

)1+1/n

+ 1 − Z

4Zx
− E2

8Z
. (12)

Substituting (7) and (8) into eq. (12) yields

ẏ

y
= [2α + x2(α − x(β + xη))κ − x(2β + 2xη + κ)

+ 2−3− 4
n π− 1+n

n (−2α + x(6β + 10xη − κ)

+ x2(α − x(β + xη))κ)1+ 1
n μ][8(1 + x(−α

+ x(β + xη)))]−1. (13)

Then with the help of (7), (8) and (13) and system (6), we
obtain the following gravitational and matter variables
in the core layer:

e2λI = [1 − αx + βx2 + ηx3]−1, (14a)
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e2νI = A2[exp(H0(x))]2, (14b)

ρI = [−2α + x(6β + 10xη − κ) + x2(α

− x(β + xη))κ][16π ]−1, (14c)

prI = μ[[−2α + x(6β + 10xη − κ) + x2(α

− x(β + xη))κ][16π ]−1](1+1/n)), (14d)

ptI = 1/128(−((16(α − x(2β + 3xη)))/π)

− (8x(1 − xα + x2β + x3η)κ)/π

+ (16(4(1 − xα + x2β + x3η) + (x(−α

+ x(2β + 3xη)))/(4π))(2α − 2x(β + xη)

− x(1 − xα + x2β + x3η)κ + 2−3−4/n

× π−((1+n)/n)(α(−2 + x2κ) − x(−10xη + κ

+ x3ηκ + β(−6 + x2κ)))1+1/nμ))/(1 − xα

+ x2β + x3η) + 1/(π(1 + x(−α + x(β

+ xη)))2)(1xα + x2β + x3η)(−8(−α

+ x(2β + 3xη))(2α + x2(α − x(β + xη))κ

− x(2β+2xη+κ) + 2−3−4/nπ−((1+n)/n)(−2α

+ x(6β + 10xη − κ) + x2(α − x(β + xη))

× κ)1+1/nμ) + (2α + x2(α − x(β + xη))κ

− x(2β+2xη+κ)+2−3−4/nπ−((1+n)/n)(−2α

+ x(6β + 10xη − κ) + x2(α − x(β + xη))

× κ)1+1/nμ)2 + (1 + x(−α + x(β + xη)))

× (−8(2β + 4xη + κ − 2xακ + x2(3β

+ 4xη)κ) − (2−4/n(1 + n)π−((1+n)/n)(−2α

+ x(6β + 10xη − κ) + x2(α − x(β

+ xη))κ)1/n(−6β + κ + x2(3β + 4xη)κ

− 2x(10η + ακ))μ)/n))), (14e)

�I = ptI − prI, (14f)

σI = (2(2 − 3xα + 4x2β + 5x3η))((xκ))−1/2, (14g)

E2
I = κx(1 − αx + βx2 + ηx3), (14h)

where for simplicity, we have defined

H0(x) = 1

8

∫ 2.5

0
(2α + x2(α − x(β + xη))κ

− x(2β + 2xη + κ) + 2−3−4/nπ−((1+n)/n)

×(−2α + x(6β + 0xη − κ) + x2(α

− x(β + xη))κ)1+1/nμ)1 + x(−α

+ x(β + xη)))−1dx .

The mass of the stellar object in the core region is given
in the form

εI(r) = 4π

∫ 2.5

0
r2ρIdr , r2 = x

εI =
∫ 2.5

0
[x(−2α + x(6β + 10xη − κ)

+ x2(α − x(β + xη)))κ][8x1/2]−1dx

= −0.658808(α − 5.83929β

− 15.997η + 0.75κ)κ. (15)

3.2 Layer II (intermediate)

In this subsection, we present the intermediate layer util-
ising the linear EoS which is convenient to describe the
quark matter satisfying the MIT-bag model. In the recent
work [51], the linear EoS was shown to be relevant, away
from the core region. This is written in the form

prII = dρII − b, (16)

where d and b are arbitrary real constants. Using eqs
(6a) and (16) we obtain

prII = d

(
1 − Z

8πx
− Ż

4π
− 1

16π
E2

)
− b. (17)

Equating (6b) and (17), and using (7) and (8) we obtain
a differential equation in the form

