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Abstract. This study investigates the thermal characteristics and irreversibility analysis of the combined electro-
osmotic and electromagnetic flow of a couple stress fluid through a microfluidic channel with constant wall heat flux
boundary condition. The analytical solutions for electromagnetohydrodynamic (EMHD) flow velocity, temperature
field and entropy production distribution are obtained using the physically relevant boundary conditions. Results
show the effects of several factors, including couple stress parameter, Hartmann number, lateral/transverse electric
field parameter and Brinkman number on the temperature transport and entropy generation, particularly, the details
of how the temperature, Nusselt number and entropy generation vary with these parameters. The results demonstrate
that the entropy generation in the channel is strongly dependent on the flow velocity and thermal energy distribution.
In this analysis, the primary focus is placed on the impact of the couple stress parameter on EMHD flow velocity,
heat transfer and entropy generation. The results reveal that when the couple stress physical parameter increases,
the magnitude of temperature and Bejan number decreases. However, the Nusselt number and entropy production
rates have opposite effects towards the channel walls. The present research has enormous practical significance and
can design efficient thermal micro/nanoequipment.

Keywords. Electrokinetics; microchannel; electro-osmotic flow; electromagnetohydrodynamic; couple stress
fluid.
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1. Introduction

Recently, numerous micro/nanofluidic devices such as
micro-electro-mechanical systems (MEMS) and lab-on-
a-chip (LOC) have been extensively used in several
applications (for example, practical separation, medi-
cal diagnostics, energy harvesting, drug delivery and
biochemical progress [1–4]). Fluid flow through a
micro/nanochannel has entered a new phase in fluid
dynamics, with applications in various micro/nanolevel
transport phenomena, especially in biomedical and ther-
mal systems [5–8]. Electro-osmotic flow (EOF) is a
crucial mechanism for transporting electrolyte solution
through micro/nanoscale domains in electrokinetic the-
ory. Due to an applied electric field, a fluid transport
occurs on the unbalanced free ions inside the electric
double layer (EDL), which typically forms at the fluid–
solid interface and this flow is basically called EOF

[9,10]. Many interesting investigations have been pub-
lished on the EOF of Newtonian and non-Newtonian
fluids with respect to various geometrical configurations
[11–15].

Understanding the impact of an applied magnetic
field on electrokinetic flows, which often deal with
microfluidic systems containing aqueous electrolytes, is
a necessary prerequisite for understanding MEMS and
their fabrication [16,17]. A few driving forces mainly
used for pumping of fluids in a microfluidic chan-
nel are pressure-driven micropump, electro-osmotic
pump, electromagnetohydrodynamic (EMHD) pump,
etc. Among the many existing driving mechanisms,
EMHD-actuated micropumps play a unique role in
the transport of liquid through microfluidic channels
[18,19]. The EMHD pumping mechanism is actuated
through the Lorentz force generated because of the com-
bined effect of externally applied magnetic forces and
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electric fields. Over the last decade, many numerical and
theoretical investigations on electromagnetic effects in
various narrow fluidic domains have been reported [20–
22].

The well-known causes for the irreversibilities within
any thermal/mechanical system are heat transfer effect,
magnetic/electric field, viscous dissipation, fluid fric-
tion, etc. These irreversibilities reduce the performance
of the thermal system. Therefore, it is important to
analyse the entropy characteristics and minimise the
irreversibility losses. In any thermofluidic system, the
amount of irreversibility generated can be characterised
and calculated by employing the entropy generation
function [23]. In microfluidic devices, minimising the
entropy can offer a more reliable environment for mov-
ing charged fluids. The principle of reducing entropy
production supports appropriate designs and param-
eter estimation for EOF systems. For the past few
decades, researchers have focussed on the efficient
design of micro/nanofluidic systems to improve the
system performance in energy utilisation. There are
important research findings that have been conducted
on entropy generation with different Newtonian and
non-Newtonian fluids with respect to various geomet-
ric aspects [24–33]. Xie and Jian [34] theoretically
scrutinised the two-layer electro-osmotic and magneto-
hydrodynamic flow of two immiscible fluids in a straight
microchannel. Mondal et al [35] analysed entropy gen-
eration and thermal characteristics of EMHD flow by
taking Newtonian fluid with Navier-slip boundary con-
dition at the wall of a vertical microchannel. Recently,
many researchers have examined thermal energy trans-
port and entropy generation in the literature under the
influence of electro-osmotic and electromagnetic force
in a microscale/nanoscale environment [36–42]. These
studies are mostly linked to numerous EMHD numeri-
cal and analytical studies. As previously said, all these
works are primarily explored using the viscous medium
as a flow domain for investigating the promising poten-
tial of Newtonian fluids.

