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Abstract. This work focusses on deriving exact analytic solutions for an oscillatory flow of an elastico-viscous
conducting fluid in a porous medium over a moving plate with variable suction. The momentum equation is enhanced
with the resisting force offered by the permeability of the medium by incorporating the Darcy model. The energy
transfer is equipped with volumetric heat generation/absorption and thermal radiation. Exact solutions for the
governing equations are obtained by employing Cardan’s method, and comparative discussion is made by using
the perturbation technique. The temperature distribution is evaluated by solving the energy equation considering
relaxation time. Solutions of velocity fields are obtained for any value of viscoelastic parameter k1. The results
obtained from the analytical and approximation methods for any value of viscosity parameter are compared and
found to be in good agreement. The physical behaviour of the pertinent parameters is obtained and displayed in
graphs.
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1. Introduction

The applications of non-Newtonian fluids can be dis-
cussed in two ways: (i) flow geometry and its boundary
conditions and (ii) viscoelastic nature. Viscoelastic flu-
ids are used in a variety of industrial applications, such
as cooling metallic plates, making sticky tapes and
extruding plastic sheets aerodynamically. Most liquids
do not reveal linear relation between the stress and
strain rates, making the study of non-Newtonian fluids
more complicated. Liquids such as oil and some poly-
mers exhibit close resemblance with elastico-viscous
fluid. The constitutive equations of certain fluids not
obeying Newton’s law of stress to strain are studied
by Oldroyd [1]. Fluids having small elasticity or small
relaxation time are termed Walters’ liquid B. Bound-
ary layer flow of the Walters’ liquid B near stagnation
point was investigated by Beard and Walters [2]. A
similar problem of fluctuating flow past a porous flat
plate of elastico-viscous fluid has been discussed by
Kaloni [3]. Fluctuating flow past an infinite plate of
an elastico-viscous fluid with variable suction has been
examined by Soundalgekar and Puri [4]. The velocity

of the free stream fluid was found to be less than that of
the velocity of the fluid layer in an analysis concluded
by Frater [5] where the elastic parameters were taken to
be small, which is physically unacceptable. These solu-
tions are valid adjacent to the bounding surface. Frater
used the exact result of the characteristic equation in a
steady state. The characteristic equation obtained in this
problem is a cubic one. For the evaluation of unknown
constants, Frater proposed one condition. As per the
condition, suitable roots are only those that have a Taylor
series expansion in viscoelastic parameter (k1). This new
approach is the same as that of the condition k1 → 0 (in
the case of Newtonian fluid). Puri and Kulshrestha [6]
investigated the problem of elastico-viscous fluid past
a plate moving with a velocity that is time-dependent
on its plane. Heat transfer stagnation point flow of
an elastico-viscous fluid with variable temperature was
studied by Soundalgekar and Vighnesan [7]. Later on,
elastico-viscous fluid flow over a semi-infinite flat plate
was investigated by Soundalgekar and Murty [8,9].
Foote et al [10] discussed some exact solutions for
the Stokes problem of an elastico-viscous fluid. They
pointed out that the limitations on the solution for flow
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problem obtained by researchers [2–4,7] can be solved
if we extend the solution to include k1. There is a nat-
ural limit on the values of k1 (0 ≤ k1 ≤ 0.25) for
which we can get the perturbation solution from exact
solutions with the help of Taylor series expansion. In
a series of papers, Ariel [11–15] discussed the exact
solution of the viscoelastic flow problem through the
porous channel. Ariel considered various aspects of
the flow problem together with the hybrid method for
studying viscoelastic fluid flow. In these papers, Ariel
was able to point out the whole scenario of the exact
solution and its advantages. He finally concluded that
the perturbation technique is not guaranteed to produce
the correct results qualitatively or quantitatively; hence,
exact solutions (whether analytical or numerical) must
be considered for solving the original set of equations.
Lawrence and Rao [16] obtained a closed-form solu-
tion for elastico-viscous fluid through an infinite plate
comprising suction and constant heat flux. Lawerence
and Rao [17] obtained two closed-form solutions for
the governing fourth-order nonlinear ODE. Helmy [18]
obtained an exact solution to the oscillatory flow of
elastico-viscous liquid. An incompressible conducting
fluid and Taylor’s series expansion is employed in pow-
ers of k1 to obtain the solution. Siddique et al [19]
discussed some exact solutions of elastico-viscous fluid.
The flow of non-Newtonian fluid over an expanding sur-
face in conjunction with variable viscosity was studied
by Abel et al [20]. Comment regarding this paper has
been published by Pantokratoras [21]. Khan et al [22]
studied an electrically conducting viscoelastic fluid over
an expanding sheet considering various approaches.
Khan [23] examined viscoelastic fluid flow with ther-
mal radiation. Cortell [24] studied mass transfer along
with chemical reaction on two classes of viscoelastic
fluid flow over a porous stretching sheet. Heat and mass
transfer in elastico-viscous fluid with Hall effect has
been discussed by Chaudhury and Jha [25]. Shit and
Haldar [26] studied the thermal radiation effect on MHD
viscoelastic fluid flow. The fluid flow was considered
to be over a stretching sheet with variable viscosity.
Stokes’s second problem for a second-grade fluid has
been studied by Ali et al [27] considering the fluid flow
in a porous medium and derived an exact solution for
the proposed model.