ẏ

y
= − (16bπ + 2(xα2 + x(β(1 − 3d + x2β) + x(1

− 5d + 2x2β)η + x4η2) + α(−1 + d − 2x2(β

+ xη))) + (d + 8π)x(1 − xα + x2β)κ)(64(π

+ πx(−α + x(β + xη))))−1. (18)

Substituting (7), (8) and (18) into system (6), the grav-
itational and matter variables at the intermediate layer
become

e2νII = A2y2(x) = A2[exp(τ0(x))]2, (19a)

ρII = [−2α + x(6β + 10xη − κ) + x2(α − x(β

+ xη))κ][16π ]−1, (19b)

prII = d[−2α+x(6β+10xη−κ) + x2(α − x(β

+ xη))κ][16π ]−1 − b, (19c)

ptII = 1/(8192π)(−1024(α − x(2β + 3xη))

− 512x(1 + x(−α + x(β + xη)))κ

− (32(2 − 3xα + 4x2β

+ 5x3η)(2(8bπ + xα2 + x(β(1 − 3d + x2β)

+ x(1 − 5d + 2x2β)η + x4η2) + α(−1 + d

− 2x2(β + xη))) + (d + 8π)x(1 − xα + x2β)

× κ))/(π + πx(−α + x(β + xη))) + 1/(π

+ πx(−α + x(β + xη)))2x(1 + x(−α + x(β

+ xη)))(64π(−α + x(2β + 3xη))(16bπ

+ 2(xα2 + x(β(1 − 3d + x2β)

+ x(1 − 5d + 2x2β)η

+ x4η2) + α(−1 + d − 2x2(β + xη))) + (d

+ 8π)x(1 − xα + x2β)κ) + (16bπ

+ 2(xα2 + x(β(1 − 3d + x2β)
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+ x(1 − 5d + 2x2β)η

+ x4η2) + α(−1 + d − 2x2(β + xη))) + (d

+ 8π)x(1 − xα + x2β)κ)2 − 64π(1 + x(−α

+ x(β + xη)))(2(α2 + β − 3dβ − 2xα(2β

+ 3xη) + x(2(1 − 5d)η + x(β + xη)(3β

+ 5xη))) + (d + 8π)(1 − 2xα

+ 3x2β)κ))), (19d)

�II = ptII − prII, (19e)

where for simplicity we have set

τ0(x) = −
∫ 4

2.5
((16bπ + 2(xα2 + x(β(1 − 3d

+ x2β) + x(1 − 5d + 2x2β)η + x4η2

+ α(−1 + d − 2x2(β + xη))) + (d

+ 8π)x(1 − xα + x2β)κ)(64(π

+ πx(−α + x(β + xη))))−1dx .

We present the mass of the stellar object in the interme-
diate region in the form

εII(r) = 4π

∫ 4

2.5
r2ρIIdr , r2 = x

εII =
∫ 4

2.5
[x(−2α + x(6β + 10xη − κ)

+ x2(α − x(β + xη)))κ][8x1/2]−1dx

= −1.10589κ(0.609937α − 9.33585β

− 44.6675η + κ). (20)

3.3 Layer III (envelope)

Following the density profile in the interior of the star,
the envelope layer should be less compact than the core
and the intermediate layers: consisting of neutron fluids
and Coulomb liquids (Bisht et al [48]). The Chaplygin
EoS is chosen which is suitable for describing gaseous
matter with less compaction so as to examine the radial
pressure forces in the envelope (Lighuda et al [15,49]).
This is given by

prIII = sρIII − w

ρIII
, (21)

where s and w are the arbitrary real constants. From (6a)
and (21) we have

prIII = s

(
1 − Z

8πx
− Ż

4π
− 1

16π
E2

)

−w

(
1 − Z

8πx
− Ż

4π
− 1

16π
E2

)−1

. (22)

Equating (6b) and (22) gives

ẏ

y
= s

4Z

(
1 − Z

8πx
− Ż

4π
− 1

16π
E2

)

+ w

4Z

(
1 − Z

8πx
− Ż

4π
− 1

16π
E2

)−1

+1 − Z

32π Z
− 1

16π
E2. (23)

Substituting (7) and (8) into (23), we obtain a first-order
differential equation in the form