Micro/nanofluidic systems have many engineering
and industrial applications, especially in transporting
biofluids such as blood, plasma, sperm, serum, saliva,
etc. [43–45] Recently, non-Newtonian fluid models have
become more important in designing and manufactur-
ing small-scale devices in electrokinetic theory. Stokes
[46] introduced the concept of polar effects in continu-
ous theory and later established the couple stress fluid
(CSF) model, a non-Newtonian model. The standard
Cauchy stress that distinguishes Newtonian models is
defined in this model. The model’s complex rheological
behaviour involves fourth-order derivative terms in the
momentum transport equation. This model illustrates
the full effects of couple stresses (i.e., stresses caused by

the spin of microelements). Recent research on the CSF
model has gained much attention in describing the rhe-
ological behaviour of the flow dynamics with respect to
different geometrical environments without considering
any imposed electric field [47–49] and including applied
electric field effects [50–53]. The electromagnetic inter-
action force with couple stress effects is taken into
account to examine the thermal transport and entropy
production rate of the system in our study, which has
been sparsely reported in the literature.

Based on the above investigations, it is intended
to analyse hydrodynamic, thermal transport and irre-
versibility analysis of EMHD flow of CSF through a
micro/nanofluidic channel. The analytical solutions for
EMHD flow velocity and energy transport in the flow
domain are presented with suitable boundary conditions.
The results of the present study (velocity and tempera-
ture profiles) are validated with the existing results. The
dependence of EMHD flow velocity, energy distribu-
tion and entropy generation on couple stress parameter,
Hartmann number and other active parameters present
in this investigation will be illustrated graphically. The
influence of a couple stress parameter on EMHD flow
velocity, temperature profile and entropy distribution is
the prime concern of this work. Moreover, the present
investigation reveals that the magnitude of dimension-
less temperature and entropy generation have the same
trend with couple stress parameter.

2. Present geometric and model description

In this article, we choose the flow domain as a
micro/nanofluidic channel of length L , width W and
height 2H filled with a non-Newtonian (couple stress
fluid) electrolyte solution as represented in figure 1. The
width and height of the microchannel are very much
smaller than its length, i.e. 2H < W � L . A uni-
form zeta potential (ζ ) is considered at the channel
walls. The imposed axial and transverse/lateral elec-
tric field strength E = (

Ex , Ey, 0
)

is considered along
with the axial (flow) and transverse directions, respec-
tively. The applied constant and uniform magnetic field
B = (0, 0, B0) is considered along the normal direction
of the flow. Furthermore, we have assumed a uniform
surface zeta potential and magnetic field, which does
not affect the electric potential distribution throughout
the cross-section of the microchannel [19]. Constant
and uniform heat flux q ′′

w is applied at the walls of the
microchannel. Moreover, it is assumed that the fluid flow
is driven by the combined electromagnetic force in the
desired direction of a micro/nanochannel.
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Figure 1. Schematic representation of the present model for
the combination of electric, pressure and magnetic driven flow
through a horizontal microchannel.

2.1 Details of the theoretical solution of a steady
EMHD flow and potential distribution inside the
channel confinement

We now begin this section with details of the electric
potential distribution in the channel. The well-known
Poisson equation in the field of electrokinetic theory
describes the net ionic/electric charge density inside the
EDL and its mathematical representation is given by
[21,22]

d2ψ ′

dz′2
= −ρe

ε
, (1)

where ψ ′ is the electric potential, ρe is the net charge
density and ε is the dielectric constant of the electrolyte
solution.

For a symmetric electrolyte solution, the ionic charge
density can be represented using Boltzmann distribution
[10], i.e. ρe

(
z′

) = −2n0z0e sinh
(
z0eψ

′/kBTab
)
. We

consider that the electric potential is much smaller than
the thermal potential, i.e., z0eψ

′ ≤ kBTab. Therefore,
the modified form of eq. (1) by applying Debye–Hückel
linear approximation

(
sinh

(
z0eψ

′/kBTab
) ≈ z0eψ

′
/kBTab) takes the following form:

d2ψ ′

dz′2
= κ2ψ ′, (2)

where n0 is the ion bulk concentration of the solution,
e is the free electron charge, z0 is the valence, kB is
the Boltzmann constant, Tab is the absolute temperature

and κ = (2n0e2z0
2/εkBTab)

1/2

is the inverse of Debye
length or Debye–Hückel parameter.