Hamza et al [28] have studied free convection with
slip effect on elastico-viscous fluid through a porous
medium in conjunction with the heat source. The spec-
tral homotopy analysis approach was used by Fagbade et
al [29] to study the free convection of viscoelastic liquid.
The flow was considered to be passed on an accelerating
permeable surface with thermal radiation. Krishna [30]
has analysed Hall and ion slip effects on an elastico-
viscous fluid via a circular cylinder. Again, Hall and ion

slip effects on MHD rotating flow of elastico-viscous
fluid through a porous medium have been investigated
by Krishna et al [31]. The effects of thermal radiation
and viscous dissipation on MHD slip Darcy flow of
viscoelastic fluid over a stretching sheet has been stud-
ied by Wahid et al [32]. Heat transport phenomena of
non-Newtonian MHD fluid flow in a vertical surface
with magnetic and thermal diffusion are explored by
Singh and Seth [33]. Several researchers have used dif-
ferent methods of solutions. The exact solution to the
problem of the time-dependent flow of elastico-viscous
liquid embedded in a porous medium within two parallel
plates was reported by Kulkarni [34]. Later on, unsteady
MHD elastico-viscous fluid flow of second-order type
in a tube of hyperbolic cross-section in porous bound-
ary has been solved by Kulkarni [35] using the exact
solution. The same exact solution was used by Ali and
Khan [36] to study magnetohydrodynamic (MHD) slip
flow and heat transfer over an oscillating and translating
porous plate. The study of MHD unsteady viscoelastic
fluid flow past an infinite vertical plate using an exact
solution was reported by Kumaresan and Kumar [37],
in the presence of thermal radiation. Raju et al [38] also
used a closed analytical method to solve the problem
designed for a non-Newtonian liquid past a vertical plate
in connection with radiation and chemical reaction. EL-
Shehawey et al [39] have obtained an exact solution to
the MHD flow of an elastico-viscous fluid using Laplace
and Hankel transform. Jafeer and Mustafa [40] have
discussed Von Karman’s problem of the infinite disk
in an elastico-viscous fluid. The present study focusses
on the flow of electrically conducting oscillatory vis-
coelastic fluid embedded within a porous medium with
a transverse magnetic field. Moreover, the flow medium
is considered optically thin because the effect of radia-
tive heat transfer is considered in the energy equation.
Thus, the absence of additional body force terms in
the momentum equation and heat energy terms in the
heat equation reduces the present discussion to Helmy
[18]. Comparison of the solutions obtained from Car-
dan’s method and perturbation method as well as with
available results (Helmy [18]) in a particular case pro-
vides consistency of the solutions and conformity of the
effects of the emerging parameters. Regarding applica-
tions of such unsteady boundary value problems, there
are many; problems ranging from the motion of greatly
influenced liquids.

