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Anisotropic compact star in modified Vaidya–Tikekar model
admitting new solutions and maximum mass
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Abstract. In this paper, we try to demonstrate a method to generate new class of exact solutions to the Einstein’s
field equations (EFE) by introducing a new parameter (κ) in the Vaidya–Tikekar metric ansatz describing a static
spherically symmetric relativistic star having anisotropic fluid pressure. We particularly obtained solutions in closed
form in terms of trigonometric functions. Introduction of a new parameter in the metric ansatz predicts some
interesting results. In our formalism, the main feature of the new class of solutions is that one can study the effects
of the new parameter (κ) on different physical parameters of a compact object such as its mass, radius, surface-
redshift etc. Moreover, if we switch off the new parameter (κ = 0), it also gives new realistic solutions which are
the modified version of isotropic Matese–Whitman solutions in the presence of pressure anisotropy. Consequently,
we present here that a plethora of well-known stellar solutions can be identified as sub-class (κ = ±1) of our
class of solutions. We predict here the maximum mass of compact object in isotropic case and also in the presence
of pressure anisotropy. The central density is found to be as high as ∼1015 gm/cc and thus the present model is
capable enough to accommodate a wider class of compact objects. We examine the physical viability of solutions
for studying relativistic compact stars and it is found that all the stability conditions are satisfied.
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1. Introduction

The discovery of general theory of relativity (GTR) by
Einstein in the year 1915 laid the foundation of rela-
tivistic astrophysics and served as a tool to study the
properties of compact objects such as neutron stars (NS),
strange stars (SS), black holes (BH) etc. Since then,
strenuous efforts have been made to obtain singularity-
free solution of Einstein’s field equations (EFE). In the
context of GTR, Schwarzschild [1] obtained two exact
solutions of EFE. The first solution describes the exterior
space–time geometry of perfect fluid sphere in hydro-
static equilibrium whereas the second one is known as
the interior Schwarzschild solution and is related to the
interior geometry of a fluid sphere having homogeneous
distribution of energy density. It is to be mentioned that
a large number of exact solutions of EFE are known as
of now but not all of them give physically relevant stellar
model of compact objects. In [2,3], a number of solu-
tions are available corresponding to static, spherically

symmetric matter distribution. Conventionally, one may
obtain stellar models by integrating TOV equation [4],
from the centre to the surface of the star where the
radial pressure drops to zero, for a particular choice
of equation of state (henceforth EOS) starting from a
known value of central density/pressure. Alternatively,
one may solve EFE to obtain stellar models considering
suitable forms of metric potential. Due to inherent non-
linearity in the field equations which are actually a set of
second-order differential equations, a numerical proce-
dure may be adopted to obtain their plausible solutions.
Recent studies reveal that masses and radii of a large
number of compact objects, namely X-ray pulsar Her
X-1 [5], X-ray burster 4U 1820-30 [6], X-ray sources
4U 1728-34 [7], PSR 0943+10 [8], PSR 1937+21 [9]
etc. are not in good agreement with the available stan-
dard neutron star models. Such objects have both mass
and radius less than that of neutron stars but have greater
compactification factors (ratio of mass to radius). The
behaviour of matter due to its high density especially
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near the central region is not well known of such super-
dense objects and hence no relevant information about
the EOS is available which remains a major unsolved
issue in astrophysics till date. Practically, the maximum
allowed mass of any neutron star is EOS-dependent.
A wide variety of neutron star masses (1.46–2.48)M�
where M� is the solar mass expressed in km and radii
(9–11.7) km have been predicted [10] based on different
EOSs. It is pointed out in [11] that majority of the pulsars
fall within a narrow mass range (1.35 ± 0.04)M�. NS
mass, radii measurement and their implications on EOS
have been addressed in [12,13]. After the conjecture of
Bodmer [14] and Witten [15] that strange quark matter
may be the true ground state of hadrons, a new category
of stars known as ‘strange stars’ has been hypothesised.
Since then, different equations of states and their impli-
cations on the size of a compact star have come in the
theory [16–18]. Lattimer and Prakash [19] studied the
structure of neutron stars by obtaining analytic solu-
tions of EFE and carefully constrained the EOS. To
make the EFE tractable and to obtain physically viable
model of superdense stars, Vaidya and Tikekar [20] pre-
sented an alternative approach in which the physical
3-space of the star is assumed to have the geometry
of a three-spheroid. Vaidya and Tikekar [20] proposed
an ansatz for the metric component grr characterised
by two parameters, namely spheroidal parameter λ and
geometrical parameter R in which λ is a free parameter
and R is determined from boundary conditions. Several
investigators have worked on the ansatz proposed by
Vaidya and Tikekar to investigate some physical aspects
of compact objects [21–26]. Knutsen [22] explained
the stability criterion under small radial pulsation in
Vaidya–Tikekar approach. It has been shown that this
model has a scaling property [27]. In some articles,
this model has been used to describe some properties
of HER X-1 and SAX J 1808.4-3658 [28,29]. An alter-
native ansatz was proposed by Tikekar and Jotania [30].
In their model, the physical 3-space of the star has the
geometry of a 3 pseudospheroid immersed in a four-
dimensional Euclidean space. Later, both these models
were generalised in higher dimensions [31,32]. It was
suggested by Ruderman [33] and Canuto [34] that a
pressure anisotropy may be developed inside a super-
dense star if the matter density exceeds that corresponds
to nuclear matter regime. After the theoretical investiga-
tions of Bowers and Liang [35], many research works on
anisotropic stars have been reported. Maharaj and Mar-
teens [36] obtained an anisotropic model which admits
uniform density of matter content. Later, a more realistic
model was developed by Gokhroo and Mehra [37] hav-
ing non-uniform density profile. Generally, in a compact
object, anisotropy may arise due to pion condensation
[38] or phase transition [39]. On the other hand, the

presence of type-3A superfluid [40] or a solid stellar
core also explains the possibility of anisotropic pressure
inside a compact object. Anisotropic matter distribution
with linear EOS can be seen in different articles [41,42].
In this article, we have used modified Vaidya–Tikekar
metric ansatz by introducing an extra parameter denoted
by κ to obtain a general solution of EFE with anisotropic
pressure and study some properties of compact objects
for different values of κ . Therefore, we have now two
independent parameters λ and κ in hand and these two
can be used to fix the EOS. We mainly focussed our anal-
ysis having the value of κ within the range −1 ≤ κ ≤ 1
including κ = 0. In this subclass solution, we note some
interesting results.

The paper is organised as follows: in §2 Einstein field
equations in the presence of anisotropic fluid and its
solutions are presented. The physical requirements of
a realistic anisotropic stellar model are given in §3.
In §4 different matching conditions at the surface of a
compact object are stated. The physical analysis of our
model for different cases are studied in §5. In §6 mass–
radius relation is discussed. Special emphasis is also
given on maximum mass that can be sustained within a
given radius. Physical applications of our model based
on observed mass and radius data of some known com-
pact objects are given in §7. In §8 stability of the model
is discussed with the help of TOV equations, Herrera
cracking condition and adiabatic index. In §9 equation
of state is obtained for different set-up of model param-
eters. Finally, we conclude our work by discussing some
of its remarkable features in §10.

2. Anisotropic stellar model

We consider the interior of a static spherically symmetric
anisotropic star to be described by the following line
element:

ds2 = − e2ν(r)dt2 + e2μ(r)dr2

+r2(dθ2 + sin2 θ dφ2). (1)

EFE is given by

Ri j − 1

2
gi jR = 8πG

c2 Ti j . (2)

We take the energy–momentum tensor describing the
anisotropic pressure in the most general form [31,43]

Tij = diag(ρ, −pr , −pt , −pt ). (3)

Using eqs (2) and (3), the EFEs now take the form

2μ′e−2μ

r
+ 1 − e−2μ

r2 = 8πGρ

c2 , (4)
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2ν′e−2μ

r
− 1 − e−2μ

r2 = 8πGpr
c2 , (5)

e−2μ

[
ν′′ + ν′2 − μ′ν′ − μ′

r
+ ν′

r

]
= 8πGpt

c2 , (6)

where (′) denotes differentiation with respect to the
space coordinate r . We consider a modified Vaidya–
Tikekar metric ansatz by introducing an extra parameter
denoted by κ as given below.

e2μ = 1 + λr2/R2

1 + κr2/R2 . (7)

The ansatz given by eq. (7) reduces to that of pseudo-
spheroidal geometry for κ = 1, spheroidal geometry
for κ = −1 and for κ = λ, the t = constant hyper-
surface represents flat space–time. With this additional
parameter κ , our metric becomes identical with the
metric used in the previous work of Komathiraj and
Maharaj [44]. However, they obtained the solution in
the form of infinite series in powers of radial coordi-
nate. In our present work, we do not apply the series
solution method but obtain a solution in closed form in
the form of trigonometric functions which are shown
to be regular. A similar form of the metric ansatz is
also used by Komathiraj and Sharma [45] for relativis-
tic charged star, by Nasheeha et al [46] for anisotropic
generalisation of isotropic superdense star solutions,
isotropic neutron star models by Thirukkanesh and
Maharaj [47], Thirukkanesh and Ragel [48] and oth-
ers [49–53]. Recently, Mafa Takisa et al [54] applied
this particular form of the metric ansatz to study core
envelope structure of compact relativistic star. However,
we use here a different approach to obtain an analytical
solution for a class of static anisotropic compact stel-
lar object and show that a wider class of solutions to
the EFE are possible by adapting this particular form
of the metric potential. It is noteworthy that our met-
ric ansatz admits some previously obtained solutions,
e.g. (i) superdense star solution by Maharaj and Leach
[23], (ii) Tikekar superdense star model [21] for λ = 7
and κ = −1, (iii) superdense stellar model developed
by Vaidya and Tikekar [20] for λ = 2 and κ = −1
and (iv) Durgapal and Bannerji model [55] for λ = 1
and κ = −1/2. We take the difference between trans-
verse pressure (pt ) and radial pressure (pr ) as a measure
of the pressure anisotropy denoted by 	 = pt − pr
[23,56–59] and using the transformation eν = ψ and
x2 = 1 + κ(r2/R2), we obtain the following second-
order differential equation in ψ :[