The suitable boundary conditions for the distribution
of electrical potential in the EDL are considered in the

following way:

dψ ′

dz′

∣
∣∣
∣
z′=0

= 0 and ψ ′∣∣
z′=H = ζ. (3)

Therefore, the net ionic charge density ρe in the
microchannel can be evaluated using eqs (1)–(3)

ρe
(
z′

) = −εκ2ζ cosh
(
κz′

)
/cosh (κH). (4)

The existence of an applied magnetic field may alter
the ionic distribution. However, the electric potential
will then be redistributed throughout the channel. Due
to the small amount of electromagnetic induction, the
effect of the magnetic field on the EDLs can be ignored
[19].

After obtaining the electrical potential inside a
micro/nanochannel, we would like to present the math-
ematical approach for EMHD flow field. The following
equations govern the transport equations for the EMHD
flow of CSF in the flow domain [52,53]:

Continuity equation

∇ · q = 0 (5)

and momentum equation

ρ

[
∂q
∂t ′

+ (q · ∇)q
]

= 1

2
(∇ × (ρc)) − ∇P − μ (∇ × ∇ × q)

−η (∇ × ∇ × ∇ × ∇ × q)

+ (λ + 2μ) ∇ (∇ · q) + F, (6)

where q is the velocity field, ρ is the fluid density,
(λ, μ) are the viscosity coefficients, c is the body cou-
ple per unit mass, P is the pressure, η is the couple
stress viscosity coefficient and F is the body force term
which consists of both electrical force and Lorentz force
and can be represented as F = ρe E + J × B. Here,
J = σ (E + q × B) is the current density vector and σ

is the electrical conductivity of the fluid.
A few additional assumptions are specified now

for the present investigation apart from the above-
mentioned assumptions:

• The flow is regarded to be thermally fully developed,
laminar, steady and incompressible, while the CSF
model describes the non-Newtonian characteristics.

• The physical dimensions of the microchannel 2H <

W � L show that the microchannel’s height and
width are smaller than the microchannel’s length.
This turns the study into the unidirectional flow.
Therefore, the transient EMHD flow velocity in the
flow domain can be expressed as q = (

u′(z′), 0, 0
)
.
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• We exclude the entire couple stress tensor analy-
sis and the body couple term components from this
study.

• A low magnetic Reynolds number is considered,
which is one of the important assumptions in the
magnetohydrodynamic analysis (Rem = σeμeuref/

lref ) where uref is the reference velocity scale,
lref is the reference length scale and μe is the
magnetic permeability. The order of Rem is about
10−5 (Rem � 1) in a typical micro/nanochannel
flow. Hence, the induced magnetic field eventually
becomes independent of the flow velocity.

The modified form of momentum conservation eq. (6)
using the above assumptions and eq. (4) becomes

− dp

dx ′ + μ
d2u′

dz′2
− η

d4u′

dz′4
− κ2 εExζ

× cosh
(
κz′

)

cosh (κH)
+ σ EyB0 − σeB

2
0u

′ = 0. (7)

The detailed derivation of the body force term is pre-
sented in the Appendix. The physically relevant bound-
ary conditions for steady EMHD flow pattern in the flow
domain are given by

u′ (z′
)∣∣
z′=±1 = 0 and

d2u′

dz′2

∣
∣
∣∣
z′=±1

= 0. (8)

To reduce the physical quantities appearing in eq. (7),
we consider the following non-dimensional variables
and suitable parameters in this analysis:

z = z′

H
, u = u′

UHS
, K = κH, S = EyH

UHS

√
σ

μ

and

Ha = B0 H

√
σ

μ
, (9)

where UHS = −εEx ζ/μ is the reference electro-
osmotic velocity, K is the electrokinetic width of the
EDL, S is the dimensionless transverse electric field
parameter and Ha is the Hartmann number.

Applying the above non-dimensional quantities to eqs
(7) and (8), we get the non-dimensional form of momen-
tum transport and boundary conditions as follows:

� + d2u

dz2 − 1

γ 2

d4u

dz4 − K 2 cosh (Kz)

cosh (K )

+S Ha − Ha2 u = 0, (10)

u|z=±1 = 0 and
d2u

dz2

∣∣
∣
∣
z=±1

= 0, (11)

where

� = PH2

μUHS

is the dimensionless pressure gradient parameter,

γ =
√

μ H2

η
is the couple stress parameter.

Therefore, the EMHD flow velocity in the flow
domain can be obtained using the aforementioned
boundary conditions represented in eq. (11) and is given
by

u (z) = C1 cosh(α1z) + C2 cosh(α2z)

+C3 cosh(Kz) + C4, (12)

where

α1 = ±
√

γ 2 − √
γ 4 − 4 γ 2Ha2

2
,

α2 = ±
√

γ 2 + √
γ 4 − 4 γ 2Ha2

2
,

C1 = δ2 − δ1 α2
2(

α2
2 − α2

1

)
cosh(α1)

,

C2 = δ1 α2
1 − δ2(

α2
2 − α2

1

)
cosh(α2)

,

C4 = � + S Ha

Ha2 ,

C3 = γ 2 K 2
(
K 4 − γ 2 K 2 + γ 2 Ha2

)
(cosh(K ))

,

δ1 = C3 cosh(K ) + C4,

δ2 = C3K
2 cosh(K ) .