ẏ

y
= (2x(α − x(β + xη)) − 4x(1 − xα + x2β)κ

+(s(−2α + x(6β + 10xη − κ) + x2(α

−xβ)κ))(1 + x(−α + x(β + xη)))−1

+(256π2w)((1 + x(−α + x(β + xη)))−1(2α

+x2(−α + xβ)κ + x(−6β − 10xη

+κ))))2(4096π2)−1. (24)

Solving eq. (24), the envelope variables for the third
layer become

e2νIII = A2y2(x) = A2[exp(G0(x))]2, (25a)

ρIII = [−2α + x(6β + 10xη − κ) + x2(α

− x(β + xη))κ][16π ]−1, (25b)

prIII = s[−2α + x(6β + 10xη − κ) + x2(α − x(β

+ xη))κ][16π ]−1 − w([−2α + x(6β + 10xη

− κ) + x2(α − x(β + xη))κ][16π ]−1)−1,

(25c)

ptIII = 1

8192π3 (−1024π2(α − x(2β + 3xη))

− 512π2x(1 + x(−α + x(β + xη)))κ + 16π

× (4−6xα+8x2β+10x3η)(2x(α − x(β + xη))

− 4x(1 − xα + x2β)κ + (s(−2α + x(6β

+ 10xη − κ) + x2(α − xβ)κ))(1

+ x(−α + x(β + xη)))−1

+ (256π2w)((1 + x(−α + x(β + xη)))−1(2α

+ x2(−α + xβ)κ + x(−6β − 10xη + κ))))

+ x(1 + x(−α + x(β + xη)))((2x(α − x(β

+ xη)) − 4x(1 − xα + x2β)κ + (s(−2α

+ x(6β + 10xη − κ) + x2(α − xβ)κ))(1

+ x(−α+x(β+xη)))−1+(256π2w)((1+x(−α

+ x(β + xη)))(2α + x2(−α + xβ)κ + x(−β

− 10xη + κ)))−1)2 + 64π(2α − 4xβ − 6x2η

− 4κ + 8xακ − 12x2βκ + (s(α − x(2β
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+ 3xη))(−2α + x(6β + 10xη − κ) + x2(α

− xβ)κ))(1 + x(−α + x(β + xη)))−2

+ (256π2w(α − x(2β + 3xη)))

× ((1 + x(−α + x(β + xη)))2

(2α + x2(−α + xβ)κ + x(−6β − 10xη

+ κ)))−1 + (s(20xη − κ + 2xακ

+ β(6 − 3x2κ)))

× (1 + x(−α + x(β + xη)))−1 − (256π2w(κ

+ 3β(−2+x2κ)−2x(10η+ακ)))((1+x(−α

+ x(β + xη)))(2α + x2(−α + xβ)κ

+ x(−6β − 10xη + κ))2)−1))), (25d)

�III = ptIII − prIII , (25e)

where for simplicity we have set

G0(x) =
∫ 10

4
(2x(α − x(β + xη)) − 4x(1 − xα

+ x2β)κ + (s(−2α + x(6β + 10xη − κ)

+ (x2(α − xβ)κ))(1 + x(−α + x(β

+ xη)))−1 + (256π2w)((1 + x(−α

+ x(β + xη)))−1(2α + x2(−α + xβ)κ

+x(−6β − 10xη+ κ))))2(4096π2)−1dx .

The mass of the stellar sphere in the envelope region is
given in the form

εIII(r) = 4π

∫ 10

4
r2ρIIIdr , r2 = x

εIII =
∫ 10

4
[x(−2α + x(6β + 10xη − κ)

+ x2(α − x(β + xη)))κ][8x1/2]−1dx

= 1

315
κ (420α − 8(558β + 2360η

− 63κ) − 25
√

10(21α − 828β

− 8000η + 63κ)) . (26)

4. Matching of the layers

The matching of the radial pressure (pr ) and gravita-
tional potentials (e−2λ, e−2ν) at the interfaces are done
to ensure continuity of the physical variables utilising
the Darmois–Israel junction conditions. This is pre-
sented as follows:

(a) Continuity of region I–region II interface at r =
RI:

This is given by

e−2λI(RI) = e−2λII(RI), (27a)

e2νI(RI) = e2νI I (RI), (27b)

prI(RI) = prII(RI). (27c)

