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Abstract. In this paper, a fractional-order locally active memristor is proposed based on the definition of fractional
derivative. It is found that the side lobe area of the pinched hysteretic curve of the memristor changes with the
fractional-order value, and the side lobe’s area of the fractional-order memristor is greater than that of the memristor
with integer order, meaning that the memory of the fractional-order memristor is stronger than that of the memristor
with integer order. It is proved by the dynamic rout map (DRM) that the fractional-order memristor possesses
continuous memory. The pinched hysteresis, memristance and power characteristics which vary with the fractional
order are compared and analysed in detail. Furthermore, we use the memristor to construct a fractional-order chaotic
circuit, which can exhibit continuous chaotic motion in the range of 0.75 < fractional order α < 1 and various
coexisting attractors. We also show that the lower fractional order causes higher complexity of the fractional-
order chaotic system using different methods, such as Lyapunov exponent spectrum, bifurcation diagram, spectral
entropy and C0 complexity method. Finally, the circuit simulations of the fractional-order chaotic circuit are realised,
demonstrating the validity of the mathematical model and the theoretical analysis.
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1. Introduction

In 1971, Chua postulated the concept of memristor,
which is characterised by the relationship between the
flux and the charge [1]. A memristor is a nonlinear resis-
tor with memory, whose resistances are dependent on
the state and history of the memristor. Ever since the
TiO2 memristor was reported in 2008 by the HP Labs
[2], there has been a torrent of memristor researches
from both industry and academia to uncover the charac-
teristics of the memristor for building new generation
of computers, brain-like machines and nonlinear cir-
cuits [3–5].

It has been proved that a fractional-order model of
an actual circuit element is more consistent with the
characteristics of the element. The main advantages of
a fractional-order model of a circuit element are its
long-memory dependency and the ability to increase the
degree of freedom for the model through the fractional-
order parameters [6]. So the fractional-order models
are more suitable for describing the devices with his-
torical memory such as memristors [7]. Therefore,

fractional-order calculus-based memristor modelling
has attracted great attention from academia.

In 2012, Petrás̆ and Chen [8] introduced the fractional-
order models of memristor, memcapacitor and memin-
ductor. Then a fractional-order memristor model was
constructed in ref. [9], and the relation of the excita-
tion voltage, the fractional-order memristance and the
fractional order was discussed in detail. Based on [8],
Fouda and Radwan [10] further studied the responses
of the fractional-order memristor under the DC and
periodic signals. Based on the memory fading of tita-
nium dioxide memristors, Yu and Wang [7] studied
the series and parallel circuits of the fractional-order
memristors and capacitors or inductors, and indicated
that fractional-order state equations are the most effec-
tive method to describe the state between memory-less
and ideal memory. Furthermore, Hamed et al [11]
and Elsafty et al [12] used a fractional-order capaci-
tor to design fractional-order memristor emulators, and
analysed the pinched hysteresis behaviour and dou-
ble pinch-off points of the fractional-order memristor
emulators. Very recently, a non-volatile fractional-order
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memristor model is proposed in ref. [13]. Chaotic
behaviour has been found in many fractional-order sys-
tems [14–16], and the engineering applications of the
fractional-order chaotic systems have also been devel-
oped [17,18].

In recent years, researchers have tried to use fractional-
order memristors to construct chaotic circuits, and pro-
posed some different fractional-order memristor-based
chaotic systems, such as the simplest fractional-order
memristor-based chaotic systems [19], fractional-order
memristor-based Chua’s circuits [20], fractional-order
memristive circuits [3], fractional-order generalised
memristor-based chaotic systems [21] and active non-
volatile fractional-order memristor-based Chua’s cir-
cuits by using fractional-order memristors, capacitors
and inductors [13].