1 + λ

κ
(x2 − 1)

]
ψxx − λ

κ
xψx + λ

κ

(
λ

κ
− 1

)
ψ

−8πGR2 [1 + λ
κ
(x2 − 1)]2

κ(x2 − 1)
	ψ = 0, (8)

where we have considered c = 1. Now using the trans-
formation

z =
√

λ/κ

λ/κ − 1
x

in the differential equation (8), we get the following
form:

(1 − z2)ψzz + zψz +
[

1 − λ

κ
(1 − α)

]
ψ = 0. (9)

Here we consider the expression of 	 as

	 = α λ2

κ
(x2 − 1)

8πGR2[1 + λ
κ
(x2 − 1)]2

. (10)

This expression of 	 is so chosen to ensure the regular-
ity at the centre of the star and to obtain well-behaved
relativistic solution similar to that obtained by previous
investigators for the field eqs (4)–(6). In eq. (10) we note
that 	 vanishes at the centre as pr = pt at the centre. It
is also evident from eq. (10) that for κ = 1 which corre-
sponds to pseudospheroidal geometry, 	 takes the form
as mentioned in ref. [60] and κ = −1 corresponds to
spheroidal geometry, 	 takes the form as used by Kar-
makar et al [61]. To obtain general solution of eq. (9),
we consider the following cases:

Case I: κ < 0
In this case, we rewrite eq. (9) in the form

(1 − z2)ψzz + zψz + (� + 1)ψ = 0, (11)

where we have taken � = λ
γ
(1 − α), γ = −κ and note

that eq. (11) is similar to that obtained in refs [62,63].
Now differentiating eq. (11) with respect to z, we get
the following equation:

(1 − z2)ψzzz − zψzz + (� + 2)ψz = 0. (12)

We now introduce the parameter φ = (dψ/dz) so that
eq. (12) reduces to the form

(1 − z2)φzz − zφz + (� + 2)φ = 0. (13)

Finally, considering the parametrisation z = cos(ξ), the
following solution is obtained:

ψ = 1

n2 − 1
[a2 {n sin(ξ) cos(nξ) − cos(ξ) sin(nξ)}

−a1 {n sin(ξ) sin(nξ) + cos(ξ) cos(nξ)}] , (14)

where n = √
� + 2. Equation (14) can further be

reduced to a simpler form if we take the substitution
a2 = −2A sin θ and a1 = 2A cos θ . So the final solu-
tion of eq. (11) can be put in the form

ψ = A

[
cos[(n+1)ξ+θ ]

n+1
− cos[(n − 1)ξ+θ ]

n−1

]
(15)
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which is similar to the solution obtained by Mukherjee
et al [62].

Case II: κ > 0
In this case, eq. (9) can be written in the form

(1 − z2)ψzz + zψz + (β2 − 1)ψ = 0, (16)

where β2 = 2− λ
κ
(1−α). To obtain general solution of

eq. (16) we take z = cosh(ξ) and follow similar proce-
dure as in Case I and ultimately arrive at the following
result:

1. When λ
κ
(1−α) > 2 we consider β2 = −β ′2 where

β ′ =
√

λ
κ
(1 − α) − 2 is positive.

ψ = c1[β ′√z2 − 1 cos(β ′ξ) − z sin(β ′ξ)]
+c2[β ′√z2 − 1 sin(β ′ξ) + z cos(β ′ξ)].

(17)

2. When λ
κ
(1 − α) < 2 so that β =

√
2 − λ

κ
(1 − α)

is positive, the solution is

ψ = c1[
√
z2 − 1β sinh(βξ) − z cosh(βξ)]

+c2[
√
z2 − 1β cosh(βξ) − z sinh(βξ)].

(18)

For κ = 1, eqs (17) and (18) reduce to the equation
obtained by Tikekar and Jotania [30]. The most general
expressions of energy density (ρ), radial pressure (pr )
and tangential pressure (pt ) take the form

ρ = −κ

8πGR2(1 − z2)

[
1 − 2κ

(1 − z2)(λ − κ)

]
, (19)

pr = κ

8πGR2(1 − z2)

[
1 − 2zκ

λ − κ

ψz

ψ

]
, (20)

	 = αλ
{
(λ
κ

− 1)z2 − λ
κ

}
8πGR2

[
1 + {

(λ
κ

− 1)z2 − λ
κ

}]2 , (21)

pt = pr + 	. (22)

Case III: κ = 0
In this case, we note that for κ = 0 the solutions cor-
responding to Case-I and Case-II fail and do not give
any physically viable model in view of eqs (19)–(22).
For κ = 0, energy density (ρ) and radial pressure (pr )
vanish at all interior points in view of eqs (19) and
(20). On the other hand, transverse pressure (pt ) and
anisotropy (	) become infinite at all interior points in
view of eqs (21) and (22). Therefore, to overcome these
difficulties and to obtain solution for κ = 0, we proceed
in the following way. For κ = 0, the ansatz given by
eq. (7) becomes

e2μ = 1 + λ

R2 r
2. (23)

If we take e2μ = τ−1 and e2ν = y2, we note that metric
potential (23) is similar to the special case of Matese
and Whitman [64] solution for a static, isotropic fluid
sphere. Dayanandan et al [65] generalised the Matese
and Whitman solution for anisotropic matter distribu-
tion. However, in our analysis, the particular form of
the metric potential is constructed out of a generalised
V–T metric. Moreover, our anisotropic counterpart of
the Matese and Whitman solution [64] is extensively
anisotropy–dependent. We obtained the following equa-
tion using eqs (5) and (6) taking pt − pr = 	 and
x = r2

R2 .

4xτ

y

d2y

dx2 + 2
x

y

dτ

dx
+ dτ

dx
+ 1 − τ

x
= 8πGR2	. (24)

To obtain solution of eq. (24) similar to Matese and
Whitman [64], we use the transformation

y =
√

1 + λ

2
x φ. (25)

Under this transformation, eq. (24) takes the form

d2φ

dx2 + f (x)
dφ

dx
+
(
q(x) − 2πGR2	

xτ

)
φ = 0, (26)

where

f (x) = 1

2

d

dx
ln

[(
1 + λ

2
x

)
τ

]
(27)

and

q(x) = 1

4xτ

1 + λx

1 + λ
2 x

dτ

dx
+ 1 − τ

4x2τ

−λ2

16

(
1 + λ

2
x

)−2

. (28)

To make eq. (26) tractable we assume the following form
of 	:

	 = α
qxτ

2πGR2 = 1

4

αλ2x

8πGR2(1 + λ
2 x)

2
. (29)

This choice of 	 is physically reasonable as it vanishes
at the centre (r = 0). Putting the value of 	 given by
eq. (29) in eq. (26) and making use of the transformation
q̄ = q(1 − α), we can write eq. (26) in the following
form:

d2φ

dx2 + f (x)
dφ

dx
+ q̄φ = 0. (30)

To proceed further, we introduce a new independent
variable

z =
∫

|q|1/2dx . (31)
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Then eq. (30) reduces to

d2φ

dz2 + 1

2

d

dz
ln

[(
1 + λ

2
x

)2

τ |q|
]

dφ

dz
+ q̄

|q|φ = 0.

(32)

From our choice of τ and q we notice that
(

1 + λ

2
x

)2

τ |q| = λ2

16
= constant. (33)

Equation (32) can be integrated to obtain the final solu-
tion. In comparison with [64], it may appear that only
one solution can be obtained from eq. (32) in view of
eq. (33). However, q̄ in eq. (32) depends on α through
the relation q̄ = q(1 − α) and therefore depending on
the value of anisotropy parameter α, three independent
solutions of eq. (32) are possible which are given as
follows:

φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A sin

(√
q̄

|q| z
)

+B cos

(√
q̄

|q| z
)

, α < 1

Az + B, α = 1

A exp

(√−q̄

|q| z
)

+B exp

(
−
√−q̄

|q| z
)

, α > 1.

(34)

Then, from eq. (25), the complete solutions of eq. (24)
are

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1 + λ

2
x

[
A sin

(√
q̄

|q| z
)

+B cos

(√
q̄

|q| z
)]

√
1 + λ

2
x (A z + B)√

1 + λ

2
x

[
A exp

(√−q̄

|q| z
)

+B exp

(
−
√−q̄

|q| z
)]

(35)

where

z =
√

1 + λ

2
x − tan−1

(√
1 + λ

2
x

)
.

It should be mentioned that the third solution of eq. (35)
is not considered in [64,65] as it leads to some unphys-
ical behaviour of pressure or density. However, in our
model presented here, the presence of the anisotropy
parameter term α makes it possible to extract physically

acceptable model which will be discussed in the sub-
sequent section. Now using eqs (4) and (5), we obtain
the expression of energy density and radial pressure,
respectively in the following form for κ = 0:

ρ = λ

8πGR2

1

1 + λx

[
1 + 2

1 + λx

]
(36)

pr = − 1

8πGR2(1 + λx)

[
λ − 4yx

y

]
. (37)

From eqs (36) and (37), we note that the energy density
and pressure have finite values at the interior points of
a star for κ = 0.

3. Physical requirements of anisotropic stellar
model

1. The metric potentials μ, ν as given by eq. (1) and
the physical parameters like ρ, pr , pt and 	 should
be well defined and singularity free throughout the
interior of a star.

2. Inside the star energy density (ρ), radial pressure
(pr ) and tangential pressure (pt ) should be posi-
tive, i.e., ρ > 0, pr > 0 and pt > 0.

3. Energy density and pressure should monotonically
decrease from the centre to the surface of the star,
i.e. (dρ/dr) < 0, (dpr/dr) < 0 and (dpt/dr) <

0.
4. At the surface, radial pressure (pr ) should vanish,

i.e., pr=b = 0. However, the tangential pressure
(pt ) may assume non-zero value at the surface
(r = b).