2.2 Exact solution of the energy distribution in the
channel

The governing equation for thermal energy transfer in
the flow domain for the present analysis can be repre-
sented as follows:

ρ cp

(
∂T ′

∂t
+ q · ∇T ′

)
= k f ∇2T ′ + μ� + J · J

σe
,

(13)

where T ′ is the local temperature of the fluid, cp is the
specific heat at constant pressure, k f is the thermal con-
ductivity of the fluid, σe is the liquid electrical resistivity,
J is the rate of volumetric heat generation due to Joule
heating and � is the viscous dissipation.

We assume that the EMHD flow is steady, ther-
mally fully developed with constant properties within
the microchannel. The unsteady energy equation turns
into the following form [22,42]:

ρ cp u
′ ∂T ′

∂x ′ = k f

(
∂2T ′

∂z′2
+ ∂2T ′

∂x ′2

)
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+μ

(
du′

dz′

)2

+ η

(
d2u′

dz′2

)2

+σ(Ex
2 + Ey

2) + σ(B2
0u

′2 − 2EyB0 u
′). (14)

The penultimate term in the right-hand side of eq. (14)
arises due to the combined electro and magnetic effects.

For the thermally fully developed flow, we have

∂T ′

∂x ′ = ∂T ′
w

∂x ′ = ∂T ′
m

∂x ′ = constant

and

∂2T ′

∂x ′2 = 0.

Here, T ′
w and T ′

m are the wall and the bulk mean tem-
peratures, respectively.

The modified temperature distribution equation can
be written as

ρ cp u
′ ∂T ′

m

∂x ′

= k f

(
d2T ′

dz′2

)
+ μ

(
du′

dz′

)2

+ η

(
d2u′

dz′2

)2

+σ(E2
x + E2

y + B2
0 u

′2 − 2EyB0u
′). (15)

To solve eq. (15), we adopt the following thermal bound-
ary conditions:

T ′∣∣
z′=H = T ′

w and
dT ′

dz′

∣
∣∣
∣
z′=0

= 0. (16)

An overall thermal energy balance for an elemental con-
trol volume can written as

2 ρ cp H u′
m dT ′

m

= 2 q ′′
w dx ′ + 2σ (Ex

2 + Ey
2) H dx ′

+σ

∫ H

−H
(B0

2 u′2 − 2 Ey B0 u
′)dz′ dx ′

+μ

∫ H

−H

(
du′

dx ′

)2

dz′ dx ′, (17)

where

u′
m = 1

2 H

∫ H

−H
u′ dz′

is the axial mean velocity. The constant average tem-
perature gradient dT ′

m/dx ′ can be represented from eq.
(17) as

dT ′
m

dx ′ = 1

ρ cp
M = constant, (18)

where

M = 1

2 H u′
[
2 q ′′

w + 2σ
(
Ex + Ey

)
H

+σ B0
2A + μ B

] − 2 σ Ey B0

and the coefficients

A =
∫ H

−H
u′2dz′

and

B =
∫ H

−H

(
du′

dz′

)2

dz′.

Introducing the following non-dimensional variables:

T = T ′ − T ′
w

q ′′
w H/k f

, Br = μU 2
HS

q ′′
w H

,

Sx = σ E2
x H

q ′′
w

and Sy = σ E2
y H

q ′′
w

, (19)

where Sx and Sy are the Joule heat parameters and Br is
the Brinkman number. The dimensionless temperature
distribution within the channel can be obtained from
eq. (17) using the aforementioned non-dimensional vari-
ables and it is represented as follows:

d2T

dz2 = −Br

(
du

dz

)2

− Br

γ 2

(
d2u

dz2

)2

−Br Ha2u2 − (Sx + Sy)

+
[

2HaBr S +
(

2 + 2(Sx + Sy) + β

β1

)]
u, (20)

where

β1 =
∫ 1

−1
u dz, β2 =

∫ 1

−1
u2 dz, β3 =

∫ 1

−1

(
du

dz

)2

dz

and

β = −2Br Ha S β1 + Ha2 Br β2 + Br β3.

