
Pramana – J. Phys.          (2022) 96:221 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-022-02470-4

Energy exchange in the dissipative time-dependent harmonic
oscillator: Physical interpretation of the Ermakov invariant

M FERNÁNDEZ GUASTI

Lab. de Óptica Cuántica, Depto. de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ap. postal 55-534,
09340 Mexico , CDMX, Mexico
E-mail: mfg@xanum.uam.mx

MS received 25 January 2022; revised 5 July 2022; accepted 20 July 2022

Abstract. The energy of a mechanical system as well as other invariants can be obtained using a complementary
variable formulation. This approach is extended here to systems with a dissipative force. The damping coefficient
depends linearly on the velocity, but is allowed to have an arbitrary time dependence. An invariant Q00 is obtained
in terms of linearly independent solutions. A semipositive definite version of this quantity is the Ermakov invariant.
This scenario including damping, allow us to give a physical meaning to a closely related quantity Eex

ω = 1
2mq00,

which is the energy exchanged between the kinetic and potential energies per unit frequency, or Eex
t = 1

2κq00 which
is the energy exchange per period. The q00 exchange energy is positive under light damping. Under critical or heavy
damping, when no oscillations occur, q00 is either zero or negative. Thus, q00 ≥ 0 is a measure of the back and forth
energy exchange. This periodic energy transfer is compared with the usual oscillator energy of the damped system.
To this end, the kinetic energy is split into conservative and dissipative terms. The energy ripples superimposed
in the exponential decay are described by a dissipative modulation term. In the vein of Ermakov’s formalism,
the amplitude and phase nonlinear differential equations are derived for a time-dependent damped system. The
complementary variables and Ermakov formalisms are then compared.
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1. Introduction

The amplitude and phase time-dependent functions of
a vibrating object cannot be arbitrarily set: A real
potential function leading to an oscillation of the form
ρ (t) cos(ϕ (t)) is physically attainable, if and only if the
product ρ2 (t) ϕ̇ (t) is constant [1]. This constant is the
orthogonal functions invariant [2], closely related to a
family of exact invariants. From this group, the Ermakov
invariant is found to be quite useful in various classi-
cal and quantum mechanical problems [3–7]. It is also
encountered in electromagnetic propagation in strati-
fied media and photonic crystals [8–11]. The Ermakov
invariant has been associated with the corresponding
Noether and Lie symmetries [12]. A historical account
is given in [13]. The so-called ‘exact’ invariants, such as,
the Ermakov invariant [5,14] have led to a renewed inter-
est in mechanical systems with time-varying parameters

[15]. In contrast with the adiabatic theory, where adia-
batic invariants only hold in the slowly varying limit,
exact invariants are constant even if the variation of the
time-dependent parameters is arbitrarily fast compared
to the characteristic period of the system. A convinc-
ing physical interpretation of the Ermakov invariant has
not been put forward. If an auxiliary orthogonal axis
is added to the one-dimensional motion, the invariant
can be viewed as angular momentum conservation in a
higher-dimensional space [16]. If the coordinate vari-
able of the oscillator x is transformed x → ρy, where ρ

is the amplitude function, the energy of the y oscillator
becomes the Ermakov–Lewis invariant [17,18]. These
possible interpretations are very interesting and each
has its own merits. However, the former interpretation
requires an auxiliary dimension while the latter shifts
the problem to understand the physical nature of the
transformation.
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The formulation of complementary variable provides
a set of invariants for non-autonomous second-order
differential equations. These invariants are bilinear
combinations of the complementary variables or their
derivatives. Similar invariants have been obtained in
several ways, depending on the context and the math-
ematical tools employed [19–24]. The invariants are
labelled here as Qmn , where the subindices indicate the
order of the derivative in each complementary variable.
For example, Q10 implies that v is a first-order deriva-
tive of the ODE solution and x a zeroth-order derivative
solution. If a former invariant is evaluated in different
circumstances when it is no longer constant, the variable
is written in lower case Latin letter, i.e. q10. The Q10
invariant has been shown to represent the energy con-
tent of a system including the energy stored in the field
even if the force acting on the system is time-dependent
[23]. For a linear force, in the absence of a time-varying
field, 1

2mQ10 is identical to the familiar sum of kinetic
and potential energies. The zeroth-order Q00 invariant
is equal to the Wronskian of two linearly independent
solutions. In a coordinate-amplitude representation, the
square of Q00 is proportional to the Ermakov–Lewis
invariant [25]. A simple derivation of this relationship
is presented in §2.

In this communication, the zeroth- and first-order
invariants are obtained for an oscillator with friction.
Inclusion of damping provides the appropriate scenario
to elucidate the nature of the invariants. The physical
meaning of the Q00 zeroth-order invariant, according to
the present results and interpretation, is a measure of the
periodic energy exchange between the two complemen-
tary forms of energy. The first-order Q10 invariant will
be shown to be the total energy of the system including
the dissipation term. This approach gives an alternative
route to the evaluation of the oscillator’s energy loss.
The structure of the manuscript is the following: In §2,
the invariants in the undamped case are recalled. In §3,
the Q00 and Q10 invariants are assessed with a damp-
ing coefficient linear in the velocity but with arbitrary
time dependence. The differences of evaluating the Q00
invariant in the real or complex domain are discussed. In
§4, the invariants are evaluated using the analytic solu-
tions of the oscillator with constant damping. The origin
of the energy ripples superimposed on the exponential
decay is addressed. In §5, the amplitude and phase non-
linear differential equations with damping are derived.
The results are discussed in the last section.

