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Abstract. Separation between average and fluctuation parts in state density in many-particle quantum systems
with k-body interactions, modelled by the k-body embedded Gaussian orthogonal random matrices (EGOE(k)), is
demonstrated using the method of normal mode decomposition of the spectra and verified using power spectrum
analysis, for both fermions and bosons. The smoothed state density is represented by the q-normal distribution
( fqN ) (with corrections) which is the weight function for q-Hermite polynomials. As the rank of interaction k
increases, the fluctuations set in with smaller order of corrections in the smooth state density. They are found to be
of GOE type, for all k values, for both fermion and boson systems.
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1. Introduction

Understanding the separation of information, in energy
levels as well as in other observables, into averages
(smooth part) and fluctuations, in finite interacting quan-
tum systems like nuclei, atoms and molecules is very
important as it forms the physical basis for the statisti-
cal spectroscopy [1]. With this, the average properties
can be studied following the spectral distribution meth-
ods developed by French and co-workers [2–7], while
the fluctuations can be analysed following the classical
Gaussian orthogonal ensemble (GOE) or Gaussian uni-
tary ensemble (GUE) or Gaussian symplectic ensemble
(GSE) of random matrix theory (RMT) depending on
the symmetries possessed by the quantum systems) [8–
12]. To confirm GOE fluctuations, one generally uses
measures like the nearest-neighbour spacing distribu-
tion (NNSD), giving the degree of level repulsion and
the Dyson–Mehta (�3) statistic [13] or the power spec-
trum, giving long-range spectral rigidity. To construct
these measures for a given set of energy levels, one has
to renormalise the eigenenergies to remove the secu-
lar variation in the state density. This method is called

unfolding of the spectra [1,12] in which fluctuations are
separated out by removing the smooth or average part
from the spectra and it can be done in two different ways:
If the smooth form of the eigenvalue density is already
known, then it is possible to expand state density in terms
of its asymptotic (or smoothed) form using the orthonor-
mal polynomials defined by the asymptotic density. On
the other hand, when the form of eigenvalue density is
not known, then one uses polynomial unfolding.

In the last couple of decades, there is tremendous
growth on the study of statistical properties of isolated
finite many-particle quantum systems such as atomic
nuclei, atoms, quantum dots and small metallic grains,
ultracold atoms, interacting spin models and quantum
black holes with the Sachdev–Ye–Kitaev (SYK) model
and so on [7,14–23]. The embedded ensembles of k-
body interaction, EGOE(k), operating in many-particle
spaces [1,7], provide generic models for finite interact-
ing many-particle systems as interparticle interactions
are known to be predominantly few-body in charac-
ter. With k = 2, called two-body random ensembles,
EGOE(2) were first introduced in the context of the
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nuclear shell model [24,25]. These models for the par-
ticles in a mean-field and interacting via two-body
interactions, and their different extended versions are
analysed in detail for both fermionic [1,26–29] as well
as bosonic systems [30–33]. One of the most signifi-
cant features of EGOE(2) is the well-defined separation
of information in energy levels (and also in observ-
ables), into averages and fluctuations. The nature of
this separation is quite well understood analytically
using the so-called binary correlation approximation
for fermionic EGOE(2) in the dilute limit (m → ∞,
N → ∞, m/N → 0) [1,28] and also for bosonic
BEGOE(2) (B for boson) in the dense limit (m → ∞,
N → ∞, m/N → ∞) [30,34], where m repre-
sents fermions/bosons in N single-particle (sp) states.
Numerical examples are also given in [30,34,35].

Going beyond two-body interactions, the impor-
tance of embedded ensembles of k-body interaction,
EGOE(k), is renewed further in a series of recent investi-
gations employingq-Hermite polynomials [36–39]. The
motivation is mainly from the work of Verbaarschot
and collaborators, who have employed weight func-
tion for q-Hermite polynomials, the so-called q-normal
distribution ( fqN (x |q)), to study spectral densities in
quantum black holes with Majorana fermions [22,23]. It
is worth recalling that the interactions with higher body
rank k > 2 are very important in nuclear physics [40],
strongly interacting quantum systems [41,42], quantum
wormholes [43] and black holes [19,44] with Majo-
rana fermions and in disordered finite quantum networks
[45,46].

Embedded ensembles for k-body interactions are
studied for both fermion and boson systems. It is demon-
strated that the smooth form of the eigenvalue density,
generated by EGOE(k) for both fermions and bosons
(and also the corresponding EGUE(k) versions), is rep-
resented by fqN (x |q) and it correctly describes the
transition in spectral density from Gaussian (for param-
eter value q = 1) to semicircle (for q = 0) as the
rank of interaction k changes from 1 to m [36]. Impor-
tantly, in recent analysis using one-plus random k-body
interactions for interacting dense boson systems [38],
it is shown numerically that fqN (x |q) can also repre-
sent the smooth form of the state density as the strength
of k-body interaction, λ, varies. Further, the formula
for the onset of thermalisation (λt ) in dense boson sys-
tems and the smooth forms for the number of principal
components, valid for all k and λ > λt , are derived
and well verified with ensemble-averaged numerical
results [38]. It is important to note that the derivation
of these smooth forms essentially requires level fluctua-
tions as well as strength fluctuations to be of GOE-type
[47]. In the past, French and co-workers [1,28], using