Chua found that local activity is the origin of com-
plexity [22], and proposed the concept of locally active
memristor, which is defined to be any memristor show-
ing a negative differential resistance (NDR) in its DC
V –I plot [23]. Locally active memristors are neces-
sary conditions of oscillating systems [24], and can
amplify infinitesimal fluctuations in energy for gen-
erating and maintaining complex oscillations. Fortu-
nately, Williams et al manufactured actual locally active
memristors, which can exhibit both temperature- and
current-controlled NDRs and can be applied to chaotic
neural networks as an essential device for both chaotic
oscillation module and synapses of the neural networks
[25,26].

It has been found that locally active memristors have
important applications in complex systems, neural net-
works and so on. However, fractional-order modelling
of locally active memristors has not been found. There-
fore, this paper introduces a fractional-order voltage-
controlled locally active memristor model, from which
many complex dynamics such as non-volatility, chaos
and coexisting attractors are found [27].

2. Fractional-order memristor modelling

The voltage-controlled generic memristor is defined as
{
i (t) = G (x) v (t) ,

ẋ = f (x) v,
(1)

where v(t), i(t) and x are the voltage, current and the
state variable of the memristor, respectively.

A fractional-order voltage-controlled memristor can
be defined as{
i (t) = G (x) v (t) ,

0D
α
t x (t) = f (x) v,

(2)

where 0Dα
t is the fractional-order arithmetic operator, α

is the order of fractional calculus and 0 and t represent
integral range. The fractional-order arithmetic operator
is defined as

0D
α
t = f (v (t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dα

dtα
, α > 0,

1, α = 0,∫ t
0 (dτ)−α, α < 0

(3)

According to the theory of fractional-order arithmetic
theory, the initial conditions expressed in terms of both
Riemann–Liouville and Caputo fractional-order deriva-
tive have physical significances [28–30]. However, we
focus on using the derivative of Caputo to describe the
state equation of a fractional-order memristor, because
the initial condition of fractional-order differential equa-
tion with Caputo derivative is the same as that of the
integer differential equation [31]. The mathematical
description of a fractional-order memristor is

C
0 Dα

t x (t) = 1

� (q − α)

∫ t

0

x (q) (τ )

(t − τ)(1+α−q)
dτ , (4)

where �(·) is a gamma function and q > α and q ∈ N
(integer).

Here, we proposed a new fractional-order voltage-
controlled locally active memristor model based on the
Caputo derivative:
{
i (t) = W (x (t)) v (t) = (x(t)2 − x (t) + m)v (t) ,
C
0 Dα

t x (t) = v (t) (α > 0) ,

(5)

where m can be considered as the parasitic conductance
or internal conductance of the fractional-order memris-
tor. Under the v(t) = sin(ωt) excitation, the pinched
hysteresis curve and the memductance vs. state x of
the memristor are shown in figure 1. Observe that the
memristor exhibits negative resistance over the range of
−0.1 < x < 1.15, thereby showing local activity.

Under the definition of the derivative of Caputo [7],
C
0 D1−α

t (C0 Dα
t x (t)) = ẋ (t). So ẋ (t) = C

0 D1−α
t v (t). We

take the driving voltage as

v (t) = A sin (ωt) , (6)

where A is the excitation amplitude and ω is the excita-
tion frequency. So we have

ẋ (t) = AC
0 D1−α

t sin (ωt) . (7)

According to Euler’s formula and the principle of
short time memory, eq. (7) can be simplified as

ẋ (t) ≈ Aω1−α sin

(
ωt + 1 − α

2
π

)
. (8)
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Figure 1. Characteristics of the fractional-order voltage-
controlled locally active memristor model: (a) v–i pinched
hysteresis curve under the excitation signal with the ampli-
tude A = 1 V and different frequencies ω = 10, 50 and
300 rad/s and (b) memductance vs. the state variable x, where
x ∈ [−1, 2].

And we can integrate both sides of eq. (8):

x (t) = x (0) + A

ωα

×
[

cos

(
1 − α

2
π

)
− cos

(
ωt + 1 − α

2
π

)]
.