2. Time-dependent harmonic oscillator invariants

The time-dependent harmonic oscillator equation is
a non-autonomous second-order ordinary differential

equation

ẍ + �2x = 0, (1)

where �2 (t) is the time-dependent parameter and the
overdots represent derivatives with respect to time. The
zeroth-order invariant to this equation is [26]

Q00 = (x2 ẋ1 − ẋ2x1) , (2a)

where x1 and x2 are linearly-independent solutions to
(1). The above expression may be written as

Q00 = x2
2

d

dt

(
x1

x2

)
= −x2

1
d

dt

(
x2

x1

)
. (2b)

The linear independence of x1 and x2, in order to have a
non-vanishing invariant, is clear from these expressions.
By convention, the linearly independent solutions are
chosen so that Q00 is positive in the undamped case, in
particular, for positive constants a, ω, x1 = a sin (ωt),
x2 = a cos (ωt). Recall that these solutions are not lin-
early independent in the complex domain, since x1 =
iae−iωt = i x2, for x2 = ae−iωt . If the differential equa-
tion is solved in the complex domain ψ ∈ C, the Q00
invariant can be defined in terms of complex conjugate
solutions

QC

00 = 1

2i
(ψψ̇∗ − ψ∗ψ̇) = ρ2ϕ̇ = ρ2ω. (2c)

This result is of course equally obtained if x1, x2 are
requested to be complex conjugates in (2a). The last
equalities in (2c) are written in terms of the amplitude
ρ and phase ϕ, that follow from the polar representation
of ψ = ρe−iϕ; the angular frequency is defined as the
derivative of the phase, ϕ̇ ≡ ω (t). From (2c), the phase
can be obtained from the amplitude function, since

ϕ = Q00

∫
dt

ρ2 .

If and only if �2 is constant, ω = �, as will be clear from
the frequency differential equation discussed in §5. The
Schrödinger convention is followed with the negative
sign in the exponential shown explicitly. If x1 and x2
are expressible in terms of trigonometric functions with
real arguments, i.e. x1 �→ ρ sin ϕ and x2 �→ ρ cos ϕ,

the Q00 invariant given by (2a) is also equal to ρ2ϕ̇.

The Ermakov–Lewis invariant is usually written as

IErmakov = 1

2

(
h
x2

ρ2 + (x ρ̇ − ρ ẋ)2
)

with h usually set equal to one [16,27]. This is a ‘mixed’
representation in terms of position and amplitude vari-
ables [25]. It is readily obtained from (2a), writing the
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solution x1, in terms of x2 (or vice versa) and the ampli-
tude ρ from x2

1 + x2
2 = ρ2. The invariant is then

Q00 = ρ√
ρ2 − x2

2

(x2ρ̇ − ρ ẋ2) .

Upon multiplication by the root and squaring of the
resulting equation, the usual form of the Ermakov–
Lewis invariant is obtained,

IErmakov = 1

2
Q2

00 = 1

2

(
Q2

00
x2

ρ2 + (x ρ̇ − ρ ẋ)2
)

, (3)

where ρ satisfies the amplitude equation ρ̈ + �2ρ =
Q2

00ρ
−3. This invariant is thus a somewhat disguised

form of the squared Wronskian of the functions x1, x2.
The E = 1

2mQ10 energy invariant has been shown to be
[23],

E = Ek +Ep+Ed f = 1

2
mẋ2 + 1

2
κx2 − 1

2

∫
κ̇x2dt, (4)

where the first two terms are readily identified as kinetic
Ek and potential Ep energies, whereas the last term Ed f ,
is the dynamic field energy

Ed f = −1

2

∫
κ̇x2dt. (5)

Ed f represents the energy that the object gains (or looses)
and is equal to the energy that the field looses (or gains)
due to a change in the field’s coupling coefficient κ ,
where �2 = κ/m. If the restitutive force coefficient κ

is constant, this term vanishes and the energy is simply
the sum of kinetic plus potential energies E = Eosc =
Ek + Ep.

3. Damped harmonic oscillator

Damping is included via a first-order derivative term,

d2x

dt2 + γ
dx

dt
+ �2x = 0, (6)

where γ is the damping coefficient and �2 is the resti-
tutive force over mass coefficient. Both coefficients are
allowed to be time-dependent. The damping is linear
with respect to the velocity.

3.1 Exchange energy

Following the orthogonal functions procedure [23],
allow for two linearly independent solutions x1, x2.
These functions are now solutions to the harmonic oscil-
lator equation with damping (6) instead of (1). An
equivalent formulation accounts for absorption in wave
propagation [8]. The algorithm involves taking product

of x2 times eq. (6) evaluated for x1. The equation is
also evaluated for x = x2 times x1 and the difference
between the two expressions is appraised as

x2
d2x1

dt2 − x1
d2x2

dt2 + γ

(
x2

dx1

dt
− x1

dx2

dt

)
= 0. (7)

The difference involving the second time derivatives
may be written as

d

dt

(
x2

dx1

dt
− x1

dx2

dt

)
.

Recalling the form of the invariant for the undamped
oscillator system (2a), introduce the exchange energy
bracket

q00 (t) ≡ �x2, x1	 = x2
dx1

dt
− x1

dx2

dt
. (8a)

The Wronskian is described in a broader mathemat-
ical context as an operator bracket � f, g	 between two
functions f, g in Appendix A. Equation (7) is then

d

dt
q00 (t) + γ q00 (t) = 0,

where q00 (t) is clearly no longer an invariant in this
damped case. A lower case Latin letter is used for non-
constant quantities. From the solution to this equation

q00 (t) = Q(abs)
00 e− ∫

γ dt ,

the invariant Q00 when damping is present, is obtained
as

Q00 = q00 (t) e
∫

γ dt =
(
x2

dx1

dt
− x1

dx2

dt

)
e
∫

γ dt .

(8b)

The capital Latin letter Q is used for invariant quantities.
We refer to Eex

ω as the exchange energy and Iex
ω as the

exchange energy invariant in the presence of damping

Eex
ω ≡ 1

2
mq00, Iex

ω ≡ 1

2
mQ00, (8c)

where the scaling by 1
2m is introduced to abide with the

energies presented in the next subsection. The 1
2m factor

is assumed whenever we refer toq00 or Q00 as the energy
exchange. In the complex domain, linearly independent
solutions are given by complex conjugate solutions. We
use ψ instead of x as the coordinate variable to stress the
complex nature of the solution. The polar representation
of ψ is ψ = ρ e−iϕ , where ρ, ϕ ∈ R, are the amplitude
and phase variables respectively. From the difference
between

ψ
d2ψ∗

dt2 + γψ
dψ∗

dt
+ �2ψψ∗ = 0
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and

ψ∗ d2ψ

dt2 + γψ∗ dψ

dt
+ �2ψ∗ψ = 0,

the exchange energy equation with damping in the com-
plex formalism is

d

dt
qC00 + γ qC00 = 0, (9a)

where

qC00 ≡ 1

2i
(ψψ̇∗ − ψ∗ψ̇) = ρ2ϕ̇ = ρ2ω. (9b)

The exchange energy invariant derived from the com-
plex solutions is

QC
00 = qC00e

∫
γ dt = ρ2ϕ̇ e

∫
γ dt . (9c)

Although the real and complex formalisms are quite
similar and give the same results in an ample domain
(ψ ∈ C\R), this is not always the case. Notice that if ψ

is real, qC00 is zero. Nonetheless, q00 evaluated from the
real orthogonal functions x1, x2, does not necessarily
vanish. This will be the case under heavy damping, as
we shall see.