EGOE(2) and nuclear shell model examples, conjec-
tured that the level and strength fluctuations follow
GOE for EGOE(k) and thereafter many attempts were
made to establish the nature of fluctuations generated
by these ensembles [20,48,49]. With replica trick devel-
oped in statistical mechanics for the study of spin glasses
and Anderson localisation, the two-point function for
EGOE(k) was derived in [48]. Further, using properties
of expansion and supersymmetry technique in [20], it
was shown that for k > m/2, the smooth part of the
spectrum has the shape of a semicircle with the spec-
tral fluctuations of GOE-type. With an analogy to the
metal–insulator transition in [49], the nature of spectral
fluctuations generated by finite Fermi systems modelled
by a few-body interaction, in the presence of a mean
field, was shown to be of GOE-type. More recently,
using the normal mode decomposition of the spectral
density of SYK model, the fluctuations are analysed via
two-point function using q-Hermite orthogonal polyno-
mials and it is demonstrated that only a small number of
polynomials are sufficient for the separation of scales
between long-wavelength fluctuations of the spectral
density and the short-wavelength fluctuations of the
universal RMT spectral correlations [23]. Employing
EGOE(k) for fermions and bosons, the main purpose of
the present study is to establish that finite interacting
many-particle quantum systems with k-body interac-
tions exhibit average fluctuation separation in energy
levels with a smooth density given by fqN (x |q) and the
fluctuations are of GOE-type.

The paper is organised as follows: The embedded
ensembles for interacting quantum systems are briefly
defined in §2. Some basic properties of q-Hermite
polynomials and the univariate q-normal distributions
fqN (x |q) are defined in §3. Results for the level motion
in dilute fermion and dense boson systems with body
rank k, obtained via the binary correlation method are
discussed briefly in §4. Numerical results for the normal-
mode decomposition of the spectra, for various values
of k, along with the results of periodogram analysis
of average fluctuation separation, are presented in §5.
Section 5 also includes results for NNSD and �3 statis-
tics for these examples. Finally, §6 gives concluding
remarks.

2. Embedded ensembles

Consider m spin-less fermions (bosons) occupying N
sp states and interacting via k-body interaction (2 ≤
k ≤ m). Let these N sp states be denoted by |vi 〉, where
i = 1, 2, 3, . . . , N with

∑
vi = k. The number of states
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in m-particle system corresponding to the dimension of

Hamiltonian matrix d(N ,m) = (N
m

)
for fermions (and

d(N ,m) = (N+m−1
m

)
for bosons). A basis state in m-

particle space is denoted by | ∏N
i=1 mi 〉 with

∑
mi = m.

Using a GOE representation for the k-particle Hamilto-
nian matrix and then propagating the information into
m-particle spaces using the concepts of direct prod-
uct space and Lie algebra, one obtains EGOE(k) for
fermions (and BEGOE(k) for bosons) [36,45]. For such
a system, the k-body Hamiltonian matrix is defined as
follows:

V (k) =
∑

α,γ

Vk:α,γ A†
k,αAk,γ . (1)

Here, α and γ denote k-particle configuration states in
occupation number basis and Vk:α,γ ’s are the Gaussian
random variables with,

Vk:α,γ = 0,

Vk:α,γ Vk:α′,γ ′ = ν2(δα,α′δγ,γ ′ + δα,γ ′δα′,γ ), (2)

where the bar indicates ensemble average and ν2 = 1 is
used in the present analysis. For fermions,

A†
k,α =

k∏

i=1

f †
vi

;

Ak,α = (A†
k,α)†(v1 < v2 < · · · < vk)

where f †
vi

and fvi are the creation and annihilation oper-
ators, respectively. For bosons,

A†
k,α = N

k∏

i=1

b†
vi

;

Ak,α = (A†
k,α)†(v1 ≤ v2 ≤ · · · ≤ vk),

where b†
vi

and bvi are the creation and annihilation
operators, respectively. The normalisation factor N
normalises k-particle bosonic states and α simplifies
the notation of indices. One should also note that the
dimension of k-particle Hamiltonian is d(N , k) with
k-body independent matrix elements (KBME) being
d(N ,k)(d(N ,k)+1)

2 . Vk:α,γ in eq. (1) are antisymmetrised
KBME for fermions and symmetrised for bosons. For
k = m, EGOE(k) and BEGOE(k) are identical to GOE
with dimensionality d(N ,m).

3. q-Hermite polynomials

Let us start withq-Hermite polynomials, introduced first
in Mathematics to prove the Rogers–Ramanujan iden-
tities [50], defined by the following recurrence relation

[50,51]:

xHn(x |q) = Hn+1(x |q) + [n]q Hn−1(x |q);
H0(x |q) = 1, H−1(x |q) = 0. (3)

Here, with q as the parameter, q numbers, denoted by
[n]q , are defined as,

[n]q = 1 + q + q2 + · · · + qn−1 = 1 − qn

1 − q
.