The corresponding boundary conditions for solving
the above modified temperature distribution are given
by

T |z=1 = 0 and
dT

dz

∣
∣∣
∣
z=0

= 0. (21)

Therefore, the solution of dimensionless temperature
distribution eq. (20) using the boundary conditions men-
tioned in eq. (21) is given by

T (z) = f (z) − f (z)|z=1, (22)

where the function f (z) is evaluated using the MATHE-
MATICA software and we do not include f (z) expres-
sion in this investigation.

The Nusselt number Nu is one of the most important
dimensionless heat transfer parameters which can be
calculated as follows:

Nu = q ′′
w H

k f
(
T ′

w − T ′
m

) , (23)
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where

T ′
m =

∫ 1
−1 T

′(z′
)
u′ (z′

)
dz′

∫ 1
−1 u

′(z′) dz′

is the mixed-mean temperature of the fluid. Using the
dimensionless temperature profile (eq. (22)), we obtain
the non-dimensional form of T ′

m as

Tm =
∫ 1
−1 T (z) u(z) dz

∫ 1
−1 u(z) dz

= k f

(
T ′
m − T ′

w

)

q ′′
w H

. (24)

The dimensionless expression for the Nusselt number
can be obtained using eqs (23) and (24) and it is defined
as follows:

Nu = − 1

Tm
. (25)

2.3 Entropy generation analysis

We next focus on getting the entropy production rate
inside the channel after obtaining the EMHD flow veloc-
ity and temperature profile in the flow domain. Based
on the aforementioned steady-state EMHD velocity and
temperature transport, the dimensional representation of
the volumetric entropy generation within the system for
the present analysis is given by [22,37]

〈S′〉 = k f

T ′2

(
∂T ′

∂z′

)2

+ σe

|T ′| (E2
x + E2

y) + σe

|T ′| (2EyB0 u
′)

+ σe

|T ′| (B0
2 u′2)+

[
μ

|T ′|
(

du′

dz′

)2

+ η

|T ′|
(

d2u′

dz′2

)2
]

,

(26)

where 〈S′〉 is the dimensional entropy generation. The
first term on the R.H.S. represents the irreversibility
emerging from heat transfer in the fluid; the second and
third terms represent the irreversibility generation from
the Joule heating effect and electrical and magnetic field
interaction. The fourth term brings up the irreversibil-
ity from the applied magnetic field, while the final term
represents the irreversibility associated with the viscous
dissipation effect.

The non-dimensional representation of entropy gen-
eration rate can be obtained by using the characteristic
entropy transfer rate (k f /H2).

〈S〉 = 1

(T + T0)
2

(
dT

dz

)2

+ 1

|T + T0|(Sx + Sy)

+ 1

|T + T0| (2 Br Ha S u) + 1

|T + T0|(Br Ha2 u2)

+ 1

|T + T0|

[

Br

(
du

dz

)2

+ Br

γ 2

(
d2u

dz2

)2
]

, (27)

where

T0 = T ′
w k f

q ′′
w H

is a constant. Another important parameter that can
determine the irreversibility distribution in the channel
is the Bejan number and it is defined as follows:

Be =
1

(T+T0)
2

(
dT
dz

)2

〈S〉 . (28)

3. Model validation

Before proceeding with the significance of base param-
eters (couple stress parameter (γ ), Hartmann number
(Ha), transverse electric field parameter (S), Brinkman
number (Br)) on EMHD flow velocity, temperature and
entropy generation, it is essential to compare/validate
our present model results with the existing/reported
results in the literature. It is worth mentioning that
Chakraborty et al [21] reported the thermal analysis of
electromagnetic flow of Newtonian fluid through a nar-
row fluidic channel. Figure 2 shows a comparison of the
present analytical EMHD flow velocity and the existing
results of Chakraborty et al [21]. A large value of couple
stress parameter, say γ = 50, is considered in this study
for comparing our results and it signifies the nature of
the Newtonian viscous fluid. Further, other parameters
for the same are considered as follows: K = 4, Ha = 1
and � = 1. A perfect agreement is identified in figure 2a
between the current steady EMHD flow velocity and the
electromagnetic flow velocity reported by Chakraborty
et al [21]. Moreover, verifying the exact solution of the
temperature calculated in this study is essential. To vali-
date our energy transport distribution in the microfluidic
channel, we compare the present temperature profile
(see figure 2b) for K = 20, Ha = 1, Br = 0.01 and
� = 1with Jian [22]. It is apparent from figure 2b that
the temperature profiles of the current study and the ana-
lytical temperature obtained by Jian [22] demonstrate a
strong agreement.