5. At the centre (r = 0) of the star, both pressures
become equal and therefore 	 = 0.

6. The causality condition should be satisfied
throughout the interior of the star which means
that v2

r = (dpr/dρ) ≤ 1 and v2
t = (dpt/dρ) ≤ 1.

7. For an anisotropic fluid sphere, the following
energy conditions [66] should be fulfilled through-
out the interior of the fluid sphere:

(a) Null energy condition (NEC): (ρ + pr ) ≥
0, (ρ + pt ) ≥ 0.

(b) Weak energy condition (WEC): (ρ + pr ) ≥
0, ρ ≥ 0, (ρ + pt ) ≥ 0.

(c) Strong energy condition (SEC): (ρ + pr ) ≥
0, (ρ + pr + 2pt ) ≥ 0.

(d) Dominant energy condition (DEC): ρ ≥
0, (ρ − pr ) ≥ 0, (ρ − pt ) ≥ 0.

8. At the surface of the star (r = b), the interior solu-
tion should be matched with the exterior Schwa-
rzschild solution. This condition relates the metric
potentials with the mass and radius of the star in
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terms of the relation

e2ν(r=b) = e−2μ(r=b) =
(

1 − 2M

b

)
.

4. Boundary conditions

At the surface of the star (r = b), the interior solution
given by the metric in eq. (1) should be matched with
the exterior Schwarzschild metric given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2 θ dφ2). (38)

The continuity of the metric functions at the surface of
the star yields

e2ν(r=b) =
(

1 − 2M

b

)
(39)

and

e2μ(r=b) = 1 + λb2/R2

1 + κb2/R2 =
(

1 − 2M

b

)−1

. (40)

At the surface of the star (r = b) radial pressure (pr )
should vanish. From eq. (20), we get the following con-
dition when κ 	= 0:(

ψz

ψ

)
z=zb

= λ − κ

2zbκ
, (41)

where

zb =
√

λ/κ

λ/κ − 1

√
1 + κ

b2

R2

and from eq. (37), we get the following condition for
κ = 0:

yx
y

= λ

4
. (42)

5. Physical analysis

Case I: κ < 0
In this case, using eqs (19)–(22), the expression for the
square of the radial and transverse sound velocities takes
the form:

v2
r =

(
dpr
dρ

)

= z(1 − z2)2(
ψz
ψ

)2 − (1 − z2)(
ψz
ψ

) − z(1 − z2) λ
γ
α

z(1 − z2)( λ
γ

+ 1) + 4z

Figure 1. Variation of lower bound of λ/γ with α.

(43)

v2
t =

(
dpt
dρ

)

= z(1 − z2)2(
ψz
ψ

)2 − (1 − z2)(
ψz
ψ

) − z(1 − z2) λ
γ
α

z(1 − z2)( λ
γ

+ 1) + 4z

− αλ
[
(γ − λ) + (γ + λ)z2

]
(λ + γ )

[
(λ + γ )(1 − z2) + 4γ

] . (44)

Here we consider −κ = γ . The second term of eq. (44)
is positive definite showing that v2

r > v2
t . Therefore, to

maintain the causality condition throughout the interior
and at the surface of the star, it is sufficient to have
v2
r ≤ 1, which leads to the condition

1

1 − z2

[
1

2z
− D1

]
≤ ψz

ψ
≤ 1

1 − z2

[
1

2z
+ D1

]
, (45)

where

D1 =
√

1

4z2 + 4 + (1 − z2)

(
λ

γ
+ 1

)
+ (1 − z2)

λ

γ
α.

The radial pressure should be positive within a star
which gives the condition(

ψz

ψ

)
≤ −λ + γ

2zγ
. (46)

For a realistic solution, ψz/ψ should be real from which
we get a lower bound on the ratio (λ/γ ) as

λ > γ

[
2
√

3α + 25 − 7

17 + 4α

]
(47)

which for γ = 1 and α = 0 reduces to λ > 3
17 as

obtained by Mukherjee et al [62]. In figure 1, we have
shown the plot of the minimum value of the ratio (λ/γ )

vs. α as calculated from eq. (47) and note that the lower
bound on (λ/γ ) decreases as α increases.
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Table 1. Lower limit of λ for κ < 0 and for different values of α.

α γ = 0.1 γ = 0.5 γ = 1.0 γ = 1.5

0 0.01764 0.08823 0.1765 (= 3
17 ) 0.26471

0.1 0.01758 0.08792 0.17585 0.26378
0.2 0.01752 0.08762 0.17524 0.26286
0.3 0.01746 0.08732 0.17464 0.26196
0.4 0.01740 0.08702 0.17404 0.26106
0.5 0.01734 0.08673 0.17345 0.26018
0.6 0.01728 0.08644 0.17287 0.25931
0.7 0.01723 0.08615 0.17230 0.25845
0.8 0.01717 0.08587 0.17173 0.25760
0.9 0.01712 0.08559 0.17117 0.25676

The lower limit ofλ calculated from eqs (47) forκ < 0
for different values of α are tabulated in table 1. Note
also that the lower bound on λ decreases as γ decreases
for a fixed α, i.e. the parameter κ has some effect on the
lower bound of λ for the realistic model. Using eqs (45)
and (46), we get an upper bound on the reduced radius
(b̃ = b

R ), which is given by

b̃2 ≤
Y −

(
12 + 2 λ

γ
α − 4( λ

γ
)2α

λ
γ

+1

)

λ

(
λ
γ

+ 5 + 4 λ
γ

α

λ
γ

+1

) , (48)

where

Y =
√

(17 + 4α + 4α2)

(
λ

γ

)2

+ (82 + 36α)

(
λ

γ

)
+ 129.

Case II: κ > 0
The expression for the radial sound velocity for κ > 0
is given by

v2
r =

(
dpr
dρ

)

= z(z2 − 1)2(
ψz
ψ

)2 + (z2 − 1)(
ψz
ψ

) − z(z2 − 1)λ
κ
α

z(z2 − 1)(λ
κ

− 1) + 4z
.

(49)

The tangential sound velocity takes the form

v2
t =

(
dpt
dρ

)

= z(z2 − 1)2(
ψz
ψ

)2 + (z2 − 1)(
ψz
ψ

) − z(z2 − 1)λ
κ
α

z(z2 − 1)(λ
κ

− 1) + 4z

− αλ
[
(λ + κ) − (λ − κ)z2

]
(λ − κ)

[
(λ − κ)(z2 − 1) + 4κ

] . (50)

Positivity of energy density (ρ) requires that λ > κ . If
we take κ ≤ 1 and λ > 5 [32], then in eq. (50), the sec-
ond term is always positive giving v2

r > v2
t as before.

Therefore, fulfilment of acoustic condition within a star
requires only v2

r ≤ 1 and subsequently the tangential
sound velocity will satisfy the causality condition auto-
matically. Using the causality condition, we note that
the ratio (ψz/ψ) can take values within the range given
as follows:

1

z2 − 1

[
− 1

2z
− D2

]
≤ ψz

ψ
≤ 1

z2 − 1

[
− 1

2z
+ D2

]
,

(51)

where

D2 =
√

1

4z2 + 4 + (z2 − 1)

(
λ

κ
− 1

)
+ (z2 − 1)

λ

κ
α.

To maintain the radial pressure as positive throughout
the interior of the star, we get another limit on the ratio
(ψz/ψ) given by(

ψz

ψ

)
≤ λ − κ

2zκ
. (52)

For physically realistic solution (ψz/ψ) should be real
which can be attained when (λ/κ) satisfies the following
inequalities:

λ = λ1 > κ
[
(2α + 3) + 2

√
α2 + 3α + 1

]
(53)

λ = λ2 < κ

[
7

17 + 4α
− 2

√
25 + 3α

17 + 4α

]
(54)

It may be pointed out here that, to obtain physically
realistic solutions for isotropic star (α = 0) with κ = 1
eqs (53) and (54) give the bounds on the spheroidicity
parameter (λ) as (i) λ > 5 and (ii) λ < − 3

17 respectively
[32]. In figure 2, the lower bound of the ratio (λ/κ)

is plotted with α and it is noted that this lower bound
increases with the increase of α.
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From eqs (51) and (52), we get an upper bound on the
reduced radius (b̃ = b

R )given by the following equation:

b̃2 ≤
Y +

[
12 − 2λ

κ
α − 4

(
λ
κ

)2
α

1− λ
κ

]

λ

[
λ
κ

− 5 + 4 λ
κ
α

1− λ
κ

] , (55)

where

Y =
√

(17 + 4α + 4α2)

(
λ

κ

)2

− (82 + 36α

(
λ

κ

)
+ 129.

In table 2, we have shown the lower bound of the
spheroidal parameter λ calculated from eq. (53) for
κ > 0 and for different values of α.

However, to maintain the radial pressure gradient neg-
ative ((dpr/dr) < 0) throughout the interior of the fluid
sphere, we note that an upper limit of α exists, which
can be obtained as follows: Since for κ > 0, dz

dr > 0,

hence, the condition dpr
dr < 0 is equivalent to dpr

dz < 0.

Figure 2. Variation of lower bound of λ/κ with α.

Using this condition, we get

(
ψz

ψ

)
>

−1 +
√

1 + 4z2(z2 − 1)λ
κ
α

2z(z2 − 1)
. (56)

Now combining eq. (52) with eq. (56), we get the fol-
lowing inequality:(

λ

λ − κ

)(
1 + κr2

R2

)

>
λ2 − λκ(3 + 2α) + κ(2κ + P)

λ2 − 2λκ(1 + 2α) + κ2 , (57)

where P2 = λ2(1+4α2 −4α)−2λκ(1−2α)+κ2. It is
clear that the condition given by eq. (57) will be satisfied
throughout the interior of the star once it is satisfied at
r = 0. This subsequently gives the upper limit of the
anisotropy parameter α as

α <

(
3

4

)(
1 − κ

λ

)2
. (58)

Similarly, it can be shown that the condition (
dpt
dr ) < 0

gives the upper limit of the anisotropy parameter α as

α <
3

4

(λ
κ

− 1)2

λ
κ
(λ
κ

+ λ)
. (59)

In comparison with eq. (58), the upper limit of α given
by eq. (59) is always less. So it is sufficient to consider
the upper limit of α given by eq. (59).