Then, as q → 1, [n]q = n and q factorial of n, [n]q ! =∏n
j=1[ j]q with [0]q ! = 1. The formulas for Hn(x |q) up

to n = 6 are given below:

H1(x |q) = x,

H2(x |q) = x2 − 1,

H3(x |q) = x3 − (2 + q)x,

H4(x |q) = x4 − (3 + 2q + q2)x2 + (1 + q + q2),

H5(x |q) = x5 − (4 + 3q + 2q2 + q3)x3

+(3 + 4q + 4q2 + 3q3 + q4)x,

H6(x |q) = x6 − (5 + 4q + 3q2 + 2q3 + q4)x4

+(6 + 9q + 10q2 + 9q3 + 7q4

+3q5 + q6)x2 − (1 + 2q + 3q2

+3q3 + 3q4 + 2q5 + q6). (4)

The q-Hermite polynomials reduce to Hermite poly-
nomials for q = 1, i.e. Hn(x |q = 1) = Hen(x). Also,
they reduce to Chebyshev polynomials for q = 0, i.e.
Hn(x |q = 0) = Un(x/2), and they are defined by the
following recurrence relation:

2xUn(x) = Un−1(x) +Un+1(x);
U0(x) = 1, U−1(x) = 0. (5)

The q-normal distribution fqN (x |q) is given by [37]

fqN (x |q) = 1

2 π

√
1

x2
0 − x2

∞∏

i=0

(1 − qi+1)

×
[

(1 + qi )2 − qi 4
x2

x2
0

]

, (6)

where x2
0 = 4/(1−q) and x is the standardised variable

with zero centroid and unit variance. fqN (x |q) is defined
over the interval

s(q) =
( −2√

1 − q
,

2√
1 − q

)

.

In the present study, q takes value between 0 and
1. Also it is plausible that, with forward shift oper-
ator, Dq{Hn+1(x |q)} = Cn,q [n]q Hn(x |q) and with
backward shift operator Dq{Nn,q fqN Hn−1(x |q)} =
− fqN Hn(x |q). Here factors Cn,q and Nn,q depend on
n and q only. Another important property is that the
q-Hermite polynomials are orthogonal with respect to
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the q-normal weight function, fqN (x |q), over the range
s(q), i.e.

∫

s(q)

Hn(x |q)Hm(x |q) fqN (x |q) dx = [n]q ! δmn. (7)

Note that,

∫

s(q)

fqN (x |q) dx = 1.

It can be easily seen that

fqN (x |1) = 1√
2π

exp(−x2/2)

and

fqN (x |0) = 1

2π

√
4 − x2.

Thus, fqN (x |q) interpolates between Gaussian to
semicircle as q changes from 1 to 0. Recently, the for-
mula for q as a function of (m, N , k) are obtained both
for EGOE(k) and BEGOE(k) in [36] using their nor-
malised fourth moment (μ4 = q+2) and numerical tests
confirm that fqN (x |q) describes the eigenvalue density
very well for all k values [17,36,38].

4. Average fluctuation separation in EGOE(k) and
BEGOE(k)

Let us consider a normalised state density ρ(E) and its
smooth form given by ρ(E). With orthogonal polyno-
mials Pn(E) defined by smooth density ρ(E), such that
∫ ∞

−∞
dE ρ(E)Pn Pn′ = δn,n′

[7,52], one can expand ρ(E) using the polynomials
Pn(E) as

ρ(E) = ρ(E)

{

1 +
∑

n=1

Sn Pn(E)

}

. (8)

Now, EGOE(k) for fermions in the dilute limit (and
also BEGOE(k) for bosons in the dense limit), the
ensemble-averaged state density changes from Gaus-
sian to semicircle form as k changes from 1 to m, and
can be represented by q-normal distribution [17,36,38]
given by

ρq(E) = 1

4πσ 2

√
√
√
√

1 − q

1 − ( E−ε
E0

)2

×
∞∏

i=0

(1 − qi+1)

×
[

(1 + qi )2 − qi 4

(
E − ε

E0

)2]

;

E2
0 = 4σ 2

1 − q
, ε − 2 σ√

1 − q
≤ E ≤ ε + 2 σ√

1 − q
. (9)

Here, ε and σ 2 are the centroid and the variance of
ρq . One can expand ρ(E) in terms of the smooth den-
sity ρ(E) = ρq(E), using the q-Hermite polynomials
Hn(Ê |q) as

ρ(E) = ρq(E)

{

1 +
∑

n

([n]q !)−1SnHn(Ê |q)

}

. (10)

In the above equation, the centroid and the variance of ρ

is the same as ρq and Sn can be connected to the higher
moments of ρ. As Sn’s vary from member to member
of the ensemble, they can be taken as random variables
with centroid zero, i.e. Sn = 0. It is important to note
that q = 1 in eq. (6) gives the Gaussian, eq. (10) leads
to the Gram–Charlier expansion starting with Gaussian
that takes into account first two moments, centroid and
variance. For q ∈ (0, 1), fqN takes into account the sec-
ond and fourth moments (odd moments are zero). In eq.
(10), each n term represents a mode of the excitation
and wavelength of the mode is inversely proportional to
[n]q . Also, both EGOE(k) and BEGOE(k) with k = m,
exactly give GOE, Hn(Ê |q = 0) reduces to the Cheby-
shev polynomials in eq. (10). With exact distribution
function taken as

F(E) = d(N ,m)

∫ E

−2/
√

1−q
fqN (x |q)dx,

the difference between energy level E and its smooth
part E , with respect to the ensemble, gives level motion
in terms of local mean spacing (D(E)) and is given as

δE = E − E = [F(E) − F(E)]D(E).

The variance of level motion, (δE)2/D(E)
2
, after

including the centroid and variance fluctuations, is given
by

(δE)2

D
2 = [F(E) − F(E)]2

= d2 σ 2 fqN (E |q)2

×
⎧
⎨

⎩

∑

n≥1

N 2
n,q([n]q !)−2(S2

n

)[Hn−1(Ê |q)]2

⎫
⎬

⎭
. (11)
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Hence,
(
S2
n

)
are needed for EGOE(k) and BEGOE(k)

and they are related to the covariances
∑

p,q

= 〈H p〉〈Hq〉 − 〈H p〉 〈Hq〉.