It follows that

μρ(RI)
1+1/n = dρ(RI) − b. (28)

(b) Continuity of region II–region III interface at r =
RII:

This is given in the form

e−2λII(RII) = e−2λIII(RII), (29a)

e2νII(RII) = e2νIII(RII), (29b)

prII(RII) = prIII(RII). (29c)

It follows that

dρ(RI) − b = sρ(RII) − w

ρ(RII)
. (30)

(c) Continuity of region III–boundary interface:
The interior line element (1) is matched to the

Schwarzschild exterior line element (2) at the surface
boundary r = RIII.

ds2|III = −
(

1 − 2ε

RIII
+ q2

R2
III

)
dt2

+
(

1 − 2ε

RIII
+ q2

R2
III

)−1

dr2

+ r2(dθ2 + sin2 θdφ2). (31)

The continuity of e−2λ and e−2ν via the surface is called
the first fundamental form of the Dormois–Israel junc-
tion condition [ds2]� = 0, producing

e2λIII(RIII) =
(

1 − 2ε

RIII
+ q2

R2
III

)−1

, (32a)

e2νIII(RIII) =
(

1 − 2ε

RIII
+ q2

R2
III

)
, (32b)

prIII(RIII) = 0. (32c)

The radial pressure vanishes at the boundary. Equa-
tion (32c) represents the second fundamental form
[Gδψ xψ ]� = 0 where xψ stands for unit vector fol-
lowing the radial direction. These give the conditions

(1 − αRIII + βR2
III + ηR3

III) = F1(x), (33a)

A2[exp(G0(x))]2 = F2(x), (33b)

sN1(x) − w(N1(x))
−1 = 0, (33c)

where for simplicity we have set

F1(x) = (1 + (2N0(x))(RIII)
−1 + (κx(1 − αRIII

+ βR2
III + ηR3

III))(R
3
III)

−1)−1,
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F2(x) = (1 + (2N0(x))(RIII)
−1 + (κx(1 − αRIII

+ βR2
III + ηR3

III))(R
3
III)

−1),

N0(x) = (−x2(−15α(−4 + x2κ) − 2x(60β − 75xη

+ 10κ + 6x2β + 5x3ηκ)))(240)−1,

N1(x) = [−2α + x(6β + 10xη − κ) + x2(α − x(β

+ xη))κ][16π ]−1.

We observe from systems (27)–(33) that there are suf-
ficient number of free parameters α, β, μ, κ , η, ε, b, d,
n, q, s, w, A, RI, RII, RIII, yielding an undetermined
number of equations. This indicates that the matching
conditions have a real solution.

5. Conditions for a well-behaved model

The interior matter variables and other physical features
should meet the following physical conditions:

(i) The energy density, radial and tangential pressures
should be non-negative, continuous, regular and
finite throughout the interior.

(ii) The metric functions e2λ and e2ν should be positive
and continuous.

(iii) The radial sound speed should be less than the
speed of light so as to satisfy the causality crite-

rion
dpr
dρ

< 1. In our model, these criteria in each

region are given by

νI = (μ(1 + n)(16π)−1/n(−2α + x(6β

+ 10xη − κ) + x2(α − x(β

+ xη))κ)1/n)/n, (34a)

νII = d, (34b)

νIII = s + (256π2w)(−2α + x(6β

+ 10xη − κ) + x2(α − x(β

+ xη))κ)−2. (34c)

(iv) The energy conditions should be continuous, greater
or equal to zero to satisfy the strong energy con-
dition (SEC), the weak energy condition (WEC)
and the null energy condition (NEC), i.e., SEC:
ρ− pr−2pt ≥ 0, WEC: ρ−3pt ≥ 0, ρ−3pr ≥ 0,
NEC: ρ − pr ≥ 0, ρ − pt ≥ 0.

(v) The stellar model should satisfy the stability con-
dition

� = ρ + pr
pr

dpr
dρ

≥ 4

3
.