Case III: κ = 0
In this case, the behaviour of density and pressure can
be studied using eqs (36) and (37). At the centre of the
star, the expressions for density and pressure take the
form

ρc = 3λ

R2 (60)

(pr )c = 1

R2 (1 + λx)

(
4

(
yx
y

)
0
− λ

)
. (61)

Table 2. Lower limit of λ for κ > 0 and for different values of α.

α κ = 0.1 κ = 0.5 κ = 1.0 κ = 1.5

0 0.5 2.5 5 7.5
0.1 0.5489 2.7445 5.4891 8.2337
0.2 0.5961 2.9806 5.9612 8.9419
0.3 0.6421 3.2107 6.4213 9.6320
0.4 0.6872 3.4362 6.8725 10.3087
0.5 0.7317 3.6583 7.3166 10.9749
0.6 0.7755 3.8776 7.7553 11.6329
0.7 0.8189 4.0947 8.1895 12.2842
0.8 0.8620 4.3100 8.6200 12.9300
0.9 0.9047 4.5237 9.0473 13.5710
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From eq. (60), it is clear that the central density ρc
always assumes positive values in this model. The
requirement of positive central pressure implies(
yx
y

)
0

>
λ

4
.

The expression for the square of the radial (v2
r ) and

transverse (v2
t ) sound velocities are given as follows:

v2
r = dpr

dρ
= 1

λ2 (5 + λx)

[
4 (1 + λx)2

(
yx
y

)2

+2λ (1 + λx)

(
yx
y

)
− αλ2

4

(1 + λx)3

(
1 + λ

2 x
)2
]

(62)

and

v2
t = dpt

dρ
= 1

λ2 (5 + λx)

[
4(1 + λx)2

(
yx
y

)2

+2λ(1 + λx)

(
yx
y

)]
− α

2

(1 + λx)3

(5 + λx)
(
1 + λ

2 x
)3 .

(63)

In eq. (63), we note that the second term is always pos-
itive giving v2

r > v2
t in view of eqs (62) and (63) as

before. So, to fulfil acoustic condition, it is sufficient
to satisfy the condition v2

r ≤ 1 within a star only and
subsequently the tangential sound velocity will satisfy
the causality condition automatically. To maintain the
causality condition, it is required that

λ

4(1 + λx)
[−1 − D3]

≤ yx
y

≤ λ

4(1 + λx)
[−1 + D3] , (64)

where

D3 =
√√√√21 + 4λx + α

(1 + λx)3

(
1 + λ

2 x
)2 .

It is stated in §2 that the physically acceptable solution
of eq. (24) can be obtained in the exponential form given
by eq. (35) without violating finite density or pressure
conditions. This can be justified as follows: The central
density is independent of y as evident from eq. (60) and
the central pressure will be positive if(
yx
y

)
0

>
λ

4
.

This can be achieved if the following condition is
obeyed:

B

A
< exp

(
2
√

α − 1
(

1 − π

4

))
. (65)

The constants A and B are to be evaluated using bound-
ary conditions defined in §4. Therefore, the physically
realistic solution depends on mass and radius of the
compact objects as well as on spheroidal parameter λ

and anisotropy parameter α. In particular, it is possi-
ble to extract physically viable configuration only upto
a certain value of α. Again, to maintain finite pressure
and causality condition simultaneously at the centre, the
ratio of constants A and B should satisfy some limiting
conditions. For example, we note that

1.27 <
A

B
< 17.7 for α = 1.

6. Mass–radius relation

The mass of a star contained within a radius (b) is given
by the expression

M(b) =
∫ b

0
4πr ′2ρ(r ′) dr ′, (66)

where ρ(r ′) represents energy density at r = r ′. Thus,
the total mass of a star within radius (b) can be obtained
using eq. (19) or (36) in eq. (66) from r = 0 to r = b
for κ 	= 0 and κ = 0 respectively. The following results
are obtained.

M(b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(λ − κ)

2R2

b3(
1 + λ b2

R2

) ; κ 	= 0 (67)

λ

2R2

b3(
1 + λ b2

R2

) ; κ = 0. (68)

Here we consider 8πG = 1. From eq. (67), it is
observed that M(b) > 0 only if λ > κ . Another point
to be noted is that one can obtain the same expression
of mass as in eq. (68) if κ in eq. (67) is set to zero.
This is possible as energy density is a function of met-
ric potential μ only and does not depend on anisotropy
parameter α. Using eqs (67) and (68), we get the general
expression for the compactness of a star as follows:

u = M

b
= (λ − κ)

2R2

b2(
1 + λ b2

R2

) . (69)

In this model, we note that the total mass within a star
of radius b can also be obtained by knowing its central
density in the following form:

M(b) = ρc

6

b3

1 + λρc
3(λ−κ)

b2
, (70)
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Figure 3. Variation of mass with radius for different values
of central density taking λ = 6. Here solid, dashed, dotted and
dot-dashed lines represent κ = −0.1, κ = −0.5, κ = −1.0
and κ = −7.0, respectively.

Figure 4. Variation of mass with radius for different values
of central density taking λ = 6. Here solid, dashed and dotted
lines represent κ = 0.1, κ = 0.5 and κ = 1.0, respectively.

where

ρc = (λ − κ)

3R2 .

From eq. (70), we note that the total mass of a star is
independent of the spheroidal parameter λ when κ =
0. In this case, the total mass depends on the central
density (ρc) and radius of the star (b). In figures 3–5,
we have shown the variation of mass with radius for
different values of central density (ρc). It is observed
that greater amount of mass is contained within a given
radius for higher values of the central density which also
depends on the geometry defining parameters λ and κ .
From figure 3, we note that when κ < 0, the mass of a
star decreases with the decrease of κ . On the other hand,
from figure 4, we note a different result. When κ > 0,
the mass of a star increases with the decrease of κ .

Figure 5. Variation of mass with radius for different values
of central density for κ = 0.

Figure 6. Variation of mass with central density (ρc) for dif-
ferent values of κ taking λ = 10.

Again, it is well known that for a static system, mass
(M) of the star should increase with increase in cen-
tral density (ρc), i.e. (∂M/∂ρc) > 0 [67,68]. On the
other hand, if small perturbations are applied, the con-
dition (∂M/∂ρc) < 0 corresponds to an unstable stellar
model. In figure 6, the mass of the stellar system is plot-
ted against its central density (ρc). It is observed that this
model satisfies this static stability criterion. According
to Buchdahl [69], the mass to radius ratio of a fluid
sphere should lie within the range

2M

b
<

8

9
.

In the present model, we note that the maximum mass
to radius ratio is

M

b
= 0.316 <

4

9

for κ = −1.0 as evident from figure 3. The surface
redshift function can be obtained from eq. (69) using
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Figure 7. Variation of surface redshift (Zs) with radius (b)
for different values of central density taking λ = 6. Here
solid, dashed and dotted lines represent κ = −0.1, κ = −0.5
and κ = −1.0, respectively.

Figure 8. Variation of surface redshift (Zs) with radius (b)
for different values of central density taking λ = 6. Here
solid, dashed and dotted lines represent κ = 0.1, κ = 0.5 and
κ = 1.0, respectively.

the following relation:

Zs = (1 − 2u)−1/2 − 1. (71)

The variation of surface redshift with radius is shown
graphically in figures 7–9. According to Böhmer and
Harko [70], the surface redshift should be Zs ≤ 5. In our
model, we note that the maximum surface redshift is 0.6
for b = 14 km, κ = −1.0, λ = 6 and ρc = 4 × ρnuclear
as evident from figure 7.

From figure 7, it is evident that when κ < 0, the sur-
face redshift decreases with decrease in κ . On the other
hand, from figure 8, we note a different result. When
κ > 0, the surface redshift increases with decrease in κ .
The value of surface redshift for κ = 0 is intermediate
between the values corresponding to κ < 0 and κ > 0
when all other parameters are kept unchanged.

Figure 9. Variation of surface redshift (Zs) with radius (b)
for different values of central density for κ = 0 taking λ = 6.

6.1 Maximum mass

To obtain maximum mass, we follow the technique
adopted by Sharma et al [71] and Paul et al [72].
The square of the sound velocity should maintain the
inequality (dpr/dρ) ≤ 1 throughout the interior of a
compact object. We assume that (dpr/dρ) takes maxi-
mum value at the centre and causality condition is not
violated throughout the interior of a star. From eq. (45),
this leads to the condition for κ < 0:

(
ψz

ψ

)
z=z0

≥
λ
γ

+ 1

2
√

λ
γ

⎡
⎢⎢⎣
√

λ

γ
+ 1

−

√√√√√21
λ

γ
+ 1 +

4α
(

λ
γ

)2

λ
γ

+ 1

⎤
⎥⎥⎦ . (72)

Here we substitute κ = −γ . Again from eq. (15), one
may get

(
ψz

ψ

)
= n2 − 1√

1 − z2

× [sin {(n+1)ξ+θ}−sin {(n−1)ξ+θ}]
[(n−1) cos {(n+1)ξ+θ}−(n+1) cos {(n−1)ξ+θ}] .