The variance of m-fermion is

σ 2
EGOE(m) =

(
m

k

)[(
N − m + k

k

)

+ 1

]

and that of m-boson is

σ 2
BEGOE(m) =

(
m

k

)(
N + m − 1

k

)

.

With normalisation σ 2(k) = 1, the formula for
(
S2
n

)

for EGOE(k) in strict N → ∞ limit can be given by [7]

(Sn)2 = 2n

(
m

k

)2−n(N

k

)−2

. (12)

Similarly, in strict m → ∞ limit for BEGOE(k), it is
plausible that [7]

(
S2
n

) = 2n

(
N

k

)−n

. (13)

The formulas for
(
S2
n

)
reduce to k = 2 case derived

using binary correlation approximation in [1,7,28,30].
With k body interactions, the result for the level motion
in the fermion systems is

(δE)2

D
2 =

(
N

m

)2(m

k

)2(N

k

)−2

ρq(E)2

×
⎧
⎨

⎩

∑

n≥1

([nq ]!)−22 n

(
m

k

)2−n [
Hn−1(Ê |q)

]2

⎫
⎬

⎭

(14)

and in the boson systems is

(δE)2

D
2 =

(
N + m − 1

m

)2(m

k

)2 (
N

k

)−2

ρq(E)2

×
⎧
⎨

⎩

∑

n≥1

([n]q !)−22 n

(
N

k

)−n [
Hn−1

(
Ê |q

)]2

⎫
⎬

⎭
.

(15)

The width of the level motion for different modes of
excitation n, scaled by factor N 2

n,q for various values of
k, are obtained via eq. (14) for fermions and eq. (15)
for bosons and the results are shown in figures 1 and 2,
respectively. The results are obtained for the following
examples: (i) m = 10 fermions in N = 20 sp states
with dimensionality of the space d = 184756 and (ii)
m = 20 bosons in N = 10 sp states with dimension-
ality of the space d = 10015005. The q values here

(a) (b)

(c) (d)

Figure 1. Scaled widths of the level motion as a function of
normalised energy given by eq. (14) for m = 10 fermions in
N = 20 sp states. Results are shown for the excitation mode
(a) n = 2, (b) n = 3, (c) n = 4 and (d) n = 6. In each
panel, black curve denotes body rank k = 2 (q = 0.465),
blue curves denotes k = 3 (q = 0.176), green curve denotes
k = 4 (q = 0.044) and red curve denotes k = 5 (q = 0.007).
The q values given in the bracket are obtained using eq. (12)
of ref. [36].

are obtained using eq. (12) for fermions and eq. (13)
for bosons of [36]. The formulas in eqs (12)–(15) are
good only for k � m and they do not apply as k goes
towards m. For k = m (GOE), the normal mode decom-
position is given by eq. (4.37) in Brody et al [1]. The
point of eqs (14) and (15) is that these expansions are
quite different from the expansion for GOE (k = m) as
argued in [1] (see the discussion after eq. (4.37) in [1]).
One can draw the following conclusions from the results
shown in figures 1 and 2: (i) The intensity of fluctuations
rapidly goes to zero as the mode of excitation n and rank
of the interaction k increase. (ii) The rate of fluctuations
decreases faster with respect to n indicating sharp sep-
aration and it also decreases with increasing k value.
This is due to

(m
k

)
terms in eq. (14) for fermions and

(N
k

)
terms in eq. (15) for bosons. (iii) The wavelength

of excitation mode decreases as both n and k increase.
It is inversely proportional to

√
1 − q for a fixed mode

of excitation. (iv) For smaller values of k, smooth part
of the state density can be defined using only a few long
wavelength modes. (v) With higher rank of interaction,
the intensity of excitation mode decreases considerably
and therefore the number of modes required to define
averages effectively reduce. (v) The fluctuations set in
faster for higher rank of interactions k. In the next sec-
tion, this behaviour will be verified numerically using
EGOE(k) and BEGOE(k) examples.
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(a)

(c) (d)

(b)

Figure 2. Same as figure 1 but for boson system withm = 20
bosons in N = 10 sp states, using eq. (15). Results are shown
for the excitation mode (a) n = 2, (b) n = 3, (c) n = 4
and (d) n = 6. In each panel, the black curve denotes k = 2
(q = 0.932), blue curve denotes k = 3 (q = 0.84), green
curve denotes k = 4 (q = 0.712) and red curve denotes
k = 5 (q = 0.556). The q values given in the bracket are
obtained using eq. (13) of ref. [36].

5. Numerical results for fermionic EGOE(k) and
bosonic BEGOE(k)

To analyse the separation between average and fluctu-
ation parts in the spectra of EGOE(k) and BEGOE(k)
for a given body rank of the interaction k, the follow-
ing examples are considered: (i) EGOE(k) for m = 6
fermions in N = 12 sp states with H(m) matrix of
dimension d = 924, (ii) BEGOE(k) for m = 10 bosons
in N = 5 sp states with H(m) matrix of dimension
d = 1001. It is important to note that the dimensionality
of H(m) increases rapidly with the number of particles
m and/or sp states N and the numerical calculations
will be prohibitive for large m and N values. There-
fore, the selection of systems in the present analysis is
based on limitations imposed by computational facili-
ties. However, it is clear that the fermionic EGOE(k)
with (m = 6, N = 12) example exhibits the properties
of dilute limit [34,36,54] and the bosonic BEGOE(k)
with (m = 10, N = 5) example exhibits the proper-
ties of dense limit [30,34,36,38,53,54]. An ensemble of
50 members each is used for the given k value in both
the examples and the corresponding ensemble-averaged
skewness (γ1) and excess (γ2) parameters are given in
table 1.