3.2 Energy and Q10 invariant

Evaluate the derivative of (6),

d2v

dt2 + γ
dv

dt
+ �2v + dγ

dt
v + d�2

dt
x = 0, (10)

where v = ẋ represents the velocity. Following the
second-order ODEs invariant algorithm [23], take the
product of (6) with v,

v
d2x

dt2 + γ v
dx

dt
+ �2vx = 0 (11a)

and the product of (10) with x ,

x
d2v

dt2 + γ x
dv

dt
+ �2xv + dγ

dt
xv + d�2

dt
x2 = 0. (11b)

The difference of eqs (11a) minus (11b) is

d

dt

(
v

dx

dt
− x

dv

dt

)
+ γ

(
v

dx

dt
− x

dv

dt

)
− dγ

dt
xv

−d�2

dt
x2 = 0. (12)

The terms in brackets can be seen as the w-bracket of
the position and velocity variables (see Appendix A).
The function q10 is then defined as

q10 ≡ �v, x	 = v
dx

dt
− x

dv

dt
= v2 +�2x2 +γ xv. (13)

The invariant (4) suggests that q10 is the quantity that
should be associated with the oscillator’s energy in the
presence of damping. Multiplying (12) by e

∫
γ dt , we get

d

dt

[
(v2 + �2x2 + γ xv)e

∫
γ dt]

−
(

dγ

dt
xv + d�2

dt
x2

)
e
∫

γ dt = 0.

The Q10 invariant is then

Q10 = (v2 + �2x2 + γ xv)e
∫

γ dt

−
∫ (

dγ

dt
xv + d�2

dt
x2

)
e
∫

γ dtdt.

Include a 1
2m factor to comply with the usual kinetic

Ek and potential Ep energy definitions. The total energy
of the system, including the energy dissipated and/or
transferred by the dissipative and restitutive forces is

E = 1

2
mQ10

=
(

1

2
mv2

︸ ︷︷ ︸
Ek

+ 1

2
m�2x2

︸ ︷︷ ︸
Ep

+ 1

2
mγ xv︸ ︷︷ ︸
Eγ

)
e
∫

γ dt

−1

2
m

∫ (
dγ

dt
xv + d�2

dt
x2

)
e
∫

γ dtdt
︸ ︷︷ ︸

Ed f

. (14a)

The third term represents the dissipative modulation
energy

Eγ = 1

2
mγ xv. (14b)

This is a dissipative contribution to the total energy that
vanishes if the damping constant γ is zero. It is pro-
portional to the frictional force Ffric = −mγ ẋ times
distance, since Eγ = 1

2 x (mγ ẋ) = −1
2 x Ffric, which

is consistent with a dissipative force picture. The term
− ∫

γ̇ xv exp(
∫

γ dt)dt in (14a) can be associated with
the dissipative modulation or with the dynamic field
energy. It is a dissipation term since it is zero if γ is con-
stant or zero. However, it is also a dynamic field property
because it is proportional to the time-dependent absorp-
tion field. The last term

Ed f = −
∫

d�2

dt
x2dt = −1

2

∫
κ̇x2dt,

as mentioned earlier, represents the energy that the
time-varying restoring force transfers to or from the
object. The time integration exhibits that the dynamic
field terms Ed f have memory of the evolution of the
oscillator-field system.
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Table 1. Energies involved in the description of the damped harmonic oscillator with mass m and frequency ωd =√
�2 − γ 2/4. The energy of the system is the total energy including dissipation. Eex

t and Eex
ω measure the energy that is

transferred back and forth between the kinetic and potential energies.

Label Description Relationships Complementary
invariants/variables

E Energy of the system 1
2mQ10

Iex
ω Energy of the system per unit frequency = E

ωd

1
2mQ00

IErmakov Semi-positive definite invariant 1
2 Q

2
00

Ek Kinetic energy Eexchange
k + Edissipated

kEp Potential energy
Eγ Dissipative modulation energy
Ed f Dynamic field energy Time-dependent fields
Eosc Oscillator energy Ek + Ep

Eoscγ Oscillator energy + dissipative modulation Ek + Ep + Eγ
1
2mq10

Stored energy (Ep + Ek)exchange − mρ2

2

γ 2

4
Eex
t Exchange energy per period (Ep + Ek)exchange/τd

1
2κq00

Eex
ω Exchange energy Eoscγ per frequency Eoscγ /ωd

1
2mq00

The total energy E of the system, from (14a) is

E = (Ek + Ep + Eγ ) exp

(∫
γ dt

)
+ Ed f . (15)

If the energy of the oscillator is considered to be equal
to 1

2mq10, from (13),

Eoscγ ≡ 1

2
mq10 = Ek + Ep + Eγ = (E − Ed f )e− ∫

γ dt .

(16)

TheEγ dissipative modulation energy is then included as
part of the oscillator energy Eoscγ , consistent with (13).
This choice is quite interesting because, as we shall see
in §4.2, it allows for a smooth exponential decay without
performing any averaging. However, the energy of the
oscillator is usually considered to be only the sum of
kinetic plus potential energiesEosc = Ek+Ep. To discern
between these two possibilities, they have been labelled
Eoscγ and Eosc. Various quantities defined in this paper
are abridged in table 1. The oscillator energy is then
equal to

Eosc = (E − Ed f
)

exp

(
−

∫
γ dt

)
− Eγ ,

which, in terms of position and velocity, is

Eosc = 1

2
m

(
Q10 +

∫
γ̇ xve

∫
γ dtdt

)
e− ∫

γ dt

−1

2
mγ x ẋ . (17)

This expression involves three terms: (1) A smooth
exponential decay E exp(− ∫

γ dt), (2) a temporally

modulated dissipation −Ed f exp(− ∫
γ dt) and (3) a dis-

sipative modulation term Eγ , associated with the usual
exponential decay but modulated at twice the damped
frequency.