(73)

Combining eqs (72) and (73) at z = z0, we get a limiting
value of θ . Now, substituting κ = −γ in eq. (41) and
using eq. (73) at z = zb, we can evaluate a maximum
value of the ratio (b2/R2). For this limiting value of
(b2/R2)max, the maximum mass contained within the
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Figure 10. Variation of maximum mass with κ for different
values of λ when α = 0 and κ < 0 taking b = 10 km.

radius b is given by

Mmax = λ + γ

2

b
1

(b2/R2)max
+ λ

. (74)

Similarly for κ > 0, we get the lower bound of the ratio
(ψz/ψ) at the centre of a star as follows:
(

ψz

ψ

)
z=z0

≤
λ
κ

− 1

2
√

λ
κ

[
−
√

λ

κ
− 1

+
√√√√21

λ

κ
− 1 + 4α

(
λ
κ

)2
λ
κ

− 1

⎤
⎥⎦ . (75)

Now depending on the sign of the factor β2 as defined in
eq. (16), we have two different expressions for the ratio
(ψz/ψ) as calculated from eqs (17) and (18) given by(

ψz

ψ

)

= −c1(β
′2 + 1) sin(β ′ξ) + c2(β

′2 + 1) cos(β ′ξ)

ψ

(76)(
ψz

ψ

)

= c1(β
2 − 1) cosh(βξ) + c2(β

2 − 1) sinh(βξ)

ψ
.

(77)

In eqs (76) and (77), there are two unknown constants
c1 and c2. If we use eq. (41) with either eq. (76) or
(77) at z = zb, we get a functional relation between the
constants c1 and c2 which depends on b2/R2. Therefore,
combining eq. (75) and eq. (76) or (77) at the centre of
a star (z = z0), we get a maximum value of the ratio
(b2/R2). When (b2/R2) is maximum, the mass is also

Figure 11. Variation of maximum mass with κ for different
values of λ when α = 0 and κ > 0 taking b = 10 km.

Figure 12. Variation of maximum mass with κ for different
values of λ when α = 0.3 and κ < 0 taking b = 10 km .

Figure 13. Variation of maximum mass with κ for different
values of λ when α = 0.3 and κ > 0 taking b = 10 km.

maximum as evident from expression given as follows:

Mmax = λ − κ

2

b
1

(b2/R2)max
+ λ

. (78)

In figures 10–13, we have plotted maximum mass
contained within a radius against different values of
parameter κ . we note that when κ → 0, the maximum
mass is almost independent of the spheroidal parameter
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Table 3. Table showing maximum mass for κ = 0.

λ α b = 7 km b = 10 km b = 12 km

2 0 1.703M� 2.433M� 2.920M�
0.3 1.748M� 2.497M� 2.996M�

10 0 1.703M� 2.433M� 2.920M�
0.3 1.748M� 2.497M� 2.996M�

50 0 1.703M� 2.433M� 2.920M�
0.3 1.748M� 2.497M� 2.996M�

Table 4. Observed mass and radius of some compact objects.

Compact
objects

Observed
mass
(M)

Observed
radius b
(km)

Compactness
M/b

4U 1608-52
[74]

1.74M� 9.8 0.262

EXO1745-
248
[75]

1.4M� 11 0.188

PSR J1614-
2230
[76]

1.97M� 13 0.223

LMC X-4
[77,78]

1.04M� 8.3 0.185

Table 5. Geometrical parameter R in km for κ < 0.

λ = 2

Compact objects κ = −0.2 κ = −0.5 κ = 1.0

4U 1608-52 14.5367 16.3194 18.921
EXO1745-248 21.6104 23.7422 26.9226
PSR J1614-2230 22.2193 24.6396 28.2158
LMC X-4 16.5031 18.1186 20.5305

Table 6. Geometrical parameter R in km for κ > 0.

λ = 10

Compact objects κ = 0.2 κ = 0.5 κ = 1.0

4U 1608-52 28.923 27.9558 26.265
EXO1745-248 44.1396 43.0305 41.1155
PSR J1614-2230 44.8868 43.6052 41.3811
LMC X-4 33.7347 32.8953 31.4465

λ. It is also found that maximum mass is almost con-
stant when λ takes large values. The maximum mass for
κ = 0 is tabulated in table 3. From figures 10–13, we
note an interesting result.

Figure 14. Radial variation of energy density (ρ) inside 4U
1608-52. Here λ = 2 for κ < 0 and κ = 0. λ = 10 for κ > 0.

Table 7. Tabulated values of θ for λ = 2.

Compact objects κ α = 0.1 α = 0.3 α = 0.5

4U 1608-52 −0.2 2.2103 2.1719 2.0796
−0.5 2.1134 2.0844 2.0247
−1.0 1.9962 1.9784 1.9458

EXO1745-248 −0.2 2.4316 2.3617 2.2202
−0.5 2.3180 2.2646 2.1701
−1.0 2.1799 2.1445 2.0892

PSR J1614-2230 −0.2 2.3337 2.2776 2.1584
−0.5 2.2265 2.1840 2.1053
−1.0 2.0970 2.0695 2.0245

LMC X-4 −0.2 2.4390 2.3680 2.2248
−0.5 2.3249 2.2707 2.1751
−1.0 2.1863 2.1503 2.0942

In the case of an isotropic star, maximum mass
increases with the decrease of |κ| as evident from fig-
ures 10 and 11 and when κ → 0, maximum mass
approaches the value corresponding to the case κ =
0. This value is ∼ 2.433M�. But in the presence of
anisotropy, maximum mass approaches ∼2.58M� when
κ → 0 for α = 0.3 as evident from figures 12 and
13, which is greater than the maximum mass obtained
from the case κ = 0 (∼2.5M�) having the same α

(= 0.3) and radius (b = 10 km) as given in table 3. We
also found that maximum mass corresponding to the
case κ = 0 is independent of spheroidal parameter λ as
evident from table 3. In this case, the maximum mass
(∼3.2M�) of a compact object predicted by Rhoades
and Ruffini [73] can be achieved in our model with
α = 0, b = 13.15 km and α = 0.3, b = 12.815 km,
i.e., radius of a compact object having maximum mass
depends on anisotropy parameter α only for κ = 0.
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Table 8. Different values of the constants c1 and c2 calculated from boundary conditions for λ = 10.

Compact objects κ const. α = 0 α = 0.1 α = 0.3

4U 1608-52 0.2 c1 −0.304 −0.322 −0.394
c2 0.280 0.295 0.328

0.5 c1 −0.289 −0.306 −0.376
c2 0.282 0.298 0.332

1.0 c1 −0.262 −0.276 −0.344
c2 0.285 0.303 0.340

EXO1745-248 0.2 c1 −0.271 −0.291 −0.376
c2 0.419 0.435 0.466

0.5 c1 −0.253 −0.272 −0.357
c2 0.423 0.439 0.472

1.0 c1 −0.221 −0.237 −0.323
c2 0.430 0.446 0.481

PSR J1614-2230 0.2 c1 −0.290 −0.309 −0.386
c2 0.355 0.370 0.403

0.5 c1 −0.273 −0.291 −0.369
c2 0.358 0.374 0.408

1.0 c1 −0.244 −0.258 −0.335
c2 0.363 0.381 0.416

LMC X-4 0.2 c1 −0.270 −0.289 −0.375
c2 0.424 0.440 0.471

0.5 c1 −0.252 −0.270 −0.356
c2 0.428 0.444 0.477

1.0 c1 −0.219 −0.235 −0.322
c2 0.435 0.452 0.486

Table 9. Tabulation of different constants for κ = 0 with λ = 2.

α = 0.1 α = 0.3

Compact objects R (km) A B A B

4U 1608-52 13.2152 0.444 0.399 0.449 0.411
EXO1745-248 20.0637 0.397 0.593 0.395 0.602
PSR J1614-2230 20.4472 0.423 0.504 0.425 0.514
LMC X-4 15.3318 0.395 0.6 0.392 0.609

7. Physical properties of the compact objects

To fit our model with observational data, we have con-
sidered a few well-known compact objects such as 4U
1608-52, EXO 1745-248, PSR J1614-2230 and LMC
X-4. The observed masses and radii of these compact
objects are given in table 4. In the present work, the solu-
tions of the field equations are divided into three regions:
(i) κ < 0, (ii) κ = 0 and (iii) κ > 0. Depending on
the sign of κ , the behaviour of the physical parameters,
namely, energy density (ρ), radial pressure (pr ), pres-
sure anisotropy function (	), tangential pressure (pt )
etc. can be studied in these three regions characterised
by κ . The metric ansatz given by eq. (7) contains two free
parameters λ and κ and an unknown parameter R. The
parameter R can be evaluated using the boundary con-
dition given by eq. (40) using the 1observed mass (M)

and radius (b) of a compact object. We have calculated

R for 4U 1608-52, EXO1745-248, PSR J1614-2230 and
LMC X-4 and are tabulated in table 5 for κ < 0 and 6
for κ > 0. Now it is possible to study the radial varia-
tion of different physical parameters inside the compact
objects. The variation of energy density (ρ) is plotted
in figure 14 for 4U 1608-52. It is noticed that in the
region κ < 0, if |κ| is decreased ρ increases. How-
ever, in the region κ > 0, the dependence of ρ on κ is
reversed. Therefore, we note that the parameter κ in met-
ric ansatz has some effect on the value of energy density
ρ. To study the variation of radial pressure (pr ), the ratio
(ψz/ψ) has to be evaluated which takes different forms
depending on the sign of the parameter κ . If we consider
κ < 0, we have to determine the unknown parameter
θ appearing in eq. (73), which is calculated from the
boundary condition eq. (41) together with eq. (73) and
are tabulated in table 7 for different compact objects.
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On the other hand, when κ > 0, there are two possi-
ble expressions for (ψz/ψ) depending on the sign of
β2 appeared in eqs (76) and (77). Here, two unknown
constants c1 and c2 have to be calculated from boundary
conditions (39) and (41) respectively. The choice of λ,
κ and α are crucial here. If we take λ = 10 and κ = 1.0,
the upper limit of α from eq. (59) is 0.304. Accord-
ingly in our model calculation, we take α = 0.1 and
0.3. When α = 0.3, the lower bound on (λ/κ) is 6.421
as can be seen from table 2. Therefore, our choice of λ