(9)

According to ref. [32], the area of hysteresis lobe can
reflect the memory capacity of the memristor. The larger
the lobe area, the stronger is the memristor memory. The
formula for calculating the lobe area is given as [33]

S1 =
∮
A1

i (t) dv (t), (10)

where S1 represents the area enclosed by the hysteresis
loop in the fourth quadrant, as shown in figure 2.

Figure 2. Lobe area of the pinched hysteresis curve in the
fourth quadrant when the excitation signal v (t) = A sin (ωt).

Table 1. The relationship between orders and lobe areas.

Order α Area S1

1.0 0.0533
0.9 0.0604
0.8 0.0644
0.7 0.0637
0.6 0.0569
0.5 0.0431

According to eqs (5) and (6), eq. (10) can be simplified
as

S1 =
∫ π/ω

0
(x2 − x − 0.14) · A · sin (ωt) dA

· sin (ωt) . (11)

Let x(0) = 0, and then substituting eq. (9) into eq. (11)
we get

S1 =
∮
A1

i (t) dv (t)

=
∫ π/ω

0
(x2 − x − 0.14) · A · sin (ωt) dA· sin (ωt)

= A2ω

2

(
− A2

ω2α

3π sin (απ) + 32 sin
(

απ
2

)2

12ω

+ A

ωα

4 sin
(

απ
2

)
3ω

)
. (12)

When A = 1, the calculated lobe areas are listed in
table 1, where only the case α > 0.5 is discussed, since
the hysteretic curve in the second quadrant will shift to
the third quadrant when the order is less than 0.5.

It is found from table 1 that when the order α gradually
decreases from 1 to 0.5, the area S1 first increases and



  109 Page 4 of 15 Pramana – J. Phys.          (2022) 96:109 

Figure 3. The lobe areas of pinched hysteresis curves in the
fourth quadrant vary with the order α of the fractional-order
memristor: (a) α = 0.8, 0.9, 1 and (b) α = 0.5, 0.6, 0.7.

then decreases, indicating that the memristor’s memory
gradually became stronger and then weaker, as shown
in figure 3.

When the hysteretic curve is in the second quadrant,
as shown in figure 4, the side lobe area of the hysteresis
curve is as follows:

S2 = −
∮
A2

i (t) dv (t)

=
∫ 2π/ω

π/ω

−(x2 − x − 0.14)

· A · sin (ωt) dA · sin (ωt)

= A2w

2

(
− A2

ω2α

3π sin (απ) − 32 sin
(

απ
2

)2

12ω

)

− A3w

2ωα

4 sin
(

απ
2

)
3ω

. (13)

When α ∈ [0.5, 1], the obtained data about the rela-
tion between order α and area S are shown in table 2:

It is shown in table 2 that the area S2 increases as
order α decreases over the range of 0.5 ≤ α ≤ 1, which

Figure 4. Side lobe area of pinched hysteresis curves
in the second quadrant under the excitation signal
v (t) = A sin (ωt).

Figure 5. Side lobe area of pinched hysteresis curves in the
second quadrant with different values of order α of the frac-
tional-order memristor, where yellow, green, red and blue
curves represent α = 0.5, 0.6, 0.8 and 1, respectively.

Table 2. The relationship between orders and lobe areas

Order α Area S2

1.0 0.0533
0.9 0.0642
0.8 0.0760
0.7 0.0890
0.6 0.1040
0.5 0.1217

indicates that the memristor memory gradually becomes
stronger with the decrease of the order α in the second
quadrant.

The area S of the whole hysteresis curve of the
fractional-order memristor is: S = S1 + S2, which is
shown in figure 6.

It follows from figure 6 that the area of the fractional-
order pinched hysteresis curve decreases gradually with



Pramana – J. Phys.          (2022) 96:109 Page 5 of 15   109 

Figure 6. The area S of pinched hysteresis curves vs. the
order α of the fractional-order memristor over the range of
α ∈ [0.5, 1].