In our model, the condition in each layer is given
by

�I = ((1 + n)(1 + μ(16π)−1/n(−2α

+ x(6β + 10xη − κ) + x2(α

− x(β + xη))κ)1/n))/n, (35)

�II = 1 + d − (16bπ)(16bπ + 2d(α

− 3xβ − 5x2η) + dx(1 + x(−α

+ x(β + xη)))κ)−1, (36)

�III = ((s + (256π2w)(−2α + x(6β

+ 10xη − κ) + x2(α − x(β

+ xη))κ)−2)(−256π2w + (1 + s)

× (−2α + x(6β + 10xη − κ) + x2(α

− x(β + xη))κ)2))(16π(−2α + x(6β

+ 10xη − κ) + x2(α − x(β + xη))κ)

× (−((16πw)(−2α + x(6β + 10xη

− κ) + x2(α − x(β + xη))κ)−1)

+ (s(−2α + x(6β + 10xη − κ)

+ x2(α − x(β + xη))κ))

× (16π)−1))−1. (37)

(vi) It has been pointed out by researchers that the sur-
face red-shift of the stellar sphere must not exceed
5.211 for anisotropic fluids in general relativity
(Ivanov [52,53]; Baraco and Hamity [54]). The for-
mula for the surface red-shift is written as

zs = 1√
1 − 2ε(r)

r

− 1, (38)

where ε(x) defines the total mass. In our model we
obtain the red-shift as

zs = −1 + (1 − (8c1π)x−1 + 1/30π2x(60α

− 30x(4β + 5xη) + x(20 + x(−15α

+ 2x(6β + 5xη)))κ))−1/2. (39)

(vii) The compactification factor for the stellar object
has been discussed by Jasim et al [4,56]. This factor
in general relativity is determined by the mass-
radius ratio given in the form

�(r) = 2ε(r)

r
.

In our study, we obtain

�(x) = (8c1π)x−1+1/30π2x(30x(4β+5xη)

− 2x(10 + 6x2β + 5x3η)κ

+ 15α(−4 + x2κ)). (40)

(viii) Study of the interior equilibrium forces is
examined by utilising the Tolman– Oppenheimer–
Volkoff equation (TOV). For an electrically charged
object, we infer four interior forces: gravitational
force (Fg), anisotropic force (Fa), hydrostatic force
(Fh) and electromagnetic force (Fe). The resultant
of the equilibrium forces must be zero: Fg + Fa +
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Figure 1. Energy density vs. radial distance r .

Fh+Fe = 0. This equation is satisfied in the model
of Jape et al [13], Lighuda et al [15], Mathias et
al [18], Maurya and Ortiz [55] and Jasim et al [56].
The TOV equation is presented in the form

0 = − ν′

2
(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr )

+ σ Ee−2λ. (41)

In our study, we find that

Fg = − ν′

2
(ρ + pr ), (42)

Fh = − dpr
dr

= (1 + 1/n)(16π)(−1−1/n)(6β + 20xη

− κ + x2(−β − 2xη)κ + 2x(α − x(β

+ xη))κ)(−2α + x(6β + 10xη − κ)

+ x2(α − x(β + xη))κ)(1/n)μ, (43)

Fa = 2

r
(pt − pr ) = 2

r
�, (44)

Fe = σ Ee−2λ

= 2(2 − 3xα + 4x2β + 5x3η)(1

+ x(−α + x(β + xη)))2√xκ. (45)

6. Discussion

In this section, we discuss the behaviour of the geometri-
cal variables and the matter variables, and other physical
conditions. We use the Python programming language.
In our model we plot graphs for the energy density
(figure 1), the radial pressure (figure 2), the tangential
pressure (figure 3), the gravitational potentials (figure 4),

Figure 2. Radial pressure vs. radial distance r .

mass (figure 5), the energy conditions (figures 6–10), the
measure of anisotropy (figure 11), adiabatic index (fig-
ure 12), radial sound speed (figure 13), charge density
(figure 14), electric field (figure 15), mass–radius ratio
(figure 16), surface red-shift (figure 17) and equilibrium
forces (figure 18). The graphs were generated by utilis-
ing the following values of the constants: A = 0.05, b =
0.0005, d = ±12.4, n = 1, s = 0.00042, w =
±655, α = ±183, β = ±0.5, η = 3 × 10−6, μ = 1.8
and κ = ±5 × 10−5. All graphs for the radial coordi-
nate r use the domain of radius r , as in Pant et al [3] and
Lighuda et al [15,49].