The present approach has allowed us to write the
energy of the oscillator Eosc in two ways:

(i) the sum of the kinetic and potential energies,
(ii) the total energy of the system times an exponential

decay minus the dissipated energy Eγ , as given by eq.
(17).

4. Constant damping coefficient, time-independent
parameters

To allow for a tractable analytic solution, consider the
damping coefficient and the restitutive force parameter
to be time-independent. The complex solution to the
oscillator equation with constant damping is

ψ = ρ0e
(
− 1

2 γ t
)

exp

(
−i

(√
�2 − 1

4
γ 2 t + φ0

))
,

(18a)

where the multiplicative non-imaginary part is the
amplitude variable and the argument of the imaginary
exponential excluding the minus sign is the phase,

ρ = ρ0 exp
(
−1

2
γ t

)
, ϕ =

√
�2 − 1

4
γ 2 t + φ0,

ωd ≡ ϕ̇ =
√

�2 − 1

4
γ 2. (18b)
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Figure 1. Energy exchange invariant Q00 as a function of
the damping coefficient, given by (19b) if γ ≤ 2� and (20)
in red or (21) in blue, if γ > 2�.

Due to the amplitude and phase indeterminacy for
real fields [28], these variables should be defined in the
complex domain, where they are unequivocally charac-
terised.

4.1 Exchange energy with constant damping

The exchange energy function under light damping is
the same in the real and complex formalisms (8a), (9a),

q00 = ρ2
0 ωd exp (−γ t) , γ ≤ 2�. (19a)

The corresponding exchange energy invariant is

Q00 = ρ2ϕ̇ eγ t = ρ2
0

√
�2 − 1

4
γ 2, γ ≤ 2�. (19b)

This invariant is clearly constant in time for a given
damping value γ . As a function of γ for constant ampli-
tude ρ0, it decreases from ρ2

0� to zero as depicted in
figure 1. The exchange energy q00 has an analogous
behaviour but exhibits an exponential time decay.

Under heavy damping, γ 2 > 4�2, the phase is zero
and the solution only involves the amplitude function,

ψ = ρ0 exp

((
−1

2
γ ∓

√
1

4
γ 2 − �2

)
t

)
︸ ︷︷ ︸

amplitude ρ

e

i 0 t︸︷︷︸
phase ϕ.

The invariant QC

00 and the energy exchange qC00, since
ϕ̇ = 0, are therefore zero,

qC00 = ρ2ϕ̇ = 0, QC

00 = ρ2ϕ̇ eγ t = 0, if γ > 2�.

(20)

This result suggests that q00 and Q00 are measures of the
energy being periodically exchanged between the two
energy forms.

Under heavy damping x1 and x2 ∈ R are no longer
expressible in terms of trigonometric functions with real
arguments. Q00 then differs from QC

00 = 0. The linearly

independent real solutions for γ > 2� are

x1,2 = (ρ0)1,2 exp

[(
−1

2
γ ∓

√
1

4
γ 2 − �2

)
t

]
,

where ρ01 and the upper negative sign correspond to x1,
whereas ρ02 and the lower sign to x2. qR00 (t) evaluated
from these linearly independent real solutions for γ >

2� is

qR00 = x2
2

d

dt

(
x1

x2

)
=−2ρ01 ρ02

√
1

4
γ 2 − �2 exp (−γ t)

and

QR
00 = q00 (t) eγ t =−2ρ01 ρ02

√
1

4
γ 2 − �2, γ > 2�.

(21)

Abiding to the convention that Q00 is positive for
the undamped oscillator, if the Q00 invariant is zero
(QC

00) or negative (QR

00) in the damped case, no energy
is exchanged back and forth between the kinetic and
potential energies. It is advantageous to use Q00 rather
than the Ermakov invariant given by (3), that is propor-
tional to the square of this quantity, because Q00 ≤ 0
for the damped case has a clear-cut meaning regarding
the lack of a periodic energy exchange.

Let us delve further into the dynamics according to
this interpretation. Under light damping, when oscil-
lations take place, the kinetic energy transforms into
potential energy as the motion moves away from the
equilibrium position. And vice versa, from potential to
kinetic energy as the object moves towards the equi-
librium position. Under heavy damping, the energy no
longer flows back and forth between the potential and
kinetic energies. These assertions are illustrated in fig-
ure 2.

When the damping coefficient is ten times less than
the resonant frequency, the kinetic and potential ener-
gies are almost out of phase (they are exactly out of
phase if there is no damping). If the damping coeffi-
cient is larger, for example, when γ = �, the kinetic
and potential energies are no longer out of phase as
seen in the lower middle plot in figure 2. The kinetic
energy is largely being dissipated onto the damper and
only a small amount is returned to the potential. Beyond
γ = 2�, there is no longer any exchange in both
directions between the kinetic and potential energies.
The potential energy is slowly transformed into kinetic
energy and this in turn is dissipated. No kinetic energy
is transformed back into potential energy once the max-
imum amplitude is reached. This case is illustrated in
figure 2 for γ = 3�. As a consequence, the kinetic and
potential energy curves never cross in this regime if the
initial velocity is zero (maximum amplitude at initial
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Figure 2. Energy exchange: Perturbation in the upper row, kinetic (green curve) and potential (magenta curve) energies in
the lower row for different damping coefficients. From left to right columns: γ = �/10, γ = � and γ = 3�.

time). Therefore, if no energy is transferred to and from
the kinetic and potential forms, the exchange energy q00
and its corresponding invariant Q00 are zero (for com-
plex solutions, eq. (20)) or negative (for real solutions,
eq. (21)).
q00 has units of the perturbation squared over time,

as seen from (8a). If the perturbation is a displacement,
the exchange energy (8c) is obtained by a 1

2m scaling.
For constant light damping, from (19a), the exchange
energy is,

Eex
ω = 1

2
mq00 = 1

2
mρ2

0 ωd exp (−γ t) , γ ≤ 2�.

(22)

In SI units,

[Eex
ω

] =
[

1

2
mq00

]
= [kg m2 s−1] = [J s] .