Figure 7. DRM diagram of the fractional-order memristor.

the increase in the order α ∈ [0.5, 1] and finally reaches
the minimum value at α = 1. This indicates that the
memory of fractional-order memristor is stronger than
that of the integer-order memristor, and the lower the
order of fractional-order memristor is, the better is the
memory.

2.1 Non-volatility of the fractional-order memristor

The resistance of the fractional-order memristor is con-
trolled by its voltage and can be memorised when its
power is cut off, thereby making the memristor a non-
volatile memory.

Here, two tools, the dynamic route map (DRM) and
power-off plot (POP) are used to analyse the non-volatile
memory of the memristor. DRM is a collection of the

Figure 8. Influence of order (α = 0.5, 0.6, 0.8, 1) on dif-
ferent characteristics of the fractional-order memristor: (a)
pinched hysteresis curves, (b) memristance and (c) the instan-
taneous power.

dynamic routes on dαx/dtα−x plane, each parametrised
by a value of the memristor voltage v. In particular, POP
is a special dynamic route with v = 0 (i.e., the power is
turned off). It says that if there are two or more stable
intersections (equilibria) between POP and x-axis, the
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memristor exhibits non-volatility. Besides, any point on
a dynamic route lying in the upper half plane (resp.,
lower half plane) must move to the right (resp., left),
because dαx/dtα > 0 (resp., dαx/dtα < 0).

Figure 7 shows the DRM of dynamic routes with
v = ±2 V, ±1 V, 0 V, corresponding to yellow, blue and
red trajectories, respectively. It can be seen that the POP
(red trajectory) and x-axis overlap with each other, indi-
cating that the memristor has infinite number of stable
equilibria and therefore is non-volatile.

When a voltage pulse with a pulse magnitude of 1 V
and pulse width of �t is applied across the memristor,
the dynamic route changes instantaneously from the red
POP to the upper blue route where dαx/dtα > 0, i.e.,
the state variable x jumps from A to B. And then the

Figure 9. The schematic of the fractional-order chaotic
system.

state x must move to the right along the dynamic route
parametrised by v = 1 V until t = �t , when the volt-
age pulse switches back to zero, and the dynamic route
reverses back abruptly to the POP where dαx/dtα = 0
(i.e., state variable x jumps directly from point C on
blue route to point D on red POP) and remains there
until it is excited by another voltage pulse at a later time
of t > �t . Thus, the memristor always remembers its
state before the power is turned off, i.e., the state or the
memductance is not changed before and after the power

Figure 11. Distribution of characteristic roots at the equilib-
rium point (0, 0, 0, 0) of the system.

Figure 10. Trajectories of the system attractor: (a) x–y–z space phase diagram, (b) x–y plane phase diagram, (c) x–z plane
phase diagram and (d) y–w plane phase diagram.
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Table 3. Corresponding system state parameters at different equilibrium points.

xe = d λ1 λ2,3 α′ α Dynamics

−0.4 −4.1842 0.1877 ± 3.7106i 0.968 0.9 (α < α′) Stable point
−0.3 −2.7914 0.1452 ± 3.4982i 0.974 0.9(α < α′) Stable point
−0.2 −1.2624 −0.0423 ± 3.2634i 0.992 0.9(α < α′) Stable point
−0.1 0.4335 −0.3904 ± 3.2159i 0+ 0.9(α > α′) Chaos

0 1.6944 −0.5977 ± 3.3640i 0+ 0.9(α > α′) Chaos
0.1 2.5439 −0.6763 ± 3.4952i 0+ 0.9(α > α′) Chaos
0.2 3.1419 −0.7061 ± 3.5844i 0+ 0.9(α > α′) Chaos
0.3 3.5485 −0.7171 ± 3.6406i 0+ 0.9(α > α′) Chaos
0.4 3.7866 −0.7208 ± 3.6715i 0+ 0.9(α > α′) Chaos

Figure 12. The system trajectories corresponding to the different equilibrium points (d, 0, 0, 0), where
d = −0.4,−0.3,−0.2,−0.1, 0.0.1, 0.2, 0.3 and 0.4, α = 0.9, (x(0), y(0), z(0), w(0)) = (0, 0.1, 0, 0).

failure: xD = xC or W (xD) = W (xC), showing the
non-volatility of the fractional-order memristor, where
xC and xD are the states before and after the power-off,
corresponding to the state at points C (i.e., v = 1 V) and
D (i.e., v = 0 V) of figure 7, respectively.