5.1 Normal mode decomposition of the spectra

From the eigenvalues obtained via matrix diagonalisa-
tion of H(m), one can compute the exact distribution

function F(E). While the smooth part, F(E), for a given
order n0, follows from the smooth form of state density,

ρ(E) = ρq(E)

{

1 +
n0∑

n≥3

([nq ]!)−1SnHn(Ê |q)

}

. (16)

The level motion �(E) = F(E) − F(E) with F(E) =
Fq(E) is computed following the procedure described
in [30,35]. The q value is obtained separately for each
member using the normalised fourth moment of the
spectra. As the energy spectrum is discrete, the Sn’s in
eq. (16), for a given order n0, are determined by min-
imising

∑d
i {�(Ei )

2}with respect to the Sn’s. With these
optimised Sn’s give level motion �(E) vs. E for the
order n0. Here, the ensemble average, for given k and
n0, is carried out after the spectra of each member of the
ensemble is first made zero centred and scaled to unit
width.

Figure 3 shows the results for the normal-mode
decomposition of the spectra for EGOE(k) generated
by 6 fermions in 12 sp states for different values of the
rank of interaction k. The first column in figure 3 corre-
sponds to [�(E) = F(E) − Fq(E)] vs. Ê . The results
for �(E) with ρ(E) optimised to orders n0 = 3, 4 and
6 are also shown. In the ensemble calculations for given
k, level motion for each order (n0) is obtained separately
for each member and the results in the figure are shown
for all the members. Similarly, figure 4 shows the results
for the normal-mode decomposition of the spectra for
BEGOE(k) generated by 10 bosons in 5 sp energies
for different k values. The values for root mean square
deviations �RMS in �(E) for EGOE(k) and BEGOE(k)
examples are also shown in the corresponding panels
in figures 3 and 4. It is clearly seen, for both EGOE(k)
and BEGOE(k), that �RMS falls sharply at first with
increasing order and then varies slowly suggesting a
clear cut dissociation between the smooth and fluctu-
ating parts of the distribution function. For fermionic
EGOE(k), for the rank of interactions k < 4 and n0 ≤ 3,
�RMS value is larger than GOE value, which is ∼ 0.88 at
Ê = 0; the GOE formula for �2

RMS = ln 2 d(m, N )/π2

[1]. By the time fourth-order n0 = 4 corrections are
added to the asymptotic q-normal density, �RMS ∼ 0.8
which implies the onset of GOE fluctuations. Similarly,
for BEGOE(k), for the rank of interactions k < 6,
�RMS ∼ 1 by the time fifth-order corrections are added
to ρ(E). With the sixth-order corrections to ρ(E), �RMS
reaches close to the GOE result. These results are con-
sistent with the results obtained for k = 2 in [30,34].
Going further, with k > 4 for fermion (and k > 6 for
bosons), the averaged density approaches a semicircle
form and q → 0. �RMS comes close to GOE value with
just ρ(E) = ρq(E). The results here clearly show the
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Table 1. The ensemble-averaged skewness (γ1) and excess (γ2) parameters for EGOE(k) and BEGOE(k) examples.

EGOE(k):m = 6, N = 12 BEGOE(k):m = 10, N = 5

k γ1 γ2 k γ1 γ2

2 0.0023 −0.7172 2 −0.0025 −0.1463
3 −0.0002 −0.9422 3 −0.0125 −0.3083
4 0.0001 −0.9945 4 0.0024 −0.5834
5 0.0001 −0.9980 5 0.0013 −0.8205
6 −0.0003 −0.9991 6 0.0005 −0.9504

7 0.0000 −0.9909
8 0.0000 −0.9950
9 0.0000 −0.9984

10 0.0000 −0.9995

Figure 3. Level motion �(Ê) vs. normalised energy
(E − ε(k))/σ (k) are shown for the spectra of a 50 mem-
ber EGOE(k) generated using the system of 6 fermions in
12 sp states for different values of body rank k. State-to-
state deviation between the true distribution function and
its smooth version with ρ(E) including optimised correc-
tion up to third-order, fourth-order and sixth-order are shown
for all members of the ensemble. First column is due to
F(E) = Fq(E) (order 2). Ensemble-averaged �RMS are also
shown in the figure.

distinction between the smooth and fluctuating parts of
the distribution function for all k values. Also, the GOE
fluctuations set in with ρ(E) including a few order of
corrections as the rank k increases.

In the past, using the analogy between energy spec-
trum and discrete time series, the spectral fluctuations
were investigated in embedded ensembles using nor-
malised periodogram analysis and it was shown that
interacting quantum systems exhibit a clear cut average-
fluctuation separation [34]. It is important to note
that the periodogram analysis was also emphasised in

Figure 4. Same as figure 3 but for the spectra of a 50 member
BEGOE(k) generated using the system of 10 bosons in 5 sp
states for different values of body rank k. Ensemble-averaged
�RMS are also shown in the figure.

terms of 1/ f -noise signature of quantum chaos [55–
57]. In the next section, we consider the method of
a normalised periodogram to analyse EGOE(k) and
BEGOE(k) spectra.