These units, together with the amplitude and phase
expression ρ2ϕ̇, are akin to angular momentum if the
amplitude is associated with a radial distance and the
phase with an angle in two-dimensional space if an
auxiliary axis is introduced. For these reasons, the angu-
lar momentum interpretation has been appealing [16].
However, we should recall that the motion is strictly
one-dimensional. In contrast, the exchange energy inter-
pretation given here does not invoke an auxiliary dimen-
sion. Furthermore, if the oscillatory motion is extended
to two or three spatial dimensions, the exchange energy
interpretation still holds.

4.2 Energy with constant damping

If the restitutive force and damping coefficient are time-
independent, from the Q10 energy invariant (14a),

E = (Ek+Ep+Eγ )eγ t = m

2
(v2+�2x2+γ xv)eγ t . (23)

This constant of motion has been obtained earlier
using other methods, such as canonical transformations

[29,30] and Lie groups, leaving the algebraic structure
unchanged [31]. In [31], this constant was interpreted
as the pseudoenergy. Nonetheless, a physical interpre-
tation as the initial energy of the system for certain
initial conditions (x = 0, ẋ = 0) has been recently put
forward in connection with the Bateman Hamiltonian
[32]. The present results show that E represents the total
energy of the system including the kinetic, potential and
dissipative energies for arbitrary initial conditions. The
inclusion of the Eγ term in (23), allows for γ xv �= 0 at
the initial or any later time. The oscillator energy (17)
can be written as

Eosc = Ee−γ t − Eγ = 1

2
mQ10e−γ t − 1

2
mγ xv. (24)

This is a significant result, because in the usual
description of the damped oscillator, the energy lost by
the system can only be obtained from the sum of the
kinetic and potential energies. Several results can be
readily obtained from (24). The average energy of the
oscillator for light damping is Eosc = 1

2mQ10e−γ t , since
x ẋ averages to zero. From the time derivative of (24),

dEosc

dt
= −mγ ẋ2,

in accordance with the usual monotonic decay [33, eq.
(3.10)].

4.3 Kinetic and potential energy exchange: Kinetic
energy splitting

It is possible to separate the energy of the oscillator into
a part that is being exchanged between the kinetic and
potential energies and another part that is dissipated. To
this end, consider the position real trigonometric solu-
tion in amplitude and phase variables,

x = ρ0 e− 1
2 γ t cos (ωd t + φ0) , (25a)
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where

ωd =
√

�2 − 1

4
γ 2.

The amplitude ρ0 and the initial phase φ0 are specified
as usual by the initial conditions. For example, at t = 0,
if the position is x0 and the velocity is zero,

φ0 = − arctan

(
γ

2ωd

)
, ρ0 = x0

�

ωd
(25b)

since

cos

(
arctan

( γ

2ωd

)) = ωd

�
.

The potential energy is

Ep = 1

2
κx2 = 1

2
mρ2

0 e−γ t�2 cos2 (ωd t + φ0) , (25c)

where κ = m�2. The velocity is

v = −ρ0e− γ
2 t

×
(γ

2
cos (ωd t + φ0) + ωd sin (ωd t + φ0)

)
. (25d)

From this velocity, it is straightforward to obtain the
kinetic energy,

Ek = m

2
ρ2

0e−γ t

×
(γ

2
cos (ωd t + φ0) + ωd sin (ωd t + φ0)

)2
.

(25e)

The problem is which part of the kinetic energy (25e) is
exchanged with the potential energy. The clue is given
by the form of the potential energy (25c). The corre-
sponding kinetic term must be equal to the potential
energy but temporally displaced π

2 out of phase. This
contribution comes from the second term squared in the
binomial (25e). The kinetic energy contributions can
then be separated as Ek = Eexchange

k + Edissipated
k ,

Ek = 1

2
mρ2

0e−γ t �2 sin2 (ωd t + φ0)︸ ︷︷ ︸
Eexchange
k

+1

4
mρ2

0e−γ tγ � sin (2ωd t + 2φ0 + γ0)︸ ︷︷ ︸
Edissipated
k

, (25f)

where the square velocity has been rewritten so that
the kinetic energy exchanged with the potential energy
Eexchange
k ↔ Ep, is separated from the rest. The phase

γ0 = arctan

(
γ

2ωd

)

arises from the grouping of

γ 2

4
cos (2ωd t + 2φ0) + 1

2
γωd sin (2ωd t + 2φ0)

in a single term, as shown in Appendix B. The remaining
Edissipated
k term in the kinetic energy accounts for the

non-conservative part that is lost, as we shall presently
confirm. The dissipative modulation energy is

Eγ = mγ

2
x ẋ = 1

2
mρ2

0 e−γ t

(
−γ 2

4︸ ︷︷ ︸
frequency downshift

− 1

2
γ � sin (2ωd t + 2φ0 + γ0)︸ ︷︷ ︸

dissipative modulation

)
,

(26)

where the trigonometric functions product

cos (ωd t + φ0)

×
(γ

2
cos (ωd t + φ0) + ωd sin (ωd t + φ0)

)

has been written in terms of the double angle. The last
term in (26) is identical to the remaining term in the
kinetic energy (25f), but with opposite sign,

Eγ = −1

2
mρ2

0 e−γ t γ
2

4
− Edissipated

k . (27)

Thus, the non-conservative loss of kinetic energy goes
into the dissipative modulation energy Edissipated

k → Eγ .
The total energy of the system E = eγ tEoscγ is

E = eγ t
(1

2
mρ2

0 e−γ t�2

︸ ︷︷ ︸
Ep+Eexchange

k

−1

2
mρ2

0 e−γ t γ
2

4︸ ︷︷ ︸
Edissipated
k +Eγ

)
, (28a)

where the first term on the right-hand side comes from
the sum of the kinetic energy that is being exchanged
with the potential energy. The second term comes from
the sum of the kinetic energy that is being dissipated
plus the dissipative modulation energy. In this latter
term, only the frequency downshift term of the dissi-
pative modulation energy Eγ survives. The energy of
the system from (28a), is then

E = 1

2
mρ2

0

(
�2 − γ 2

4

)
= 1

2
mρ2

0ω2
d . (28b)

The dependence on γ of the total energy, may be
somewhat surprising. If at the initial position and time
(x0, t0) all energy is potential,