2.2 Numerical simulation of the memristor

Figure 8a shows the pinched hysteresis curves of the
memristor in the v–i plane vs. different fractional-order
values. It can be seen that fractional-order memristors

(0.5 ≤ α ≤ 1) possess better memory than the
integer-order memristors (α = 1).

The memristances with respect to the different order
values are shown in figure 8b, from which we can see
that the memristor always exhibits active characteristics
over the range of 0.5 ≤ α ≤ 1.

Figure 8c shows that the instantaneous power changes
with the order values of the memristor, showing that
the instantaneous power is always non-positive when
0.5 ≤ α ≤ 1, i.e., p (t) ≤ 0, which corresponds to the
activity of the memristor.
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3. Chaotic circuit based on fractional-order
memristor

3.1 Fractional-order chaotic system

Compared with the integer-order models, the fractional-
order models of the basic circuit elements are more
accurate and agree with the electrical characteristics
of the actual elements [34]. For example, fractional-
order models of the capacitor and the inductor are as
follows [35]:

C
dαv (t)

dtα
= i(t), (14)

L
dαi (t)

dtα
= v (t) . (15)

We know from the previous analysis that the proposed
fractional-order memristor is an active device, which
can amplify infinitesimal signals in its active region to
generate complex phenomena [22]. Therefore, we can
use the active fractional-order memristor to construct

Figure 13. (a) Bifurcation diagram varying with parameter
c ∈ [13, 20] and (b) Lyapunov exponent spectrum varying
with c ∈ [13, 20].

a chaotic circuit, which is shown in figure 9, where
both the capacitor and the inductor are fractional-order
devices.

According ref. [36], the negative-value elements are
obtained by means of current inversion via amplifier A1
and resistors R1 and R2, as shown in Appendix A in ref.
[36]. The parameter k is given by k = R1/R2. Here, we
take k = 1.

Figure 14. The phase trajectories of the x–y plane for (a)
c = 13 and (b) c = 15.

Figure 15. Bifurcation diagram of the system varying with
order α ∈ [0.7, 1] and initial condition (0, 0.1, 0, 0).
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Figure 16. Bifurcation diagram and Lyapunov exponent
spectrum of the system varying with initial values x(0) ∈
[−0.8,−0.427]: (a) Bifurcation diagram and (b) Lyapunov
exponent spectrum.

According to Kirchhoff’s laws, the circuit equations
are described by

f (x, v1, iL , v2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dαx

dtα
= v1,

C1
dαv1

dtα
= iL − (x2 − x + m)v1,

L
dαiL
dtα

= v1 − RiL − v2,

C2
dαv2

dtα
= iL ,

(16)

where the first equation of eq. (16) is the state equation
of the fractional-order memristor defined by eq. (5). And
the system is a commensurate system. By setting y = v1,
z = iL , w = v2, a = 1/C1, b = 1/L , c = 1/C2,
M = R, eq. (16) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dαx

dtα
= y (α > 0) ,

dα y

dtα
= a

(
z −

(
x2 − x − 1

7

)
y

)
,

dαz

dtα
= b (y − Mz − w) ,

dαw

dtα
= cz,

(17)

where x2 − x − (1/7) = G(x). The values of circuit
components and initial conditions are determined by a
trial-and-error method so that the circuit can generate
chaos. Here, we take parameters a = 7.69, b = 1,
c = 18, M = 0.6, α = 0.9, and the initial condition
(x(0), y(0), z(0), w(0)) = (0, 0.1, 0, 0). The calculated
Lyapunov exponents of eq. (17) are: LE1 = 0.4396,
LE2 = 0, LE3 = −0.0559, LE4 = −7.6073. This
means that the circuit is in a chaotic state. The Adomian