and κ are consistent with this lower limit. Using these
set of values of λ and κ , we have tabulated the values of
c1 and c2 in table 8 for different compact objects. Val-
ues of different constants, e.g. R, A and B are tabulated
in table 9 for κ = 0. The variation of the radial pres-
sure (pr ) inside 4U 1608-52 is shown in figure 15. It is
noticed that in the region where κ < 0, if |κ| is decreased
pr increases. However, in the region where κ > 0, the
dependence of pr on κ is reversed. The dependence of
transverse pressure (pt ) on κ is similar and is shown
in figure 17 for 4U 1608-52. Therefore, we also note
that the parameter κ in metric ansatz has some effect on
the value of fluid pressures. It is observed that increase
in anisotropy (α) leads to decrease in the radial pres-
sure (pr ). However, figure 16 indicates that the pressure
anisotropy (	) picks up higher values with an increase
in anisotropy parameter α for any value of κ . However,
we note that pressure anisotropy (	)picks up higher val-
ues in the region κ < 0 when |κ| decreases. Situation is
reversed in region κ > 0. It is also evident from the fig-
ure that 	 is zero at the centre of the star and gradually
increases upto the surface. In table 10, central density
(ρc), surface density (ρs) and central pressure (prc) are
tabulated for a few known compact objects used for our
analysis. It is observed that in the region κ < 0, cen-
tral density decreases with increase in magnitude of κ

whereas surface density increases. For κ > 0, a reverse
variation is observed. Comparison of central pressure
for different values of α reveals that the central pressure
decreases with increase in α for a given value of κ . How-
ever, the dependence of central pressure on κ , which is
the geometry defining parameter, is strictly anisotropy-
dependent. In both cases, there is an upper limit of α

above which reverse effect is observed which indeed
varies for different compact objects. Therefore, in the
case of an anisotropic star, higher pressure anisotropy
adversely affects the EOS which is determined by the
factor κ (if we assume λ is kept constant). From the plots
in figures 18 and 19, it is evident that density and pres-
sure gradients are negative, indicating that both density
and pressures decrease monotonically from the centre
up to the surface.

Figure 15. Radial variation of radial pressure (pr ) inside
4U 1608-52. Solid and dashed lines represent α = 0.1 and
α = 0.3 respectively. Here λ = 2 for κ < 0 and κ = 0.
λ = 10 for κ > 0.

Figure 16. Radial variation of anisotropic pressure (	)
inside 4U 1608-52. Solid and dashed lines represent α = 0.1
and α = 0.3 respectively. Here λ = 2 for κ < 0 and κ = 0.
λ = 10 for κ > 0.

Figure 17. Radial variation of tangential pressure (pt ) inside
4U 1608-52. Solid and dashed lines represent α = 0.1 and
α = 0.3 respectively. Here λ = 2 for κ < 0 and κ = 0.
λ = 10 for κ > 0.
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Table 10. Central density (ρc), surface density (ρs) and central pressure (prc) calculated for different compact objects.

Central pressure (prc (dyne/cm2))
Compact
objects

κ Central density
(ρs) (g/cm3)

Surface density
(ρc) (g/cm3) α = 0.1 α = 0.2 α = 0.3

4U 1608-52 −0.5 1.50 × 1015 6.29 × 1014 3.16 × 1035 2.92 × 1035 2.67 × 1035

−1.0 1.34 × 1015 6.69 × 1014 2.96 × 1035 2.81 × 1035 2.66 × 1035

0 1.83 × 1015 5.68 × 1014 3.84 × 1035 3.67 × 1035 3.50 × 1035

0.5 1.94 × 1015 5.52 × 1014 3.65 × 1035 3.09 × 1035 2.54 × 1035

1.0 2.09 × 1015 5.34 × 1014 3.80 × 1035 3.13 × 1035 2.46 × 1035

EXO1745-248 −0.5 7.10 × 1014 3.97 × 1014 8.13 × 1034 7.46 × 1034 6.78 × 1034

−1.0 6.62 × 1014 4.14 × 1014 7.93 × 1034 7.50 × 1034 7.06 × 1034

0 7.95 × 1014 3.72 × 1014 9.22 × 1034 8.85 × 1034 8.47 × 1034

0.5 8.21 × 1014 3.66 × 1014 8.47 × 1034 7.12 × 1034 5.77 × 1034

1.0 8.52 × 1014 3.58 × 1014 8.54 × 1034 6.97 × 1034 5.41 × 1034

PSR J1614-2230 −0.5 6.59 × 1014 3.22 × 1014 1.01 × 1035 9.30 × 1034 8.49 × 1034

−1.0 6.03 × 1014 3.39 × 1014 9.70 × 1034 9.18 × 1034 8.67 × 1034

0 7.65 × 1014 2.97 × 1014 1.18 × 1035 1.13 × 1035 1.80 × 1035

0.5 7.99 × 1014 2.90 × 1014 1.10 × 1035 9.26 × 1034 7.55 × 1034

1.0 8.41 × 1014 2.83 × 1014 1.12 × 1035 9.19 × 1034 7.18 × 1034

LMC X-4 −0.5 1.22 × 1015 6.89 × 1014 1.36 × 1035 1.25 × 1035 1.14 × 1035

−1.0 1.14 × 1015 7.17 × 1014 1.33 × 1035 1.26 × 1035 1.18 × 1035

0 1.36 × 1015 6.47 × 1014 1.54 × 1035 1.48 × 1035 1.42 × 1035

0.5 1.40 × 1015 6.36 × 1014 1.41 × 1035 1.19 × 1035 0.96 × 1035

1.0 1.46 × 1015 6.23 × 1014 1.43 × 1035 1.16 × 1035 0.90 × 1035

Here λ = 2 for κ < 0 and κ = 0. λ = 10 for κ > 0

Figure 18. Behaviour of energy density gradient (dρ/dr)
inside 4U 1608-52. Here λ = 2 for κ < 0 and κ = 0. λ = 10
for κ > 0.

7.1 Causality condition

The behaviour of radial and tangential sound velocities
has already been discussed in §5 for different cases. It
is required that velocity of sound does not exceed the
speed of light for a realistic model, i.e. the conditions

0 < v2
r =

(
dpr
dρ

)
< 1

Figure 19. Behaviour of different pressure gradients inside
4U 1608-52. Here solid curves and dashed curves represent
(dpr/dr) and (dpt/dr), respectively. Here λ = 2 for κ < 0
and κ = 0. λ = 10 for κ > 0.

and

0 < v2
t =

(
dpt
dρ

)
< 1

hold simultaneously. In this section, different sound
velocities are presented graphically in figures 20 and 21
for 4U 1608-52. It is observed that causality condition is
satisfied in this model for the choice of new parameter
κ . An interesting point to be noted here is that, when
κ = 0 and α > 1, sound velocities decrease monotoni-
cally from the centre to the surface of a compact object.
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Figure 20. Variation of the squared radial sound velocity (v2
r ) with radial distance (r ) for 4U 1608-52. Plots are obtained for

different values of κ using λ = 2 for κ < 0 and κ = 0. λ = 10 for κ > 0.

Figure 21. Variation of the squared tangential sound veloc-
ity (v2

t ) with radial distance (r ) for 4U 1608-52. Plots are
obtained for different values of κ using λ = 2 for κ < 0 and
κ = 0. λ = 10 for κ > 0.

α is limited due to the real and finite nature of sound
speeds. Numerically, this can be obtained by probing
sound velocities at different radial distances inside a
compact object. However, we can get an upper limit of
α analytically, if we assume sound speeds monotoni-
cally decrease with radial distance (which in this case
holds good). Since v2

t < v2
r , for real and finite tangential

sound speed v2
t ≥ 0 gives an upper limit of α which is

given as follows:

α <
(1 − u)3(3 − 4u)

2(1 − 2u)2 , (79)

where u is the compactness of the object. The upper
bound (79) is obtained by using eqs (42), (63) and (69)
with κ = 0.

7.2 Energy conditions

In the context of general relativity, energy conditions are
some physically reasonable restrictions on the energy–
momentum tensor Ti j . In general relativity, the mutual
influence of space–time and matter is encoded in EFEs.
However, in Einstein’s equation the properties of mat-
ter is not usually specified leaving Ti j arbitrary. It is
convenient to impose some restrictions on matter to
remove this arbitrariness of Ti j . In the past decades,
various energy conditions found vast applications in
positive mass theorem [79], theory of superluminal
travel [80–82], the singularity theorems [83]. The energy
conditions are expressed in the following forms [66]:

1. Null energy condition (NEC): ρ + pr ≥ 0, ρ +
pt ≥ 0

2. Weak energy condition (WEC): ρ + pr ≥ 0, ρ ≥
0, ρ + pt ≥ 0

3. Strong energy condition (SEC): ρ + pr ≥ 0, ρ +
pr + 2pt ≥ 0

4. Dominant energy condition (DEC): ρ ≥ 0, ρ −
pr ≥ 0, ρ − pt ≥ 0

Different energy conditions are plotted for 4U 1608-52
and are shown in figures 14, 22–26. It is found that all
the energy conditions are satisfied in our model for the
inclusion of the new parameter κ .

8. Stability of the system

8.1 TOV equation

A compact object will be in stable equilibrium under
three forces, namely, gravitational force (Fg), hydro-
static force (Fh) and anisotropic force (Fa), if their
resultant force vanishes throughout the interior of the
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Figure 22. Variation of ρ + pr inside 4U 1608-52. Solid and
dashed curves represent α = 0.1 and α = 0.3, respectively.
Here we have considered λ = 2 for κ < 0 and κ = 0. λ = 10
for κ > 0.

Figure 23. Variation of ρ − pr inside 4U 1608-52. Solid and
dashed curves represent α = 0.1 and α = 0.3 respectively.
Here we have considered λ = 2 for κ < 0 and κ = 0. λ = 10
for κ > 0.

Figure 24. Variation of ρ + pt inside 4U 1608-52. Solid and
dashed curves represent α = 0.1 and α = 0.3 respectively.
Here we have considered λ = 2 for κ < 0 and κ = 0. λ = 10
for κ > 0.

Figure 25. Variation of ρ − pt inside 4U 1608-52. Solid and
dashed curves represent α = 0.1 and α = 0.3 respectively.
Here we have considered λ = 2 for κ < 0 and κ = 0. λ = 10
for κ > 0.