2. Mathematical formulation of the problem

The oscillatory flow of a conducting viscoelastic fluid
embedded in a porous material has been investigated
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in the presence of a transverse magnetic field. The x-
axis runs along the direction of the plate, and the y-axis,
which is perpendicular to the plate, represents the trans-
verse direction. If the plate is infinite, all flow variables
are just functions of time t and space variable y, and
the motion is autonomous along the x-axis. The gov-
erning equations for MHD viscoelastic fluid flow are as
follows:
∂v

∂y
= 0 (continuity equation). (1)

Neglecting the pressure gradient term, momentum equa-
tion can be written as

∂u

∂t
+ v

∂u

∂y
= ν

∂2u

∂y2 − k0

ρ

[
∂3u

∂y2∂t
+ v

∂3u

∂y3

]

+Fx
ρ

− ν

k ′
p
u, (2)

where u and v are the velocity components along and
normal to the plate, ν is the kinematic viscosity, k0 is
the viscoelastic parameter, ρ is the density and k′

p is the
permeability parameter. The x-component of the mag-
netic force F in the absence of excess charge may be
written as

Fx = (J × B)x , (3)

where J and B are current density and magnetic induc-
tion vector, respectively. According to the generalised
Ohm’s law

J = σ (E + V × B) , (4)

where σ and E are the electric conductivity and the
electric field, respectively.

In the absence of electric field, eq. (4) can be written
as

J = σ (V × B) . (5)

The magnetic Reynolds number is considered to be
small because the induced magnetic field is negligible
and insignificant in comparison to the applied field. In
particular, low velocity free convective flow (B = iz B0)
makes this condition physically acceptable for terres-
trial applications. Thus, the final form of eq. (3) can be
written as

Fx = −σuB2
0 . (6)

It is considered that the plate velocity normal to the flow
is fluctuating with constant non-zero value v0. Integrat-
ing continuity equation (1) yields

v = −v0(1 + εAeiωt ), (7)

where A is a real positive constant, ε is a small parameter
such that εA � 1, v0 > 0 is the suction velocity and

v0 < 0 represents the blowing velocity. The symbol i
stands for the complex imaginary number.

Substituting eqs (6) and (7) in eq. (2) we obtain,

∂u

∂t
− v0(1 + εAeiωt )

∂u

∂y
= ν

∂2u

∂y2

− k0

ρ

[
∂3u

∂y2∂t
− v0(1 + εAeiωt )

∂3u

∂y3

]

− σ B2
0u

ρ
− νu

k ′
p

(8)

subject to the boundary conditions

u = U (t) = U0(1 + εeiωt ) at y = 0

u = 0 as y → ∞, (9)

in which only real parts have physical meaning.
Introducing non-dimensional quantities

ũ = u

U0
, t̃ = v2

0t

ν
, ω̃ = νω

v2
0

, ỹ = v0y

ν
, Ũ = U

U0
,

k1 = k0v2
0

ρν2 , M = σ B2
0ν

ρv2
0

, kp = ν2

k ′
pv

2
0

, (10)

and plugging eq. (10) in eq. (8) and dropping tilde we
have

∂u

∂t
− (1 + εAeiωt )

∂u

∂y
= ∂2u

∂y2

− k1

[
∂3u

∂y2∂t
− (1 + εAeiωt )

∂3u

∂y3

]
− (M + kp)u,

(11)

where k1 is the elastico-viscous parameter. The term
(M + kp) is a combined parameter due to the inclusion
of permeability of porous medium and magnetic field.
Here kp = 0 corresponds to electrical conductivity of
the fluid and M = 0 is a problem in a porous medium.

The corresponding boundary conditions are

u = 1 + εeiωt , at y = 0

u = 0, when y → ∞. (12)

3. Solution for the velocity field

In order to find solution to eq. (11), we consider

u(y, t) = u1(y) + εu2(y)e
iωt + O(ε2). (13)

Substituting eq. (13) in eq. (11) and ignoring (ε2)

terms, we obtain equations for u1(y) and u2(y).

k1u
′′′
1 + u′′

1 + u′
1 − (M + kp)u1 = 0 (14)
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k1u
′′′
2 + (1 − iwk1) u

′′
2 + u′

2 − (M + kp + iw)u2

= −A
(
k1u

′′′
1 + u′

1

)
. (15)

The prime indicates differentiation with respect to y.
The boundary conditions for eqs (14) and (15) are

u1 = 1, u2 = 1 at y = 0

u1 → 0, u2 → 0 as y → ∞ (16)

and the physical condition that the non-Newtonian fluid
reduces to Newtonian under limiting elastic condition,
i.e. for k1 = 0, the model eqs (14) and (15) reduce to the
Newtonian model. We obtain exact solution for eqs (14)
and (15) for any value of k1 using Cardan’s technique
[18]. The approximate solutions for the small elastic
parameter k1 are also obtained in Beard and Walters [2].