Figure 17. The evolution of the system phase diagram varying with the initial value x(0) from −0.8 to 0.9.
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Figure 18. Time-domain diagrams and phase diagrams of different initial values of the system: (a) The time-domain diagrams
of x(0) = −0.75 and x(0) = 0, (b) the phase diagrams of x(0) = −0.75 and x(0) = 0, (c) the time-domain diagrams of
x(0) = −0.3 and x(0) = 1 and (d) the phase diagrams of x(0) = −0.3 and x(0) = 1.

Figure 19. Bifurcation diagrams varying with initial state
x(0) ∈ [−1, 1] for α = 0.99 (red) and α = 0.9 (blue).

algorithm [13] (step size 0.01) was used to simulate the
system, and the obtained chaotic attractors are shown in
figure 10.

3.2 Characteristic analysis of the chaotic system

3.2.1 Basic dynamic properties of the circuit. Let the
left side of eq. (17) be zero, i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y = 0,

a

(
z −

(
x2 − x − 1

7

)
y

)
= 0,

b (y − Mz − w) = 0,

cz = 0.

(18)

By solving eq. (18), the equilibrium points of the sys-
tem are (d, 0, 0, 0), where d is an arbitrary constant,
that is, the system has an infinite number of equilibrium
points (i.e., a line of equilibria). Linearising system (16)
at the equilibrium points, the Jacobian matrix is obtained
as follows:

J =

⎡
⎢⎢⎢⎣

0 1 0 0

0 −a

(
d2 − d − 1

7

)
a 0

0 b −bM −b
0 0 c 0

⎤
⎥⎥⎥⎦ . (19)

Let a = 7.69, b = 1, c = 18 and M = 0.6 at the
equilibrium point (0, 0, 0, 0). The characteristic roots of
the Jacobian matrix are

⎧⎪⎨
⎪⎩

λ1 = 0,

λ2 = 1.6944,

λ3 = −0.5977 + 3.3640i,
λ4 = −0.5977 − 3.3640i.

(20)
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Figure 20. Coexisting attractors with different initial con-
ditions: (a) x(0) = −0.295,−0.291,−0.288,−0.284, cor-
responding to the yellow, blue, purple and red trajectories,
respectively and (b) x(0) = 1.13, 1.23, 1.27, corresponding
to the yellow, green and red trajectories, respectively.

When all the eigenvalues of the Jacobian matrix sat-
isfy the condition: |arg (λ)| > απ/2, where α is a
fractional-order integral order, it can be said that the
fractional-order system is asymptotically stable [37].
Therefore, the necessary condition for a system to be
unstable is that there must be a characteristic root that
satisfies the condition [13]

α > α′ = 2

π
tan−1

( |γ |
|β|

)
, (21)

where γ is the imaginary part and β is the real part
of a characteristic root. It can be seen from eq. (20)
that the characteristic root λ2 is already in the unstable
region, as shown in figure 11. Therefore, we only need
to ensure that α > 0 to make the system unstable at the
equilibrium point (0, 0, 0, 0).

Table 3 lists the corresponding eigenvalues when
taking different equilibrium points. When the fractional-
order α > α′, it indicates that the system is unstable,
otherwise it is stable. It can be seen from figure 12 that
the system shows chaos over the range of d ∈ [−0.1,

Figure 21. Entropy spectral complexity varying with the
parameter c ∈ [13, 20] and (x(0), y(0), z(0), w(0)) =
(0, 0.1, 0, 0): (a) SE complexity and (b) C0 complexity.

0.4], where α > α′, verifying the stability criterion of
the system.