Figure 26. Variation of ρ + pr + 2pt inside 4U 1608-52.
Solid and dashed curves represent α = 0.1 and α = 0.3,
respectively. Here we have considered λ = 2 for κ < 0 and
κ = 0. λ = 10 for κ > 0.

object. The mathematical formulation is known as TOV
equation which is given by [84]

− MG(r)(ρ + pr )

r2 e(μ−ν) − dpr
dr

+ 2	

r
= 0, (80)

where MG is the Tolman–Whittaker active gravitational
mass of the system [85] given as follows:

MG(r) = r2(ν)′e(ν−μ). (81)

Substituting eq. (81) in eq. (80) we get

− ν′(ρ + pr ) − dpr
dr

+ 2	

r
= 0. (82)

Here

Fg = −ν′(ρ + pr ),

Fh = −dpr
dr

and
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Fa = 2	

r
.

The expressions of Fg, Fh and Fa for different cases are
given as follows:

Case I: κ < 0

Fg = 2γ r

R4

√
λ(λ + γ )

(
1 − γ

r2

R2

)−1/2

×
(

1 + λ
r2

R2

)−2

h1(r)

[
1 − z1(r)

×(1 − z2
1(r))h1(r)

]
(83)

Fh = − 2r

R4

√
λ(λ + γ )

(
1 − γ

r2

R2

)−1/2

×
(

1 + λ
r2

R2

)−2

× [z1(r)λα + γ h1(r) − γ z1(r)(1 − z2
1(r))h

2
1(r)

]
(84)

Fa = 2αλ2r

R4
[
1 + λ r2

R2

]2 (85)

where

h1(r) = n2 − 1√
1 − z2

1(r)

(
h2(r) − h3(r)

h4(r) − h5(r)

)
,

h2(r) = sin
[
(n + 1) cos−1(z1(r)) + θ

]
,

h3(r) = sin
[
(n − 1) cos−1(z1(r)) + θ

]
,

h4(r) = (n − 1) cos
[
(n + 1) cos−1(z1(r)) + θ

]
,

h5(r) = (n + 1) cos
[
(n − 1) cos−1(z1(r)) + θ

]
,

θ = tan−1
[

X cot(cos−1(z1b)) − tan(n cos−1(z1b))

1 + X cot(cos−1(z1b)) tan(n cos−1(z1b))

]
,

X = 1

n

[
2γ (n2 − 1)

λ + γ
− 1

]
,

n =
√

λ

γ
(1 − α) + 2,

z1(r) =
√

λ

λ + γ

√
1 − γ

r2

R2 ,

z1b =
√

λ

λ + γ

√
1 − γ

b2

R2 .

Case II: κ > 0

Fg = −2κr

R4

√
λ(λ − κ)

(
1 + κ

r2

R2

)−1/2

×
(

1 + λ
r2

R2

)−2

×h6(r)
[
1 + z2(r)(z

2
2(r) − 1)h6(r)

]
(86)

Fh = − 2r

R4

√
λ(λ − κ)

(
1 + κ

r2

R2

)−1/2

×
(

1 + λ
r2

R2

)−2

[z2(r)λα − κh6(r)

−κz2(r)(z
2
2(r) − 1)h2

6(r)
]
, (87)

Fa = 2αλ2r

R4
[
1 + λ r2

R2

]2 , (88)

where

h6(r) = −L1h7(r) + h8(r)

L1h9(r) + h10(r)

for λ
κ
(1 − α) > 2,

h6(r) = L2h11(r) + h12(r)

L2h13(r) + h14(r)

for λ
κ
(1 − α) < 2,

h7(r) = (β ′2 + 1) sin(β ′ cosh−1 z2(r)),

h8(r) = (β ′2 + 1) cos(β ′ cosh−1 z2(r)),

h9(r) = β ′
√
z2

2(r) − 1 cos(β ′ cosh−1 z2(r))

−z2(r) sin(β ′ cosh−1 z2(r)),

h10(r) = β ′
√
z2

2(r) − 1 sin(β ′ cosh−1 z2(r))

+z2(r) cos(β ′ cosh−1 z2(r)),

h11(r) = (β2 − 1) cosh(β cosh−1 z2(r)),

h12(r) = (β2 − 1) sinh(β cosh−1 z2(r)),

h13(r) = β

√
z2

2(r) − 1 sinh(β cosh−1 z2(r))

−z2(r) cosh(β cosh−1 z2(r),

h14(r) = β

√
z2

2(r) − 1 cosh(β cosh−1 z2(r))

−z2(r) sinh(β cosh−1 z2(r)),

L1 = h̃8 − τ ˜h10

h̃7 + τ h̃9
,

L2 = τ ˜h14 − ˜h12

˜h11 − τ ˜h13
,
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h̃7 = (β ′2 + 1) sin(β ′ cosh−1 z2b),

h̃8 = (β ′2 + 1) cos(β ′ cosh−1 z2b),

h̃9 = β ′
√
z2

2b − 1 cos(β ′ cosh−1 z2b)

−z2b sin(β ′ cosh−1 z2b),

˜h10 = β ′
√
z2

2b − 1 sin(β ′ cosh−1 z2b)

+z2b cos(β ′ cosh−1 z2b),

˜h11 = (β2 − 1) cosh(β cosh−1 z2b),

˜h12 = (β2 − 1) sinh(β cosh−1 z2b),

˜h13 = β

√
z2

2b − 1 sinh(β cosh−1 z2b)

−z2b cosh(β cosh−1 z2b),

˜h14 = β

√
z2

2b − 1 cosh(β cosh−1 z2b)

−z2b sinh(β cosh−1 z2b),

τ = λ − κ

2z2bκ
,

z2(r) =
√

λ

λ − κ

√
1 + κ

r2

R2 ,

z2b =
√

λ

λ − κ

√
1 + κ

b2

R2 ,

β =
√

2 − λ

κ
(1 − α)

and

β ′ =
√

λ

κ
(1 − α) − 2.

Case III: κ = 0

Fg = −4λr

R4

h15(r)

(1 + λ r2

R2 )2

⎡
⎣1 + 2(1 + λ r2

R2 )

λ
h15(r)

⎤
⎦ ,

(89)

Fh = − 2r

R4

[
αλ2

4(1 + λ
2
r2

R2 )2
− 2λh15(r)

(1 + λ r2

R2 )2
− 4h2

15(r)

1 + λ r2

R2

]
,

(90)

Fa = αλ2r

2R4(1 + λ
2
r2

R2 )2
, (91)

where

h15(r) = λ

4

[
h16(r) + h17(r)

h18(r)

]
for α < 1,

= λ

4

⎡
⎣(L4z3(r) + 1) + L4

√
1 + λ r2

R2

(1 + λ
2
r2

R2 )(L4z3(r) + 1)

⎤
⎦ for α = 1,

= λ

4

[
h19(r) + h20(r)

h21(r)

]
for α > 1,

h16(r) = L3 sin(
√

1 − αz3r ) + cos(
√

1 − αz3r ),

h17(r) = √
1 − α

√(
1 + λ

r2

R2

)

× {L3 cos(
√

1 − αz3(r)) − sin(
√

1 − αz3(r))
}
,

h18(r) =
(

1 + λ

2

r2

R2

)
L3 sin(

√
1 − αz3(r))

+
(

1 + λ

2

r2

R2

)
cos(

√
1 − αz3(r)),

h19(r) = L5e
√

α−1z3(r) + e−√
α−1z3(r),

h20(r) = √
α − 1

√
1 + λ

r2

R2 (L5e
√

α−1z3(r)

−e−√
α−1z3(r)),

h21(r) =
(

1 + λ

2

r2

R2

)
h19(r),

L3 =
(λ

2
b2

R2 ) cos(
√

1 − αz3b) + √
1 − α

√
1 + λ b2

R2 sin(
√

1 − αz3b)

√
1 − α

√
1 + λ b2

R2 cos(
√

1 − αz3b) − (λ
2
b2

R2 ) sin(
√

1 − αz3b)

,

L4 =
λ
2

b2

R2√
1+λ b2

R2 − λ
2

b2

R2 z3b

,

L5 =
λ
2

b2

R2 +√
α−1

√
1+λ b2

R2

√
α−1

√
1+λ b2

R2 − λ
2

b2

R2

e−2
√

α−1z3b ,

z3(r) =
√

1 + λ
r2

R2 − tan−1
(√

1 + λ
r2

R2

)
,

z3b =
√

1 + λ
b2

R2 − tan−1
(√

1 + λ
b2

R2

)
.
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Figure 27. Variation of different forces with respect to radial
distance (r ) inside 4U 1608-52. Here solid, dotted and dashed
curves represent κ = −0.5, κ = 0 and κ = 0.5, respectively.
Here we have used (i) λ = 2, κ = −0.5, (ii) λ = 2, κ = 0
and (iii) λ = 50, κ = 0.5. The anisotropy parameter α is set
to 0.1.

From figure 27, we observe that gravitational force
(Fg), hydrostatic force (Fh) and anisotropic force (Fa)
are finite and continuous at the centre and throughout
the interior of the compact object considered here. The
anisotropic force (Fa) increases monotonically from the
centre up to the surface whereas both gravitational (Fg)
and hydrostatic (Fh) forces increase from the centre,
pick up maximum value at some point interior to the
compact object then decreases towards the boundary. It
is also noted that the hydrostatic (Fh) and anisotropic
(Fa) forces together balance the gravitational force (Fg)
so that their resultant effect is zero throughout the inte-
rior of the stellar model. Hence, our model is in stable
equilibrium under the mutual influence of these forces
for the choice of new parameter κ in the metric ansatz.