3.1 Exact solution for any value of k1

Following Cardan’s technique [18], the exact solution
for the velocity fields u1 and u2 satisfying the boundary
conditions (eqs (16)) can be written as

u1(y) = e−(a2+b2k1)y (17)

u2(y) = i A

ω
(a2 + b2k1) e−(a2+b2k1)y

+
(

1 − i Aa2

ω

)
e−(b+nk1)y − i Ab2k1

ω
e−by, (18)

where

a2 = 1

2

(
1 + √

1 + 4M + 4kp
)

,

b2 = a3
2

2a2 − 1
, n = b2(b + iω)

2b − 1

and

b = 1

2

(
1 + √

1 + 4M + 4kp + 4iω
)

.

Although exact solution is in complex form, velocity
being real quantity, and the real component of velocity
has been considered for discussion.

3.2 The approximate solution for a small elastic
parameter k1

To solve eqs (14) and (15) with boundary conditions
(eq. (16)) we follow Beard and Walters [2] and seek the
solution in the following form for small values of k1:

u1(y) = u10(y) + k1u11(y) + O(k2
1) (19)

u2(y) = u20(y) + k1u21(y) + O(k2
1). (20)

Using eqs (19) and (20) in eqs (14) and (15), and equat-
ing the corresponding coefficient of k1 up to first order,
the following set of perturbation relations are obtained:

Zero order

u′′
10 + u′

10 − (M + kp)u10 = 0 (21)

u′′
20 + u′

20 − (M + kp + iw)u20 = −Au′
10. (22)

First order

u′′
11 + u′

11 − (M + kp)u11 = −u′′′
10 (23)

u′′
21 + u′

21 − (M + kp + iw)u21

= −Au′′′
10 − Au′

11 + iwu′′
20 − u′′′

20. (24)

From eqs (19) and (20), it follows that the boundary
conditions for eqs (21)–(24) are:

u10 = u20 = 1 and u11 = u21 = 0,

at y = 0

u10 → 0, u11 → 0, u20 → 0 and u21 → 0,

as y → ∞. (25)

4. Solution of energy equation

The energy equation for a fluid flow over a flat plate in
the presence of transverse magnetic field with unsteady
injection, heat source and radiation parameter, can be
written as

∂T

∂t
− v0(1 + εAeiωt )

∂T

∂y

+ τ
∂

∂t

[
∂T

∂t
− v0(1 + εAeiωt )

∂T

∂y

]

= α
∂2T

∂y2 − 1

ρcp

∂qr
∂y

+ Q

ρcp
(T∞ − T ) . (26)

We employ the following boundary conditions

T = Tw at y = 0

T → T∞ as y → ∞, (27)

where the subscripts ω and ∞ refer to wall and ambient
condition respectively.

Using Rosseland’s approximation for radiation, we
have

qr = − 4σ

3α0

∂T 4

∂y
. (28)

The constant term Q in eq. (26) can have either posi-
tive or negative values when the wall temperature Tw

exceeds the free stream temperature T∞. When Q < 0,
then the third term of eq. (26) represents heat source and
heat sink when Q > 0. The opposite relationship is also
true. The symbol σ is the Stefan–Boltzmann constant,
and α0 is the absorption coefficient. Temperature differ-
ence within the flow is such that T 4 may be expanded in
a Taylor series. Expanding T 4 about T∞ and neglecting
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higher-order terms, we have

T 4 = 4T 3∞T − 3T 4∞. (29)

On account of eqs (28) and (29), eq. (26) reduces to

∂T

∂t
− v0(1 + εAeiωt )

∂T

∂y

+ τ
∂

∂t

[
∂T

∂t
− v0(1 + εAeiωt )

∂T

∂y

]

= α
∂2T

∂y2 + 1

ρcp

4σ

3α0
4T 3∞

∂2T

∂y2

+ Q

ρcp
(T∞ − T ) . (30)

Let us introduce the dimensionless variables

θ̃ = T − T∞
Tw − T∞

, Pr = ν

α
, τ̃ = v2

0τ

ν
,

β = Q

ρcpv2/ν
, heat source/sink parameter,

N = 3kα0

16σT 3∞
, radiation parameter. (31)

Using relation (31) and dropping the tilde, eq. (30) yields

∂θ

∂t
− (1 + εAeiωt )

∂θ

∂y

+ τ
∂

∂t

[
∂θ

∂t
− (1 + εAeiωt )

∂θ

∂y

]

=
(
N + 1

Pr N

)
∂2θ

∂y2 − βθ. (32)

The corresponding boundary conditions are

θ = 1 at y = 0

θ = 0 as y → ∞. (33)

We solve eq. (32) by assuming that

θ(y, t) = θ1(y) + εθ2(y)e
iωt (34)

subject to the boundary conditions

θ1 = 1, θ2 = 0 at y = 0

θ1 = 0, θ2 = 0 as y → ∞. (35)

Substituting eq. (34) in eq. (32) gives the equation for
θ1(y) and θ2(y).