We observe in figures 1 and 2 that the energy density
and the radial pressure are continuous, and monoton-
ically decreasing functions away from the centre. In
figure 3, the tangential pressure shows an increasing
behaviour from the centre towards the surface. Figure 4
indicates that the metric function e−2λ is an increasing
function and e2ν is a decreasing function. It is interesting
to see that the metric functions merge at the boundary of
the star. We observe from figure 5 that the mass function
is a monotonically increasing function with the radial
distance r . Figures 6–10 show that the energy condi-
tions are positive and monotonically increasing towards
the surface. The measure of anisotropy in figure 11
is a continuous and positive increasing function. This
implies that the tangential pressure may be greater than
the radial pressure and the star experiences repulsive
force. We observe in figure 12 that the adiabatic index
obtained satisfies stability criteria in the interior of the
stellar sphere (� ≥ 4/3). In our study, the minimum
adiabatic index at x = 0 is �0 = 6.7245, verifying
that the object is stable from gravitational instabili-
ties. Figure 13 indicates that the speed of sound is less
than the speed of light. It is found to be in the range
0.00188 ≤ ν ≤ 0.55418. Figures 14 and 15 illustrate
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Figure 3. Tangential pressure vs. radial distance r .

Figure 4. Gravitational potential vs. radial distance r .

that the charge density and electric field are monotoni-
cally increasing functions. In figure 16, we demonstrate
the behaviour of the mass–radius ratio as an increasing
function, reaching the maximum value �(x) = 0.251
which is consistent for an utradense compact star. In fig-
ure 17 we see that the surface red-shift is a continuous,
monotonically increasing function with radial coordi-
nate (r ), reaching the maximum point at zs = 1.97856
which is consistent with the astrophysical objects. In
figure 18, we observe that all equilibrium forces are bal-
anced in the stellar interior.

In our model we presented the geometrical features
for the gravitational potentials and matter variables. We
are pleased to note that the profile of the features in our
model are also similar to the works of Pant et al [3,42],
Jasim et al [4,56], Mardan et al [5], Das et al [6], Jape et
al [13], Lighuda et al [15,49], Sunzu and Danford [17],
Mathias et al [18], Maharaj et al [21], Mafa Takisa and

Figure 5. Mass vs. radial distance r .

Figure 6. Energy conditions vs. radial distance r .

Figure 7. Energy conditions vs. radial distance r .
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Figure 8. Energy conditions vs. radial distance r .

Figure 9. Energy conditions vs. radial distance r .

Figure 10. Energy conditions vs. radial distance r .

Figure 11. Measure of anisotropy vs. radial distance r .

Figure 12. Adiabatic index vs. radial distance r .

Figure 13. Radial sound speed vs. radial distance r .
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Figure 14. Charge density vs. radial distance r .

Figure 15. Electric field vs. radial distance r .

Figure 16. Mass–radius ratio vs. radial distance r .

Figure 17. Surface red-shift vs. radial distance r .

Figure 18. Equilibrium forces vs. radial distance r .

Maharaj [27], Bhar et al [35], Gedela et al [43], Bisht et
al [48], Thirukkanesh and Ragel [57], Ngubelanga and
Maharaj [58], Murad [59], Maharaj and Mafa Takisa
[60], Maurya et al [61], and Fulara and Sah [62].

7. Conclusion

In this article, we have developed a new class of exact
solutions utilising the Einstein–Maxwell field equa-
tions. We constructed a stellar model comprising three
interior layers: the core layer with polytropic EoS, the
intermediate layer which satisfies a linear EoS and the
envelope layer described by a Chaplygin EoS. In our
study, we have chosen the electric field and one of the
metric functions. Our model comprises a new feature,
a third layer with gaseous matter which is absent in
Mardan et al [5]. The physical analysis demonstrates
that the metric functions, matter variables and other
physical conditions are relevant and compatible with
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the study of astrophysical objects. The physical dis-
cussion reveals that our model is well behaved. The
results found in this paper are required to investigate the
physical structures, features and properties of charged
anisotropic superdense stellar objects with three layers
in general relativity. For future work, the approach of
three interior layers can be extended to include layers
with different equations of state for each layer to obtain
a deeper understanding of gravitational interactions for
a star with composite matter distributions.
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