5.2 Periodogram analysis

The method of a normalised periodogram, introduced by
Lomb and Scargle [58], was initially used for analysing
astronomical data and it is very efficient in testing
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and finding the presence of weak periodic signals in
unevenly spaced data. The Lomb–Scargle statistic esti-
mates mainly two-parameters. First is f p, the frequency
at which the maximum value of periodogram occurs and
second is the parameter � (in percentage) measuring the
relevance of the signal at f p against the presence of ran-
dom noise [34]. Therefore, in terms of the parameter �,
the periodogram analysis provides an accurate quanti-
tative measure giving the extent to which the separation
between smooth and fluctuating parts exist.

Following the procedure given in [34], the power
spectra are obtained using the deviations, between the
smooth part and actual part of the distribution functions,
obtained in the previous section. For a given order n0 and
body rank k, the periodogram P( f ) vs. f is obtained, for
each �(E) vs. E data shown in figure 3 for EGOE(k) and
figure 4 for BEGOE(k) and the corresponding results
are shown in figures 5 and 6, respectively. The param-
eters � and f p are calculated for each member of the
ensemble separately using the middle 90% of the spec-
trum and then the ensemble-averaged periodogram is
obtained. The ensemble-averaged values of the parame-
ters, � and f p, are shown in figures 5 and 6 for EGOE(k)
and BEGOE(k), respectively. For EGOE(k) with k =
2 and 3, � value is found to be greater than 70% for
third-order corrections included in the smooth density
indicating the presence of signal at this stage. The �

value reduces to less than 15% by the time fourth-order
correction is added. This implies the absence of a sig-
nal and indicates the presence of noise only. Hence, the
onset of fluctuations occurs with fourth-order correc-
tion added to the smooth density for k ≤ 3. Further,
for k ≥ 4, � value is found to be less than 15% with
just second-order corrections in the smooth density and
for higher-order � values further reduced indicating the
onset of fluctuations with just second-order corrections.

Similarly, for BEGOE(k), the � values become small
only after sixth-order corrections are taken into account
for 2 ≤ k ≤ 6. Thus, there is average-fluctuation sep-
aration in energy levels with averages determined by
sixth-order corrections for k < 7, while for k = 7, the
� values reduce to 10% with fourth-order correction.
Further, for k > 7, the � values become very small with
just second-order correction indicating the onset of fluc-
tuations with just second-order corrections. The results
here are consistent with the results previously obtained
for k = 2 [30,34]. Thus, there is average-fluctuation sep-
aration in energy levels with averages determined by 2–6
order corrections to the asymptotic density represented
by fqN (x |q) for both EGOE(k) and BEGOE(k). Also,
the periodogram analysis, with � parameter, clearly
shows that the GOE fluctuations set in faster as the rank
k of the interaction increases. For both the examples, the
power spectrum results are in good agreement with that

Figure 5. Periodogram P( f ) vs. f for the corresponding
deviation data shown in figure 3 for the EGOE(k) ensemble.
Note that f and P( f ) are unitless. The values of � and f p
are shown in the figure. See text for details.

of the normal mode decomposition analysis carried out
in the previous section.

Now, using the unfolded spectra, NNSD and the
Dyson–Mehta �3 statistic [13] will be studied to con-
firm that the fluctuations are of GOE-type. There exists
a wide variety of quantum systems which demonstrate
GOE fluctuations [12,59].

5.3 NNSD and �3 statistics

To confirm the GOE limit, the NNSD and the �3(L)

statistics are constructed, for each k value, using eigen-
values of EGOE(k) and BEGOE(k) considered above.
NNSD and �3 are constructed for various values of k
from 2 tom. The results for NNSD and �3(L) are shown
in figures 7 and 8, respectively. In these calculations,
spectrum of each member is unfolded separately so that
the average spacing is unity and then the ensemble-
averaged NNSD is constructed using the middle 90% of
the spectrum. For EGOE(k), the unfolding is done using
ρ(E) with n0 = 4 for k < 4, while for k > 4, ρ(E) =
ρq(E) is taken. Similarly, for BEGOE(k), ρ(E) with
n0 = 6 is chosen for k ≤ 7 and ρ(E) = ρq(E) for k >

7. The NNSD results are superimposed with the Pois-
son and Wigner forms. For k = m, both EGOE(k) and
BEGOE(k) give GOE exactly. Therefore, the spectral
unfolding is done with optimised second-order correc-
tions to the smoothed density for both fermionic as well
as bosonic examples. It is clear from the results that the
NNSD’s, for all k values, are very close to Wigner. The
variance of NNSD is found to be σ 2(0) ∼ 0.28, for all



Pramana – J. Phys.          (2022) 96:223 Page 9 of 11   223 

Figure 6. Periodogram P( f ) vs. f for the corresponding
deviation data shown in figure 4 for BEGOE(k). See figure 5
and text for details.

k values in EGOE(k) and BEGOE(k), indicating that
the systems are completely chaotic with the unfolding
procedure utilised here. Furthermore, the �3 statistics is
obtained for unfolded spectrum using the overlap inter-
val of 2 and following the procedure in [60] �3(L) for
L ≤ 60 are calculated, where L is the energy interval,
measured in units of average level spacing, over which
�3(L) is calculated. Here also the ensemble-averaged
results are compared with the Poisson and GOE forms.
Once again it is seen that, with the given unfolded spec-
tra, the �3(L) statistics approaches the GOE values for
all k in EGOE(k) and BEGOE(k).