E = Ep = 1

2
κx2

0 = 1

2
m�2x2

0 ,

and thus independent of the damping coefficient. How-
ever, this initial condition requires, from (25b), ρ0 =
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x0(�/ωd). Substitution of this amplitude in (28b) shows
that the total energy is indeed ωd independent. In ampli-
tude and phase variables, from the substitution of the
coordinate x → ρ cos ϕ and its derivative in the invari-
ant equation (23), the energy of the system is

E = 1

2
mQ10 = 1

2
mρ2ω2eγ t , (28c)

reproducing (28b) in a straightforward way. However,
the separation of the kinetic energy in conservative and
dissipative terms is concealed in the amplitude and phase
procedure. The ρ2ω2 dependence of the total energy is
preserved in the presence of light damping. The fre-
quency is downshifted from ω = � in the undamped
case to

ωd =
√

�2 − γ 2/4

under light damping. The exponential factor eγ t cancels
out the e−γ t decay coming from the square amplitude
in order to have a constant total energy. The oscillator
energy

Eoscγ = 1

2
mq10 = Ek + Ep + Eγ

has a smooth exponential decay. Separating the exchange
and dissipated kinetic parts,

Eoscγ = Eexchange
k + Ep + Edissipated

k + Eγ ,

the oscillator energy is

Eoscγ = Eexchange
k + Ep − 1

2
mρ2

0 e−γ t γ
2

4
. (28d)

The oscillator energy Eoscγ including the dissipative
modulation termEγ thus amounts to adding the potential
energy with the kinetic energy that is being exchanged
and Eγ cancels out the part of the kinetic energy that is
being dissipated. However,Eγ also introduces the down-
shift coefficient −γ 2/4, that together with �2 establish
the damped frequency of the oscillator. From the ampli-
tude and phase solutions (18b),

Eoscγ = 1

2
mρ2ω2

d = 1

2
mρ2

0 ω2
de−γ t , (29)

consistent with (28d). The various energies used in this
description are summarised in table 1.

4.4 Exchange energy per period

Consider a scaling of q00 by 1
2κ = 1

2m�2, one half the
restitutive force coefficient of the harmonic oscillator.
The exchange energy (with subindex t) from (25e),

Eex
t ≡ 1

2
κq00 = 1

2
κ (x2 ẋ1 − ẋ2x1) , (30)

then has units of energy over time [J s−1], since [κ] =
[N/m]. I ex

t ≡ 1
2κQ00 is the corresponding exchange

energy invariant in the presence of damping. Eex
t has

the appropriate units for the physical interpretation of
energy exchanged per time interval. If light damping
at a constant rate γ takes place, exchange energy Eex

t
decreases exponentially as seen from (29), for γ ≤ 2�,

Eex
t = 1

2
κq00 = 1

2
m�2ρ2

0 ωd e−γ t , ωd =
√

�2 − 1

4
γ 2.

(31)

Recall that the out-of-phase oscillations between the
kinetic and potential energies evince the energy that is
being exchanged between them. The sum of these two
terms from (25c) and (25f) is

Ep + E exchange
k = (Ep + Ek)exchange = 1

2
mρ2

0 e−γ t�2.

(32)

The potential energy can always be tagged with the
‘exchange’ label because all the potential energy is
transformed into kinetic energy but not the other way
around, if damping is present. Dissipation is velocity-
dependent but the potential energy does not involve
motion, and thus it cannot contribute to dissipation. Sub-
stitution of (32) in the exchange energy expression (31)
gives Eex

t = (Ep + Ek)exchangeωd . The exchange energy
Eex
t can then be written as

Eex
t = (Ep + Ek)exchange

τd

= kinetic and potential energy exchange

one period
. (33)

Therefore, Eex
t represents the total energy that is being

exchanged between the kinetic and potential energies
per period, more precisely per damped period. This
derivation confirms the interpretation that the zeroth-
order bracket q00 (8a) is a measure of the energy
exchange between the position and velocity vector fields
as proposed in §4.1. In the limit of critical damping
and beyond, the period tends to infinity and Eex

t is zero.
Then, no energy is exchanged back and forth between
the potential and kinetic energies.

Let us now return to the exchange energy Eex
ω =

1
2mq00 (with subindex ω) defined in (8c). This quan-
tity can be viewed merely as a scaling of the previous
exchange energy, Eex

ω = �−2Eex
t . However, if Eex

ω is
multiplied and divided by ωd , then

Eex
ω = (Ep + Ek)exchange ω2

d

�2

1

ωd
,
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that can be written as

Eex
ω = (Ep + Ek)exchange

(
1 − 1

4

γ 2

�2

)
1

ωd
.

But note that

(Ep + Ek)exchange
(

1 − 1

4

γ 2

�2

)

= Ek + Ep + Eγ = Eoscγ .

Thus,

Eex
ω = Eoscγ

ωd
.

Therefore, Eex
ω is the oscillator energy Eoscγ per damped

frequency ωd .
The Eoscγ energy loss, from (29) is

dEoscγ

dt
= −γ Eoscγ

and the energy lost in one period is (dEoscγ /dt)τd . The
well-known quality factor Q for an oscillator with light
damping is then

Q ≡ 2π
energy stored

|energy loss in one period|
= 2π

Eoscγ∣∣dEoscγ /dt
∣∣ τd = ωd

γ
. (34)

Since the energy was evaluated with Eoscγ = Ek +
Ep + Eγ including the Eγ term, the kinetic energy dissi-
pative oscillations at twice the frequency are cancelled
out. Thus, there is neither the need to make the usual
assumptions of very light damping (γ � 2�) nor aver-
aging of the energy function 〈Ek + Ep〉 to obtain this
factor. Moreover, this result suggests that the energy
stored is Eoscγ , that as we have seen, removes the kinetic
energy part that is dissipated.