8.2 Herrera cracking condition

For any anisotropic stellar model, it is required that the
stellar model should be stable against fluctuations of its
physical parameters. A criterion known as ‘cracking’
was introduced by Herrera [86] to check if an anisotropic
matter configuration is stable or not. Abreu et al [87]
gave a criterion on the basis of Herrera’s concept which
depicts that any stellar model will be stable if the radial
(vr ) and tangential (vt ) sound speeds satisfy the condi-
tion

0 ≤ |v2
t − v2

r | ≤ 1. (92)

The difference between the square of the tangential
and radial sound velocities is shown in figure 28 for 4U
1608-52. It is found that Abreu’s inequality given by
eq. (92) is satisfied throughout the interior of the com-
pact star mentioned here. Therefore, the model adopted

Figure 28. Variation of |v2
t − v2

r | with respect to radial dis-
tance (r ) inside 4U 1608-52. Here solid, dotted and dashed
curves represent κ = −0.5, κ = 0 and κ = 0.5 respectively.
Here we have used (i) λ = 2, κ = −0.5, (ii) λ = 2, κ = 0
and (iii) λ = 50, κ = 0.5. The anisotropy parameter α is set
to 0.1.

here is stable for the choice of new parameter κ in the
metric ansatz.

8.3 Adiabatic index

The relativistic adiabatic index (�) is defined as

� = ρ + pr
pr

(
dpr
dρ

)
= ρ + pr

pr
v2
r . (93)

According to Heintzmann and Hillebrandt [88], the sta-
bility of a Newtonian isotropic fluid sphere requires that
� > 4

3 . For a relativistic anisotropic fluid sphere, Chan
et al [89] showed that this Newtonian limit changes to

� > �′ (94)

where

�′ = 4

3
−
[

4

3

(pr − pt )

|p′
r |r

]
max

. (95)

In figure 29 the adiabatic index is plotted for 4U 1608-
52. It is evident that the condition given by Chan et
al [89] is satisfied throughout the interior of the compact
object considered here for the choice of new parameter
κ in the metric ansatz.

9. Equation of state

The equation of state (EOS) has a significant effect
on mass–radius relation and structural properties of a
compact object. However, the EOS of matter near the
core region of a compact object is not well understood
till date. Many investigators have approximated a lin-
ear EOS [90–93] to explain the structural properties
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Table 11. Equation of state for 4U 1608-52.

κ λ α Equation of state B (MeV/fm3)

0.5 20 0.027 pr = 0.3333ρ − 0.00342 76.95
pr = −1.1124ρ2 + 0.3853ρ − 0.00395 −

100 0.1 pr = 0.3333ρ − 0.00319 71.77
pr = −1.2028ρ2 + 0.3640ρ − 0.00375 −

0 2 0.1 pr = 0.3333ρ − 0.00349 78.52
pr = −0.9964ρ2 + 0.3791ρ − 0.00395 −

10 0.1 pr = 0.3333ρ − 0.00349 78.52
pr = −0.9964ρ2 + 0.3791ρ − 0.00395 −

−1.0 16.4 0.1 pr = 0.3333ρ − 0.00359 80.77
pr = −1.2364ρ2 + 0.3880ρ − 0.00413 −

Figure 29. Plot of adiabatic index (�) with respect to radial
distance (r ) inside 4U 1608-52. Here solid, dotted and dashed
curves represent κ = −0.5, κ = 0 and κ = 0.5, respectively.
Here we have used (i) λ = 2, κ = −0.5, (ii) λ = 2, κ = 0
and (iii) λ = 50, κ = 0.5. The anisotropy parameter α is
set to 0.1. The horizontal black line represents �′ as given by
eq. (95).

of such compact objects. Vaidya–Tikekar model admit-
ting spheroidal geometry has been used by Sharma and
Mukherjee [94] to obtain core envelope model of a com-
pact object. In their work, the spheroidal parameter λ

itself determines the EOS. Recently, Singh et al [95]
obtained a core envelope structure by assuming three
layered neutron star defined by different EOS for its
matter. The maximum mass and radius of a compact
object using MIT Bag EOS have been determined by
Goswami et al [96] in higher-dimensional spheroidal
space–time geometry. In the present work, due to the
complexity in the expressions of energy density (ρ) and
pressure (pr ), it is difficult to obtain an analytical rela-
tion between pressure and density. Therefore, we adopt
a numerical technique to predict the EOS. The EOS of
the interior matter of 4U 1608-52 in this model is shown
in table 11 for different combinations of λ, κ and α.

Figure 30. Linear and quadratic fitted equations of state for
4U 1608-52 taking α = 0.1 and κ = −1.0.

To predict EOS, we fit the data set of energy density
(ρ) and radial pressure (pr ) for various combinations
of parameters and note that the linear fit agrees with
the EOS approximately having slope 1

3 , and therefore
corresponds to MIT Bag model equation of state [16,17]
having the value of Bag constant given in table 11. From
table 11, we note that for a suitable combination of λ, κ
and α, the model allows MIT Bag EOS for 4U 1608-52.
A quadratic EOS is also presented for the chosen values
of model parameters. It is also interesting to note that
λ has no effect on EOS for κ = 0. Therefore, in this
case EOS is only α-dependent. In figure 30, the EOS
for the interior matter content of 4U 1608-52 is plotted
for α = 0.1 and κ = −1.0. It is observed that quadratic
fit nearly follows the actual data sets obtained from our
model.

10. Conclusions

The main objective of this paper is to investigate the
effects of an extra parameter (κ) included in the metric
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ansatz given in eq. (7), which may be looked upon as
the generalised Vaidya–Tikekar metric, on global prop-
erties like mass–radius relation, maximum mass, energy
density, pressure, surface redshift etc. We note some
interesting results due to the inclusion of extra param-
eter (κ) in the metric potential. In this article, we have
presented relativistic solutions of a class of anisotropic
compact objects described by a modified Vaidya–
Tikekar ansatz which are regular and well-behaved.
Solutions of EFE are available using Vaidya–Tikekar
ansatz in spheroidal and pseudospheroidal geometry
characterised by a spheroidal parameter λ and a geo-
metrical parameter R. In the present work, we have
considered a closed form of the metric ansatz by intro-
ducing an extra parameter (κ) so that by switching
this parameter to particular values, the known forms of
the metric ansatz and their corresponding solutions are
recovered. For instance, one can recover the ansatz in
ref. [20] by setting κ = −1 or that in ref. [30] by puting
κ = 1. A series solution of this particular type of met-
ric ansatz given in eq. (7) was previously obtained by
Komathiraj and Maharaj [44]. We present here a differ-
ent procedure in which an analytical solution is obtained
in terms of trigonometric and algebraic functions which
is a more desirable form for the physical description of a
relativistic compact object. Here, we have two indepen-
dent parameters that can define the pressure and density
relation to describe EOS. It is worthwhile to mention
that this type of metric ansatz also appears in the work of
different researchers [45–47,49]. We particularly obtain
a solution similar to Mukherjee et al [62], Tikekar and
Jotania [30] and others [31,32]. For κ < 0 and κ > 0, a
lower bound on the spheroidal parameter λ is obtained
which reduces for isotropic case to λ > 3

17 and λ > 5
for κ = −1 and κ = 1 respectively, thus follows the
earlier results of Mukherjee et al [62] and Chattopad-
hyay and Paul [32]. In the present work, we generate
wider range of λ by including the pressure anisotropy
(α) for well-behaved solutions. Inclusion of the new
parameter κ in the grr component of metric potential
increases the allowed values of anisotropy parameter
α as given in eqs (58) and (59) upto which the physi-
cally viable model can be constructed for compact stars.
Another notable feature of our present model is that for
κ = 0, we get Matese and Whitman solution [64] in
anisotropic regime. Three different categories of solu-
tions are possible in this case depending on the value of
anisotropy parameter α. One such solution was not con-
sidered in refs [64,65] due to its unphysical behaviour
in the determination of density and pressure. Here, we
generate physically realistic solution in the presence
of anisotropy for κ = 0. Moreover, for α > 1, our
anisotropic extension of Matese and Whitman solution
exhibits monotonically decreasing sound velocity which

imposes another restriction on the value of anisotropy
parameter α given in eq. (79). In figures 10–13, we have
plotted maximum mass contained within a radius for
different values κ . It is noted that when κ → 0, the
maximum mass is almost independent of the spheroidal
parameter λ and maximum mass approaches a constant
value when λ takes large values for any κ . The maxi-
mum mass for κ = 0 is tabulated in table 3. In the case
of an isotropic star, maximum mass increases with the
decrease of |κ| as evident from figures 10 and 11 and
when κ → 0, maximum mass approaches the value ∼
2.433M� corresponding to the case κ = 0. But, in the
presence of anisotropy, maximum mass approaches ∼
2.58M� when κ → 0 for α = 0.3 as evident from
figures 12 and 13, which is greater than the maximum
mass obtained from the case κ = 0 (∼ 2.5M�) hav-
ing the same α (= 0.3) and radius (b = 10 km).
We also found that maximum mass corresponding to
κ = 0 is independent of the spheroidal parameter λ.
In this case, the maximum mass (∼ 3.2M�) of a com-
pact object predicted by Rhoades and Ruffini [73] can
be achieved in our model with α = 0, b = 13.15 km
and α = 0.3, b = 12.815 km, i.e., for κ = 0, radius
of a compact object having maximum mass depends
only on anisotropy parameter α. Mass to radius ratio
is found to remain below the Buchdahl limit (4/9) for
the choices of new parameter κ . Calculation of max-
imum mass shows that it increases with the increase
in anisotropy. A plausible explanation of this result is
that for higher anisotropy, radial pressure decreases and
since density remains unchanged, equation of state is
softer for higher anisotropy which allows more mass
for a given radius. The mass vs. radius plots in figures 3
and 5 show that for higher central density, higher mass is
contained within a given radius. However, for κ = −7
it is observed that mass corresponding to lower cen-
tral density becomes higher than that for higher central
density which is shown in figure 3. The density and pres-
sure are regular, positive and well-behaved as evident
from figures 14–17. The pressure and density gradi-
ents are negative as shown in figures 18 and 19. In the
linear approximation, the best fit corresponds to MIT
Bag model EOS which is obtained by properly choos-
ing model parameters κ , λ and α as shown in table 11
for 4U 1608-52. Apart from these features, our model
also satisfies all the stability criteria.
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