6. Conclusions

In this work, using the normal mode decomposi-
tion and the periodogram analysis, it is conclusively
demonstrated that for many-particle quantum systems
with k-body interactions, generically called the k-
body embedded Gaussian orthogonal random matrix
ensemble (EGOE(k)) for fermions (and BEGOE(k) for
bosons), exhibit a well-defined average-fluctuation sep-
aration in the state density. The present analysis clearly
demonstrates that the smooth part of state density is very
well represented by theq-normal distribution ( fqN ) with

Figure 7. Ensemble-averaged NNSD histograms for
EGOE(k) (m = 6; N = 12) in (a) and for BEGOE(k)
(m = 10; N = 5) in (b). Results are shown for various
values of body rank k. Also Poisson and GOE predictions
are superimposed. See text for further details.

corrections defined by only a few modes with long wave-
lengths and the remaining fluctuations are of GOE for all
body rank k, both for fermion as well as boson systems.
The effective number of modes contributing the smooth
part decreases due to the rapid decrease in intensity as
the body rank k increases and thus, GOE fluctuations
set in faster.

Going beyond this, some studies have been reported
for k-body interacting many-particle quantum systems
in a mean field defined by non-degenerate sp states
generated by a one-body Hamiltonian (h(1)) by defin-
ing H = h(1) + λV (k), where V (k) is EGOE(k) or
BEGOE(k) [36,38]. For BEGOE(1+k), it is demon-
strated that the smooth forms for the state density can
be represented by fqN (E |q) for all k values [38]. For
these ensembles, transition from order to chaos in NNSD
is expected as k-body interaction strength λ increases.
Using the unfolding procedure described in the present
work, the critical interaction strength λc, which defines
the order to chaos transition, can be determined for a
given k-body interaction. With this, it is possible to
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(a)

(b)

Figure 8. �3(L) vs. L for EGOE(k) (m = 6; N = 12) in
(a) and for BEGOE(k) (m = 10; N = 5) in (b). Results are
shown for various values of body rank k. Poisson and GOE
predictions are also superimposed. See text for further details.

establish that the embedded ensembles with k-body
interactions are generic models for strongly interacting
quantum systems (fermions or bosons) in the chaotic
domain. This will be addressed in future.

Acknowledgements

Author thanks V K B Kota and V Potbhare for many
useful discussions. This work is a part of University sup-
ported research project (Grant No: GCU/RCC/2021-
22/20-32/508.

References

[1] T A Brody, J Flores, J B French, P A Mello, A Pandey
and S S M Wong, Rev. Mod. Phys. 53, 385 (1981)

[2] J B French and V K B Kota, Annu. Rev. Nucl. Part. Sci.
32, 35 (1982)

[3] J B French, S Rab, J F Smith, R U Haq and V K B Kota,
Can. J. Phys. 84, 677 (2006)

[4] J Karwowski, Int. J. Quantum Chem. 51, 425 (1994)
[5] V V Flambaum, A A Gribakina, G F Gribakin and I V

Ponomarev, Physica D 131, 205 (1999)
[6] D Angom and V K B Kota, Phys. Rev. A 71, 042504

(2005)
[7] V K B Kota, Embedded random matrix ensembles in

quantum physics (Springer-Verlag, Heidelberg, 2014)
[8] E P Wigner, Ann. Math. 62, 548 (1955)
[9] O Bohigas,Randommatrix theories and chaotic dynam-

ics, Les Houches, Session LII, (1989), Chaos and
Quantum Physics, Course 2, edited by M-J Giannoni
et al (Elsevier Science Publishers B.V., North-Holland,
1991)

[10] H-J Stöckmann,Quantum chaos (Cambridge University
Press, Cambridge, 1999)

[11] G Casati, F Valz-Gris and I Guarneri, Lett. Nuovo
Cimento Soc. Ital. Fis. 28, 279 (1980)

[12] F Haake, Quantum signatures of chaos (Springer, New
York, 2010)

[13] F J Dyson and M L Mehta, J. Math. Phys. 4, 701 (1963)
[14] A Polkovnikov, K Sengupta and A Silva, Rev. Mod.

Phys. 83, 863 (2011)
[15] L DÁlessio, Y Kafri, A Polkovnikov and M Rigol, Adv.

Phys. 65, 239 (2016)
[16] F Borgonovi, F M Izrailev, L F Santos and V G Zelevin-

sky, Phys. Rep. 626, 1 (2016)
[17] V K B Kota and N D Chavda, Int. J. Mod. Phys. E 27,

1830001 (2018)
[18] V K B Kota and N D Chavda, Entropy 20, 541 (2018)
[19] J S Cotler et al, J. High Energy Phys. 05, 118 (2017)
[20] L Benet, T Rupp and H A Weidenmüller, Ann. Phys.

(N.Y.) 292, 67 (2001)
[21] T Papenbrock and H A Weidenmüller, Rev. Mod. Phys.

79, 997 (2007)
[22] A M Garcia-Garcia and J J M Verbaarschot, Phys. Rev.