4. Results and discussion

4.1 Parametric selection

After verifying the present model results with the
reported results, we next focus on fixing the ranges
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Figure 2. The validation of the present model. (a) Comparison of the current theoretical EMHD flow velocity with Chakraborty
et al [21] and (b) comparison of the current analytical temperature distribution with Jian [22].

of the essential parameter values. The most important
selective parameters which govern the transport char-
acteristics for EMHD flow velocity, temperature and
irreversibility in the microchannel are as follows: couple
stress parameter (γ ), Brinkman number (Br), Hart-
mann number (Ha), Nusselt number (Nu), transverse
electric field parameter (S) and Bejan number (Be). In
the present investigation, to achieve O(Ha) ∼ 0–10
[20–22], we consider that the viscosity of the fluid is
μ ∼ 10−3–1.5 × 10−3 Pa s, the order of half-height
of the channel is H ∼ 10–500 μm, electrical conduc-
tivity is σ ∼ 2.2 × 10−4–104 S/m and the range of
magnitude of the applied magnetic field is B0 ∼ 0.01–
6 T. In addition, the lateral electric field has the order
O(Ey) ∼ 0–30 V/m and the reference electro-osmotic
velocity has the order O(UHS) ∼ 100 μm/s. Therefore,
the range of parameter O(S) ∼ 0−6×103 [20–22] can
be achieved. The range of the couple stress parameter
γ ∼ 0.5–10 [48,52,53] and the range of Brinkman num-
ber Br ∼ 0–0.1 [21,22] are considered in this research.
Other dimensionless parameters obtained in this study
are determined by analysing widely available literature
[21,22]. Unless otherwise mentioned, K = 20, � = 1
and Sx + Sy = 1.

The practical/experimental range of appropriate dimen-
sionless flow-driven parameters has been mentioned.
The following sections will explain how these param-
eters affect flow velocity, temperature and entropy
generation distributions.

4.2 Effect of couple stress parameter on EMHD flow
velocity

The impact of γ on the dimensionless EMHD flow
velocity in the channel at two different values of
Ha (Ha = 0.5 and 10) is depicted in figure 3.
When H = 0.5, an augmentation in flow velocity

with γ in the channel confinement is observed (see
figure 3a). This is due to the important effect of a
combined applied electromagnetic force, as the non-
Newtonian parameter γ in the flow domain always
attempts to oppose the fluid flow moment. However,
when Ha = 10, first the EMHD flow velocity grows
towards the channel’s wall/boundary and gradually
decreases towards the microchannel’s centre (see fig-
ure 3b). It can be elucidated that, in the case of large
Ha the opposing/retarding force term (− σ B2

0u
′) plays

a dominant role in declining the flow velocity near the
channel’s centre line compared to the driving/aiding
force (σ EyB0) which is present in eq. (7).

4.3 Effect of Hartmann number on temperature
distribution

Figure 4 elucidates the impact of Ha on the non-
dimensional temperature distribution. The variations
of temperature profile with small (Ha ≤ 1) and large
(Ha > 1) values of Ha are described in the absence
(S = 0) and the presence (S = 10) of a transverse
electric field in figures 4a–4b and figures 4c–4d, respec-
tively. The case of S = 0 describes the only nature
of the axial electric field, which is applied along the
axial/flow direction of the channel by the imposed
electric current. For S = 0, the variations in the tem-
perature distribution with increasing values of Ha, i.e.,
smaller Ha ≤ 1 and higher Ha > 1 are decreas-
ing as depicted in figures 4a and 4c. The reason for
decreasing temperature distribution in the flow domain
is that the augmenting magnitude of Ha reduces the
flow velocity, especially in the absence of an imposed
electric field, which can in turn lower the convective
energy transport in the channel. Therefore, the diffusive
energy transport can be increased because of the con-
stant temperature at the wall. Also, the magnitude of
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Figure 3. The variation of non-dimensional EMHD flow velocity for diverse values of γ when (a) Ha = 0.5 and (b) Ha = 10
(K = 20, S = 1,� = 1).

(
T ′

w − T ′)decreases consistently, resulting in a decrease
in the fluid’s local temperature. Thus, the dimension-
less temperature decreases with increasing values of Ha
for S = 0. However, when S = 10, the thermal dis-
tribution increases for smaller values of Ha and then
decreases for grater values of Ha, as shown in figures
4b and 4d. When S = 10, the supporting and oppos-
ing forces coexist in the flow domain. For Ha ≤ 1, the
convective energy transfer is more dominant than the
thermal diffusion, resulting in the increase of

(
T ′

w − T ′).
Subsequently, this leads to the enhancement in the tem-
perature in the case of smaller values of Ha as depicted
in figure 4b. Further, it can be identified from figure
4d that the thermal energy decelerates for higher val-
ues of Ha. This is mainly because the influence of
supporting/driving magnetic force succeeds over the
effect of opposing/retarding magnetic force.