θ ′′
1 (y) + pθ ′

1(y) − rθ1(y) = 0 (36)

θ ′′
2 (y) + p (1 + iωτ) θ ′

2(y)

−iωp

(
1 + iωτ − iβ

ω

)
θ2(y)

= −Ap (1 + iωτ) θ ′
1, (37)

where

p = PrN

N + 1
and r = βp.

Solution of eq. (36) for θ1 is

θ1(y) = e−ξ y, where ξ = p + √
p2 + 4r

2
(38)

Substituting θ1 in eq. (37) and using boundary condi-
tion (35), we get

θ2(y) = C1[e−ξ y − e−λy], (39)

where

C1 = c

ξ2 − dξ − e
and λ = d + √

d2 + 4e

2
,

with

d = p(1 + iωτ),

e = iωp

(
1 + iωτ − iβ

ω

)

and

c = ξ Ap(1 + iωτ). (40)

5. Results and discussion

The solutions of many fluid mechanics problem are
based on the understanding of the dynamic behaviour
of unsteady boundary layer. Therefore, the effects of
magnetic field, viscoelastic parameter, porosity, suction
parameter, radiation parameter and source parameter
have been calculated and depicted in diagrams. More-
over, the variation of temperature profiles with relax-
ation time have been depicted pictorially. Velocities and
temperature are real quantities. Hence, real components
of velocity and temperature profile are depicted for the
physical interpretation of different parameters on the
flow pattern.

We now discuss about the consequences of each
parameter separately. It should be mentioned that, in
conjunction with the shooting approach, the Runge–
Kutta fourth-order method is used to numerically solve
the perturbation equations for the velocity field.

The Lorentz force, which results from the interaction
of the magnetic field and current in a viscoelastic fluid,
is illustrated in figure 1.

It is evident that Lorentz force opposes the motion
of the fluid and as a result, the velocity decreases at
all points. The effect is more pronounced near the solid
boundary resulting in a two-layer structure. The layer
where viscosity is significant is governed by Navier–
Stokes equations and the other layer, where viscosity is
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M= 4, 2, 0

Perturbation solution

Exact solution

Figure 1. Effect of magnetic parameter on velocity profiles
u(y, t) with ω = 3, A = 1, ε = 0.1, ωt = π , k1 = 0.1 and
kp = 0.
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0
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1

u(
y,

t)

y

k
1
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k
1
=0.2

k
1
=0.4

Figure 2. Effect of elastic parameter on velocity profiles
u(y, t) with ω = 3, A = 1, ε = 0.1, ωt = π , k1 = 0.1,
M = 2 and kp = 0.1.

not significant is governed by Bernoulli equation. The
important feature of figure 1 is that perturbation solu-
tions obtained using viscoelastic parameter as perturbed
quantity coincides well with the closed-form solution
obtained using Cardan’s technique [18,41]. This is in
good agreement with the results obtained by Helmy [18].
At last, the consistency of the solution and conformity
of the results are established.

From figure 2, it is evident that the viscoelastic param-
eter characterising the viscoelastic property of the fluid
reduces the velocity field. Helmy [18] made a sim-
ilar observation, which gives us confidence that the
numerical approach is being applied correctly. When
a viscoelastic liquid flows, the material’s stored energy
overshoots in the form of strain energy due to the addi-
tional dissipative heat energy, which is why there is
a drop in velocity in relation to the elastic parameter.
Although the strain rate in a viscoelastic liquid is small,

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

u(
y,

t)

kp=0
kp=1
kp=2

Figure 3. Effect of porosity parameter on velocity profiles
u(y, t) with ω = 3, A = 1, ε = 0.1, ωt = π , k1 = 0.1 and
M = 2.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

θ(
y,

t)

y

A=0
A=5
A=10

Figure 4. Effect of suction parameter on temperature pro-
files θ(y, t) with ω = 3, ε = 0.1, ωt = π/2, Pr = 2, N = 0
and β = 0.

it is still not a good idea to ignore it, but in a viscous
inelastic liquid, we can ignore it. The strain resulting
from the withdrawal of stress that results in the drop in
velocity is what causes the flow to reverse and return to
its original state.