3.2.2 Bifurcation with parameter c. With the changes
of system parameters, the system will be in different
states due to the stability changes of equilibria. In fig-
ure 16a, we explore the dynamics of the system under
different initial conditions over the range of x (0) ∈
[−0.8, 1], where y(0) = 0.1, z(0) = 0, w(0) = 0.
We can find evolution of dynamics via the bifurcation
diagram, and then predict the dynamics under other
initial conditions in all the cases. Under the initial con-
ditions (0, 0.1, 0, 0) and α = 0.9 , a = 7.69, b = 1,
M = 0.6, the bifurcation diagram and the corresponding
Lyapunov exponent spectrum of the system with respect
to parameter c over the range of c ∈ [13, 20] are shown
in figures 13a and 13b, respectively. In figure 13b, LE1,
LE2 and LE3 represent three Lyapunov exponents, and
the fourth Lyapunov exponent LE4 is deleted for clarity
because its values are so small.
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Figure 22. Entropy spectral complexity varying with the
parameter c ∈ [13, 20] when α = 0.95 (blue), 0.9 (red) and
0.8 (green); (x(0), y(0), z(0), w(0)) = (0, 0.1, 0, 0): (a) SE
complexity and (b) C0 complexity.

As shown in figure 13, when c ∈ [13, 13.8], the
system exhibits chaos and periodic behaviours intermit-
tently. When the parameter c increases gradually, the
system still shows an obvious periodic motion for a
small interval of c, but this motion will be disturbed
by a brief sudden chaotic motion, which is followed by
periodic motion. This situation is repeated, resulting in
intermittent chaos. Finally, the system shows quasiperi-
odic behaviours over the range of c ∈ [19, 20] [38]. The
attractors of the system on the phase plane are shown in
figure 14.

3.2.3 Bifurcation with the fractional-order α. Fig-
ure 15 shows the bifurcation diagram of the system with
fractional-order α. It can be seen that chaos is mainly
concentrated in the region of α ∈ [0.77, 1]

In the case of constant parameters, different initial
values cause the system to generate different attrac-
tors called the coexisting attractors. For fixed values
of α = 0.99, a = 7.69, b = 1, M = 0.6, c = 18,
h = 0.01 (fractional-order step size) and N = 40000,

Figure 23. Bifurcation space diagram of the system vary-
ing with different parameters and (x(0), y(0), z(0), w(0)) =
(0, 0.1, 0, 0): (a) a ∈ [5, 10] and c ∈ [10, 20] and (b) α ∈
[0.75, 1] and c ∈ [10, 20].

the bifurcation diagram of the system with respect to
parameter x(0) over the range of [−0.8, 1] is shown in
figure 16, where LE4 is too small to be displayed in the
figure.

It can be seen from figure 16 that there are many coex-
istence attractors in the system. The system exhibits
chaotic behaviour in the parameter range of x(0) ∈
[−0.8, −0.427]. When x(0) ∈ [−0.8, −0.7] and x(0) ∈
[−0.7, −0.427], it generates a left scroll and a double
scroll, respectively, as shown in figure 17. Furthermore,
when x(0) ∈ [−0.427, −0.27], it has a reverse peri-
odic bifurcation state, and then goes into chaos again.
Finally, the system enters a periodic orbit in the initial
value range of x(0) ∈ [0.864, 1] via a reverse periodic
bifurcation. Various coexisting attractors are shown in
figure 17.

In figures 18a and 18b, it can be seen that when
x(0) = 0 (red), the system rapidly enters into a
chaotic state and generates a right scroll. However, when
x(0) = −0.75 (blue), the system oscillates slowly until
N = 9500, enters chaos and generates a left scroll,
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Figure 24. Circuit simulation diagram: (a) System circuit simulation and (b) system simulation phase diagram.

while in figures 18c and 18d, when x(0) = −0.3
(blue) and x(0) = 1 (red), the system exhibits periodic
oscillation.