4.4 Effect of couple stress parameter and Brinkman
parameter on temperature distribution

We are now very much interested in showing the impact
of γ and Br on fluid temperature in figure 5. It should
be emphasised here that, in this analysis, γ = √

μH2/η

represents the relative measure of viscous force to the
viscoelasticity/couple stress effect. From figure 5a, it
can be seen that the nature of temperature distribution is
decreasing with γ . The evidence for this behaviour may
be due to the enhancement of couple stress effect among
fluid particles in the flow region that decreases the fluid
temperature, especially in the middle portion. Also, the
temperature profiles are parabolic in nature in the chan-
nel. Figure 5b depicts the impact of Br on dimensionless
temperature. One can easily understand from this figure
that the temperature increases with increasing values of
Br . This is because of viscous dissipation, which can
be an energy source to enhance the temperature in the
channel.

4.5 Effect of Hartmann number on Nusselt number

To understand more details about the heat transfer
characteristics in the microparallel channel, the pro-
files of Nu vs. Br for diverse values of Ha are
shown in figure 6. It is interesting to mention here
that the Nusselt number variations show a decreasing
behaviour for the corresponding magnitude of Br . It
is clearly understood from figures 6a and 6b that the
Nusselt number increases with increasing values of
Ha, i.e., both smaller and higher values of Ha. It is
mainly because the effect of an imposed magnetic field
is stronger than the applied transverse electric field.
Consequently, the temperature difference

(
T ′

w − T ′
m

)

decreases because of significant viscous heating near
the boundary of the channel. Therefore, the mag-
nitude of Tm reduces consistently, which enhances
Nu.

4.6 Effect of couple stress parameter and transverse
electric field parameter on Nusselt number

Further, the impact of γ and S on Nu vs. Br is
depicted in figures 7a and 7b, respectively. From
figure 7a, one can clearly understand that Nu first
increases up to the particular range of Br, i.e., about
0.04 and then decreases continuously further from the
value of Br = 0.06 onwards, for increasing values
of γ . Figure 7b illustrates the Nu profiles with Br
for diverse values of S. It is noticed from figure 7b
that Nu declines with increasing values of S. This is
because the transverse electric field parameter usually
enhances the fluid flow in the channel. Subsequently,
the EMHD flow velocity in the domain increases, which
causes the reduction effect on thermal transport. Even-
tually, the temperature profiles in the flow domain
decrease.
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Figure 4. The variation of temperature profile for diverse values of Ha when (a) S = 0, (b) S = 10, (c) S = 0 and (d)
S = 10 (K = 20, Br = 0.01, γ = 10,� = 1).

Figure 5. The variation of temperature profile for diverse values of (a) γ and (b) Br (K = 20, S = 1, Ha = 1,� = 1).

4.7 Effect of Hartmann number on entropy generation

Figure 8 shows the variations of dimensionless entropy
generation for diverse values of Ha, including lower
and higher values of Hartmann number. It can be seen
from figures 8a and 8b that the pattern of entropy gener-
ation variation is opposite for smaller and larger values
of Ha. It is essential to note that increasing the magni-
tude of the magnetic field parameter can reduce entropy.
Also, the entropy production augments with respect to
Ha from the centre to the channel walls, reaching its

maximum value at the wall, as seen in the above fig-
ure. This is because most of the changes in temperature
profiles occur at the wall.

4.8 Effect of couple stress parameter and Brinkman
parameter on entropy generation

The effects of parameters γ and Br on entropy gener-
ation are presented in figures 9a and 9b, respectively.
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Figure 6. The variation of Nu for diverse values of Ha (a) Ha ≤ 1 and (b) Ha > 1 (K = 20, Br = 0.01,
γ =10,� = 1, S = 1).

Figure 7. The variation of Nu for diverse values of (a) γ and (b) S (K = 20, Ha = 1,� = 1).

Figure 8. The variation of entropy generation for diverse values of Ha (a) Ha ≤ 1 and (b) Ha > 1
(K = 20, Br = 0.01, γ = 10,� = 1, S = 1).

From figure 9a, it is clear that the entropy profiles
first decrease near the centre and then increase rapidly
towards the wall of the channel. Finally, the entropy
generation is minimum in the core region of the chan-
nel. However, the entropy generation grows consistently
from the centre of the channel to the wall concerning Br
values, as shown in figure 9b. From this plot, it can be
observed that the entropy generation is minimum and
remains constant near the middle of the channel. This

may be due to the effect of significant retarding magnetic
force which is more than the driving magnetic force.
This influences the strong viscous dissipation effect.
Thus, an increase in Br leads to an increase in entropy
generation. Overall, from these figures, it can be seen
that Br produces a marked enhancement in entropy pro-
duction rate as compared to γ . This indicates that γ

can be used to optimise the entropy production in the
channel.
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Figure 9. The variation of entropy generation for diverse values of (a) γ and (b) Br (K = 20, Ha = 1,� = 1, S = 1).