The influence of permeability of the porous medium
is depicted in figure 3. It is noticed that permeability of
the medium increases with decreasing porosity. Physi-
cally, the drag force tends to increase by decreasing the
velocity field. Again, in all the profiles, the velocity field
decreases smoothly as point of investigation shifts into
the fluid.

This resists the motion that causes the boundary layer
to become thin. In addition, a detailed examination of
figure 4, which depicts the temperature variation caused
by suction at the plate, reveals that fluctuations with
a larger amplitude result in a more gradual decrease in
temperature than velocity profiles. This is due to the fact
that, in contrast to small fluctuation, or steady suction,
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Figure 5. Effect of radiation parameter on temperature pro-
files θ(y, t) with ω = 3, ε = 0.1, ωt = π/2, Pr = 2, A = 1
and β = 0.
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Figure 6. Effect of source parameter on temperature profiles
θ(y, t) with ω = 3, ε = 0.1, ωt = π/2, Pr = 2, A = 1 and
N = 1.

high fluctuation causes heat energy cease to exist in the
fluid layers, resulting in a drop in temperature.

In figure 5 the radiation parameter shows decrease in
temperature and thermal boundary layer thickness with
an increase in the value of radiation parameter N . It is
observed that energy transport into the fluid is decreas-
ing due to the increase in radiation. This is due to the
presence of the extra term in the thermal boundary layer.

Figure 6 is related to the effect of heat source/sink on
the temperature distribution in the presence of radiation
associated with fluctuating suction.

By looking at the graph, it is clear that while temper-
ature decreases with increasing heat source strength, it
rises with increasing heat sink strength. Since it depends
on the suction velocity and kinematic viscosity, it is
obvious from the definition that it does not simply
exhibit the material attribute. The profiles in figure 6
match the numerical solution to the energy eq. (32). In
the free stream, the dimensionless temperature value

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

y

θ(
y,

t)

τ= 0
τ= 1

Figure 7. Effect of relaxation time on temperature profiles
θ(y, t) with ω = 3, ε = 0.1, ωt = π/2, Pr = 4, A = 1,
β = 0.1 and N = 1.

drops to zero from unity at the wall. By taking into
account two factors, physical interpretation can be pro-
vided: (i) Tw > T∞ and β > 0 suggests a heat sink.
There is a rapid drop of temperature as the heat flow-
ing from the wall is absorbed, (ii) when Tw > T∞ and
β < 0, the heat source causes a rise in temperature in
the entire boundary layer.

Figure 7 shows the variation of fluid temperature with
relaxation time. The energy equation considered here
is a manifestation of the relaxation effects introduced
by a simple modification of Gibbs relation. The effect
of relaxation time is significant for small values of τ

and the effect has no significance for large values of τ .
On close observation, it is seen that for a few layers,
the temperature increases slightly, then decreases and
again increases. Thus, relaxation time induces an oscil-
latory temperature variation. The oscillation has been
reduced due to the presence of the sink term. The oscil-
lation obtained by Helmy [18] is slightly larger due to
the absence of the sink term in the temperature equation.

6. Concluding remarks

Non-Newtonian fluid in the presence of viscoelastic
parameter yields a third-order differential equation.
However, k1 = 0 (Newtonian fluid) resulted in second-
order differential equation. Even then the flow solution
is presented by using Cardan’s technique. The solutions
are physically significant in the sense that a slightly elas-
tic fluid (k1 � 1) produces a boundary layer slightly
different from the viscous fluid. As a consequence of
the above discussion, it is observed that

• Fluctuating suction increases the velocity field and
reduces the temperature distribution.
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• The Lorentz force, i.e., the magnetic field parame-
ter M offers a resistance to the flow. Therefore, the
velocity field decreases.

• Increase in relaxation time causes fluctuation in tem-
perature distribution.

• Presence of radiation parameter transfer energy into
the fluid, and consequently, temperature across the
boundary layer decreases.

• Heat sink parameter reveals a rapid fall in tempera-
ture with the absorption of heat whereas heat source
parameter brings about an increase in temperature of
the entire boundary layer.

• More pores in the medium establish thinning of the
boundary layer.
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