Figure 19 shows the bifurcation diagram with respect
to initial value x(0), where red and blue bifurcations
correspond to α = 0.99 and α = 0.9, respectively; and
the parameters are: a = 7.69, b = 1, M = 0.6 and
c = 18. It can be seen that the fractional-order system
exhibits abundant coexisting dynamics, as shown in fig-
ure 20, where the trajectories starting at different initial
points eventually tend to different limit cycles, showing
the abundant coexisting dynamics and multistability.

3.3 Complexity analysis

In fact, the complexity of a chaotic system is also one of
the methods to describe the dynamic characteristics of a

chaotic system, which has the same effect as Lyapunov
exponents, bifurcation diagram, dissipative property and
phase diagrams [28]. Spectral entropy (SE) algorithm
uses the energy distribution in the Fourier transform
domain to obtain entropy spectrum values based on
Shannon entropy algorithm. When the power spectrum
of the sequence becomes more unstable, the structure
composition becomes simpler. Therefore, the sequence
amplitude will be less obvious, and the measured value
will be smaller. The main idea of C0 algorithm is to
divide the sequence into regular and irregular parts, and
the proportion of irregular part can be calculated. The
more is the irregular part in the whole sequence, the
closer is the corresponding signal to the random signal,
leading to better complexity and larger corresponding
values. As shown in figure 21, the complexity varies
with parameter c, where a = 7.69, b = 1 and M = 0.6.
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Figure 21 shows that the complexity of the fractional-
order chaotic system is consistent with the Lyapunov
exponent spectrum shown in figure 13b. The SE com-
plexity and C0 complexity are also consistent, and the
complexity of chaotic state is greater than that of the
non-chaotic state in the same system.

When α = 0.95, α = 0.9 and α = 0.8, the result-
ing entropy spectrum complexity is shown in figure 22.
As shown in figure 22, entropy spectrum complexity
gradually increases with the decrease of fractional order,
indicating that the lower the fractional-order of the sys-
tem is, the more is the complexity of the system. It
follows that a fractional-order chaotic system with lower
order α can generate more complex chaotic sequences.

We take the SE complexity as the standard quantity
to describe the complexity change of the system under
the changes of double parameters, where b = 1 and
M = 0.6. The colour scale on the right of each plot
represents the value of entropy spectrum of the system.
The larger is the entropy scale, the larger is the colour
scale and redder is the colour. It can be seen from fig-
ure 23a that parameters a and c are mutually restricted,
and the influences of parameters a and c on the system
are similar. The chaotic region of the system is mainly
concentrated in the middle part that looks like a ‘path’.
As can be seen from figure 23b, the influence of param-
eter c on the system in certain range is greater than that
of parameter α, and the chaos of the system is mainly
concentrated in the range of c ∈ [14, 18] .

To verify the dynamic characteristics of the system, a
circuit simulation experiment was performed by using
Multisim. Figure 24a shows the simulation circuit built
according to eq. (15), where α = 0.9, and the simulated
results are shown in figures 24b and 24c.

4. Conclusion

This paper proposed a fractional-order locally active
memristor model, whose dynamics has been analysed
in detail, including continuous memory and switch-
ing, the effects of the fractional-order α on memory,
pinched hysteresis curve, memristance and power of
the memristor. Based on the memristor we designed a
chaotic circuit, and its dynamics have been analysed by
using bifurcation, Lyapunov exponent spectrum, equi-
libria and complexity analysis.

It has been found that the fractional-order memristor
has continuous memory which is better than the memris-
tor with integer order. By applying an external voltage to
the memristor, it can be quickly switched from one state
to another, and therefore can be used to mimic synaptic
characteristic of neurons and realise information stor-
age. The proposed chaotic circuit can exhibit various

coexisting attractors and continuous chaos in the range
of 0.75 < fractional-order α < 1. It has also been shown
that the lower the order of fraction is, the higher is the
complexity of the chaotic system. The proposed mem-
ristor model can serve the roles of memristive memory
and memristive synaptic plasticity for computing.
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