Figure 10. The variation of Be for diverse values of (a) γ and (b) Br (K = 20, Ha = 1,� = 1, S = 1).

4.9 Effect of couple stress parameter and Brinkman
parameter on Bejan number

Finally, the distributions of Be for diverse values of γ

and Br are depicted in figures 10a and 10b, respectively.
It is obvious from figure 10a that the Bejan number is
decreasing consistently for increasing values of γ . It
happens because the viscous resistance of the fluid flow,
which shows the significance of γ in the flow domain
and eventually, the magnitude of the entropy genera-
tion decreases in the presence of electromagnetic force.
Moreover, the Bejan number grows gradually from the
middle portion of the channel to the wall. It can be seen
from figure 10b that the Bejan number profiles are first
increasing from the centre line of the channel and then
decreasing near the channel boundary with respect to
the Br values. Further, figures 10a and 10b show that
the Bejan number is zero for both active parameters γ

and Br at the centre of the channel.

5. Conclusion

The heat transfer and irreversibility analysis of EMHD
flow of couple stress fluid in a microparallel channel are

analysed. The EMHD flow velocity and temperature dis-
tribution in the channel are first obtained theoretically
to analyse entropy generation characteristics. The exact
solutions of flow velocity and temperature are validated
with reported data in the literature. The impacts of flow
parameters/governing parameters on temperature, Nus-
selt number, entropy generation and Bejan number are
demonstrated graphically. The present study establishes
the importance of couple stress parameter on the fluid
medium, along with the electromagnetic influence. The
impact of couple stress parameter on EMHD flow veloc-
ity, heat transfer and entropy generation is one of the
prime concerns in this analysis. It is identified that in the
absence of an applied transverse electric field, the mag-
netic field attempts to reduce the fluid flow and finally
diminishes the magnitude of dimensionless temperature
with the Hartmann number. However, in the presence of
an applied transverse electric field, the magnitude of
non-dimensional temperature profile first increases for
low values of Hartmann number. It then decreases for
higher values of Hartmann number. It is noticed that
the Nusselt number shows the increasing trend consis-
tently with Hartmann number. It is observed that the
magnitude of temperature, Nusselt number and entropy
generation have the same trend with an increase in cou-
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ple stress parameter. This study further reveals that the
irreversibility rate highly depends on the velocity and
temperature distribution in the channel.
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Appendix A. The derivation of body force term

For the identical geometry and flow conditions, here
we present the expression of the body force which is
involved in eq. (7).

In our research, the electric field

E =
⎛

⎝
Ex
Ey
0

⎞

⎠

is applied along the x ′ and y′ directions, respectively
and a magnetic field of strength

B =
⎛

⎝
0
0

B0 + Bi

⎞

⎠

is imposed along z′ direction and the velocity across the
domain is obtained as

q =
⎛

⎝
u′
0
0

⎞

⎠ ,

where B0 is the imposed magnetic flux and Bi is the
induced magnetic field.

We assume a very small magnetic Reynolds number in
this analysis (Rem � 1). This implicitly indicates that
the interaction of the induced magnetic field (Bi ) with
the motion of electrically conducting fluid is expected to
be small compared to the imposed magnetic field (B0),
i.e., Bi � B0 [54].

Therefore, the applied magnetic field strength takes
the following form:

B =
⎛

⎝
0
0
B0

⎞

⎠ . (A.1)

The electromagnetic body force in the flow/axial
direction can be represented in the following way under
the assumption of unidirectional flow and due to the
applied electric and magnetic fields,

F = Felec + Fmag, (A.2)

where

Felec =
⎛

⎝
ρeEx

0
0

⎞

⎠

=

⎛

⎜⎜
⎝

−εκ2ζ Ex
cosh

(
κz′

)

cosh (κH)
0
0

⎞

⎟⎟
⎠ ,

using eq. (4) and

Fmag = J × B

=
∣
∣∣
∣∣
∣

i j k
0 σ

(
Ey − u′B0

)
0

0 0 B0

∣
∣∣
∣∣
∣

=
⎛

⎝
σ EyB0 − σ B2

0u
′

0
0

⎞

⎠ .

∴ F = Felec + Fmag

=

⎛

⎜⎜
⎝

−εκ2ζ Ex
cosh

(
κz′

)

cosh (κH)
+ σ EyB0 − σ B0

2u′

0
0

⎞

⎟⎟
⎠ .
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