4.5 Energy ripples

The present description neatly separates the exponen-
tial decay from the ripples of the oscillator’s energy as
a function of time [34,35]. The kinetic, potential and
dynamic dissipative energies are depicted in figure 3.
The ripples in the sum of kinetic and potential energies
are clearly seen in the red curve. This modulation of
the exponential decay is necessary because the dissi-
pation is velocity-dependent and it must be zero when
the kinetic energy is zero. Thus, the sum of kinetic and
potential energies must be constant (i.e. with zero slope)
when the kinetic energy is zero [36]. This behaviour is
clearly seen in figure 3. When the Eγ term is added to
Ek+Ep, the energy exhibits a smooth exponential decay.
The oscillating part of Eγ cancels out the ripples. For

Figure 3. Energy ripples for γ = �/5.Ek (dot–dashed green
curve), Ek + Ep (red curve) exhibit ripples, Ek + Ep + Eγ

(dashed blue curve) has a smooth exponential decay and Eγ

(brown curve on the abscissa) depicts the dissipative modu-
lation energy that oscillates at 2ωd with a −γ 2/4 offset.

this purpose, it seems advantageous to include the dis-
sipative modulation term with the kinetic and potential
energies, Ek + Ep + Eγ . The �v, x	 w-bracket (13) also
suggested this grouping. In contrast, to achieve this even
decay in the standard approach, an averaging process is
necessary [33]. The averaging needs to be judiciously
performed to iron out the wiggles but retain the expo-
nential decay. In the present description, the averaging
is completely avoided.

5. Ermakov approach

It is also possible to write from the outset, the damped
oscillator differential equation (6) using the complex
polar representation, x → ρe−iϕ . The real part of the
differential equation is

ρ̈

ρ
− ϕ̇2 + γ

ρ̇

ρ
+ �2 = 0, (35)

whereas the imaginary part (ϕ̈ + 2ϕ̇ρ̇ρ−1) + γ ϕ̇ = 0,
upon multiplication by ρ2 exp(

∫
γ dt) can be readily

integrated to obtain

Q00 = ρ2ϕ̇ e
∫

γ dt . (36)

This result was obtained in §3.1 using the complex
conjugate solutions and the ODEs invariant procedure
in (9c). Q00 is denoted in this context as the decoupling
constant leading to the amplitude and frequency non-
linear differential equations. The amplitude nonlinear
differential equation with time-dependent damping is

ρ̈ + γ ρ̇ + �2ρ = Q2
00e−2

∫
γ dt

ρ3 . (37)

This equation can also be viewed as an anharmonic
damped oscillator [37]. The evaluation of the amplitude
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first and second derivatives from the invariant relation-
ship (36) yield

ρ̇

ρ
= −1

2

(
ω̇

ω
+ γ

)

and

ρ̈

ρ
=

(
−1

2

ω̈

ω
+ 3

4

ω̇2

ω2 + 1

4
γ 2 + 1

2
γ

ω̇

ω

)

respectively. Subsequent substitution in (35) gives the
frequency nonlinear differential equation in the presence
of time-dependent damping,

1

2

ω̈

ω
− 3

4

ω̇2

ω2 + 1

4
γ 2 + ω2 − �2 = 0. (38)

This procedure is akin to the Ermakov approach, that
originally led to the Ermakov invariant in the undamped
case. The usual amplitude and phase solutions for con-
stant γ can be obtained from the amplitude and phase
differential equations. The former requires a rescaling
of the amplitude by

e− ∫ γ
2 dt = e− γ

2 t .

The latter is straightforward if a constant ω is considered
(ω̈ = ω̇ = 0). The solution to (38) is then

ω2 = �2 − 1

4
γ 2 = ω2

d .

General solutions with time-dependent amplitude and
phase functions can be obtained via the nonlinear super-
position principle [38,39]. Even if γ is constant, the
frequency is not necessarily constant since for a phase

ϕ =
∫

ω dt = arctan (η tan (ωd t)) .

The frequency

ϕ̇ = ω = η

cos2 ωd t + η2 sin2 ωd t
ωd , (39)

with constant η = B/A, is also a solution to the fre-
quency differential equation (38). This assertion can be
verified by direct substitution, noticing that

ω̇ = η(1 − η2) sin (2ωd t)

(cos2 ωd t + η2 sin2 ωd t)2
ω2
d

and

ω̈ = 2η(1 − η2)2 sin2 (2ωd t)

(cos2 ωd t + η2 sin2 ωd t)3
ω3
d

+ 2η(1 − η2) cos (2ωd t)

(cos2 ωd t + η2 sin2 ωd t)2
ω3
d .

The system’s energy can also be written in amplitude
and phase variables via the transformation x = ρ cos ϕ.

The Eoscγ = 1
2mq10 energy function (13) is then

Eoscγ = 1

2
mρ2ω2

×
(

1 + 1

2

ω̇

ω2 sin (2ϕ) + 1

2ω2

d

dt

(
ω̇

ω

)
cos2 ϕ

)
,

(40)

where the expression for the frequency ω and its deriva-
tive in terms of �2 and γ is given by the solution to the
differential equation (38). If the frequency is constant,
the usual 1

2mρ2ω2 dependence is recovered. The trans-
formation x → (x/ρ) viewed in terms of the bracket
expression

� f, g	 = f 2 d

dt

(
g

f

)
,

derived in the Appendix, explains the ρ2 time scal-
ing proposed by [17]. The role of the invariant as the
energy function in the transformed coordinates has been
pointed out before [17,24,40]. In the quantum version,
this invariant can be used in an equivalent fashion as the
Hamiltonian in the time-independent case, i.e., to obtain
evolution operators, to cast the equations of motion of
different operators in commutative expressions and to
produce a phase shift with its exponential form [41].

6. Discussion and conclusions

The complementary or orthogonal functions rationale
has been used to derive various conserved quantities.
The energy as well as the energy exchange emerge from
Wronskian operators, referred here as w-brackets. The
general case that was undertaken is a one-dimensional
time-dependent harmonic oscillator with damping. The
time-dependent restitutive and damping coefficients
give rise to dynamic field energies, Ed f , in eq. (14a),
that keep memory of the system’s evolution.

The damped harmonic oscillator problem provides
a clear-cut scenario to give a physical meaning to the
zeroth-order w-bracket q00. The exchange energy

Eex
ω = 1

2
mq00 = Eoscγ

ωd

represents the periodic transfer between two energy
forms per unit frequency, the kinetic and potential ener-
gies in this case. If the exchange energy q00 is scaled by
κ = m�2, as proposed in eq. (30), the physical interpre-
tation ofEex

t is the energy exchanged between the kinetic
and potential energies per period. In either case, if q00
is zero or negative, that is, at critical or heavy damping,
there is no periodic exchange between the two forms of
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energy but, at most, only a non-periodic transfer between
them.