D 94, 126010 (2016); Phys. Rev. D 96, 066012 (2017)
[23] Y Jia and J J M Verbaarschot, J. High Energy Phys. 07,

193 (2020)
[24] J B French and S S M Wong,Phys. Lett. B 33, 449 (1970)
[25] O Bohigas and J Flores, Phys. Lett. B 34, 261 (1971)
[26] V V Flambaum, G F Gribakin and F M Izrailev, Phys.

Rev. E 53, 5729 (1996)
[27] V V Flambaum and F M Izrailev, Phys. Rev. E 56, 5144

(1997)
[28] K K Mon and J B French,Ann. Phys. (N.Y.) 95, 90 (1975)
[29] V K B Kota, Phys. Rep. 347, 223 (2001)
[30] K Patel, M S Desai, V Potbhare and V K B Kota, Phys.

Lett. A 275, 329 (2000)
[31] T Asaga, L Benet, T Rupp and H A Weidenmüller, Eur.

Phys. Lett. 56, 340 (2001); Ann. Phys. (N.Y.) 298, 229
(2002)

[32] N D Chavda, V Potbhare and V K B Kota, Phys. Lett. A
311, 331 (2003); Phys. Lett. A 326, 47 (2004)

[33] N D Chavda, V K B Kota and V Potbhare, Phys. Lett. A
376, 2972 (2012)



Pramana – J. Phys.          (2022) 96:223 Page 11 of 11   223 

[34] R J Leclair, R U Haq, V K B Kota and N D Chavda,
Phys. Lett. A 372, 4373 (2008)

[35] G J H Laberge and R U Haq, Can. J. Phys. 68, 301
(1990)

[36] M Vyas and V K B Kota, J. Stat. Mech. Theor. Exp. 10,
103103 (2019)

[37] M Vyas and V K B Kota, J. Stat. Mech. Theor. Exp.
2020, 093101 (2020)

[38] P N Rao and N D Chavda, Phys. Lett. A 399, 127302
(2021)

[39] V K B Kota and M Vyas, J. Stat. Mech. Theor. Exp.
2021, 113103 (2021)

[40] K D Launey, T Dytrych and J P Draayer, Phys. Rev. C
85, 044003 (2012)

[41] D W E Blatt and B H J McKellar, Phys. Rev. C 11, 2040
(1975)

[42] H-W Hammer, A Nogga and A Schwenk, Rev. Mod.
Phys. 85, 197 (2013)

[43] A M Garcia-Garcia, T Nosaka, D Rosa and J J M Ver-
baarschot, Phys. Rev. D 100, 026002 (2019)

[44] A M Garcia-Garcia, Y Jia and J J M Verbaarschot, Phys.
Rev. D 97, 106003 (2018)

[45] A Ortega, M Vyas and L Benet, Ann. Phys. (Berlin) 527,
748 (2015)

[46] A Ortega and T Stegmann and L Benet, Phys. Rev. E 94,
042102 (2016); Phys. Rev. E 98, 012141 (2018)

[47] V K B Kota and R Sahu,Phys. Rev. E 64, 016219 (2001)
[48] J J M Verbaarschot and M R Zirnbauer,Ann. Phys. (N.Y.)

158, 78 (1984)

[49] T Papenbrock, Z Pluhar̀, J Tithof and H A Weidenmüller,
Phys. Rev. E 83, 031130 (2011)

[50] L J Rogers, Proc. London Math. Soc. 24, 337 (1893);
M E H Ismail, D Stanton and G Viennot, Eur. J. Com-
binatorics 8, 379 (1987)

[51] P J Szabowski, Electron. J. Probab. 15, 1296
(2010)

[52] G Szegö, Orthogonal polynomials, colloquium
publications (Am. Math. Soc., Providence, 2003)
Vol. 23

[53] H N Deota, N D Chavda and V Potbhare, Pramana – J.
Phys. 81, 1045 (2013)

[54] P N Rao, H N Deota and N D Chavda, Pramana – J.
Phys. 95, 34 (2021)

[55] A Relaño, J M G Gómez, R A Molina and J Retamosa,
Phys. Rev. Lett. 89, 244102 (2002)

[56] E Faleiro, J M G Gómez, R A Molina, L Muñoz, A
Relaño and J Retamosa, Phys. Rev. Lett. 93, 244101
(2004)

[57] J M G Gómez, A Relaño, J Retamosa, E Faleiro, L Salas-
nich, M Vranicar and M Robnik, Phys. Rev. Lett. 94,
084101 (2005)

[58] N R Lomb, Appl. Space Sci. 39, 447 (1976); J D Scargle,
Astrophys. J. 263, 835 (1982)

[59] M L Mehta, Random matrices, 3rd Edn (Elsevier,
Netherlands, 2004)

[60] O Bohigas, R U Haq and A Pandey, in: Nuclear data for
science and technology edited by K H Böckho (Reidel,
Dordrecht, 1983) p. 809


	Average-fluctuation separation in energy levels in many-particle quantum systems with k-body interactions using q-Hermite polynomials
	Abstract.
	1. Introduction
	2. Embedded ensembles
	3. q-Hermite polynomials
	4. Average fluctuation separation in EGOE(k) and BEGOE(k)
	5. Numerical results for fermionic EGOE(k) and bosonic BEGOE(k)
	5.1. Normal mode decomposition of the spectra
	5.2. Periodogram analysis
	5.3. NNSD and Δ3 statistics

	6. Conclusions
	Acknowledgements
	References