In the absence of damping, the total energy of the
system E , the energy of the oscillator

Eosc = Eoscγ = 1

2
mρ2

0 �2

and the energy exchanged between the kinetic and
potential energies

Eex
ω = 1

2
mρ2

0 �

are the same, except for the constant factor �. This
degeneracy is lifted when damping is present, allow-
ing for a clear distinction and physical interpretation of
these quantities.

A scheme of the energies involved and their inter-
action for a damped oscillator with time-independent
parameters, is summarised in figure 4. The energy of the
system is composed of three parts: kinetic, potential and
dissipation modulation energies. Recall that contrary to
our approach, dissipation is often described via open
systems, where the dissipated energy is no longer part
of the system. The total energy in the present conceptu-
alisation, is given by the sum of these three contributions
times an exponential function, and is measured by the
first-order invariant E = 1

2mQ10. The transformation of
kinetic into potential energy and vice versa is evaluated
by the zeroth-order q00 exchange energy. To this end,
the kinetic energy Ek has been separated in two parts,
Eexchange
k is converted into potential energy whereas

Edissipated
k is lost by dissipation. The dissipative mod-

ulation energy Eγ has an oscillating contribution that
cancels out the dissipative part of the kinetic energy.
The inclusion of this term circumvents the necessity of
averaging, an asset that is particularly useful close to
critical damping. The remaining frequency offset γ 2/4
term, together with �2 from the potential plus the non-
dissipative kinetic energy, add up to ω2

d , the damped
frequency squared.

The Ermakov amplitude and phase equations with
damping have been derived. The Q00 decoupling invari-
ant has been obtained in two ways: via the com-
plementary functions and in the more conventional
Ermakov approach. To the best of our knowledge,
the frequency nonlinear differential equation (38) with
time-dependent damping has not been presented before.
The position (6), amplitude (37) and frequency (38)
differential equations form the so-called Ermakov triplet
[23] for the time-dependent damped harmonic
oscillator.

Figure 4. Energy scheme for a harmonic oscillator with con-
stant damping. The exchange energyEex

t represents the energy
flow between the kinetic and potential forms per period. The
invariant E = 1

2mQ10 = eγ t (Ek + Ep + Eγ ) evaluates the
total energy of the system including the dissipated energy.

Appendix A: w-brackets

Let V be the vector space of all differentiable functions
of a real variable t over a field K . Let f, g, h ∈ V
be at least class C2 analytic functions. The Wronskian
operator written as a bracket of two functions f, g is

� f, g	 ≡ f
dg

dt
− g

d f

dt
. (A.1)

This w-bracket is anticommutative � f, g	=− �g, f 	,
and thus � f, f 	 = 0. For a constant scalar λ ∈ K ,
�λ f, h	 = � f, λh	 = λ � f, h	. Also, � f + g, h	 =
� f, h	 + �g, h	. The w-bracket is thus bilinear. Eval-
uate � f g, h	, this bracket can be written in two ways
depending on how the terms are grouped back:

� f g, h	 = � f, h	 g − h f
dg

dt
,

� f g, h	 = �g, h	 f − hg
d f

dt
.

From the difference of these two equations, the follow-
ing identity is obtained:

� f, h	 g + �h, g	 f + �g, f 	 h = 0. (A.2)

From this identity, a Leibniz-like product rule is sat-
isfied, � f, h	 g = �g, h	 f + � f, g	 h. The w-brackets
also satisfy the Jacobi identity � f �g, h		+�g �h, f 		+
�h � f, g		 = 0, as can be seen from direct substitution.

Suppose that g is the sum of a linearly dependent
function of f and a linearly independent part g = λ f +
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h, from the anticommutativity and bilinearity properties

� f, g	 = � f, λ f + h	 = � f, h	.
The w-bracket singles out the linearly independent addi-
tive part of function g. A non-vanishing w-bracket is
thus a test of linear independence of differentiable func-
tions. Nonetheless, if the Wronskian is zero, linear
dependence is not always assured [42]. Consider a func-
tion g that can be written as a product of the function f
and another function h, g = λ f h. The w-bracket is then

� f, g	 = � f, λ f h	 = λ f 2 dh

dt
.

This result only involves the derivative of h, the
linearly independent factor of f . Since an arbitrary func-
tion g can always be written as f (g/ f ), the � f, g	
bracket can also be written as

� f, g	 = f 2 d

dt

(
g

f

)
.

w-brackets can be extended in several ways: (i) They
can be generalised to functions of several variables. Con-
tinuity equations obtained from the scalar wave equation
is an example [43], (ii) extended to complex algebra. For
example, eq. (9a) and (iii) they can also be generalised
to vector functions. Angular momentum conservation
equations in electromagnetic theory provide one such
case [44].

Appendix B: Kinetic energy splitting for the damped
oscillator

The kinetic energy Ek = 1
2mv2 from (25d) is given by

Ek = 1

2
mρ2

0e−γ t

×
(γ

2
cos (ωd t + φ0) + ωd sin (ωd t + φ0)

)2
.

Evaluate the squares and single out the term involving
the �2 coefficient in

ω2
d sin2 (ωd t + φ0) =

(
�2 − 1

4
γ 2

)
sin2 (ωd t + φ0) ,

Ek = 1

2
ma2e−γ t�2 sin2 (ωd t + φ0) + 1

2
mρ2

0e−γ t

×
(

γ 2

4

(
cos2 (ωd t + φ0) − sin2 (ωd t + φ0)

)
+γωd sin (ωd t + φ0) cos (ωd t + φ0)) .

The remaining terms are written in terms of the double
angle

Ek = 1

2
mρ2

0e−γ t
(

�2 sin2 (ωd t + φ0)

+γ 2

4
cos (2ωd t+2φ0)+ 1

2
γωd sin (2ωd t+2φ0)

)
.

The two terms with double angles can be written as a
single sine function with phase γ0 = arctan

(
γ /2ωd

)
,

Ek = 1

2
mρ2

0e−γ t
(

�2 sin2 (ωd t + φ0)

+1

2
γ � sin

(
2ωd t + 2φ0 + arctan

(
γ

2ωd

)))
.

In the particular case of zero initial velocity,

φ0 = − arctan

(
γ

2ωd

)
.

Then, γ0 = −φ0 in (25f) and the kinetic energy is

Ek = 1

2
mρ2

0e−γ t (�2 sin2 (ωd t + φ0)

+1

2
γ � sin

(
2ωd t + φ0

))
.
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