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Abstract. This paper studies a few properties of Lemaître–Tolman–Bondi (LTB) space–time to the dissipative
cases that may lead to its extension in Maxwell- f (R, T ) gravity, where R is the Ricci scalar and T is the trace
of energy–momentum tensor. Using Misner and Sharp mass formalism, we have first established a relationship
between the Weyl tensor and other physical variables. The role of electric charge in the development of the Bianchi
identities was also investigated. The physical importance of the effective form of structure scalars was then analysed
in view of some realistic backgrounds. We also discussed the generalisations of LTB and the extension of LTB based
on structure scalars and a few symmetry properties under constant curvature conditions.
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1. Introduction

The general theory of relativity (GR) is a profound com-
prehension of the magnificent world, not just a theory.
This hypothesis begins with the first man on this planet
pondering the enigmatic sky, progressing from the idea
that the Sun revolves around the Earth to the proof that
the Earth revolves around the Sun, from the Big Bang
to black holes, and from real matter to dark matter, GR
is always there and no one was aware of it. However,
Einstein raised the theory of special relativity, which
eventually led to GR. Even after hundreds of years, this
idea is still young and obscure. Several studies [1–3]
of high-redshift supernovae type Ia, as well as cosmic
microwave background oscillations, appear to show that
the Universe is expanding at a faster rate than before,
confirming the presence of dark energy. As a result,
the acceleration of the cosmos has offered some of the
most complex challenges in theoretical physics. Such
studies provide reasons to think about how gravitational
dynamics change at cosmic scales. Many astrophysi-
cists [4,5] have made numerous attempts to characterise
the accelerating cosmologies at various epochs. Fried-
man and Lemaître discovered interstellar expansion,
which Hubble confirmed by calculating the red-shift of
distant galaxies. Dark matter and dark energy are the

driving forces behind the Universe’s accelerated expan-
sion. Recent gravitational wave discoveries by LIGO
and VIRGO [6,7] have shown a new perspective on the
Universe. These gravitational waves will act as standard
sirens for calculating the rate of expansion of the Uni-
verse.

In order to deal with these mysterious dark cos-
mic sectors, researchers have shown a strong desire
to work on alternative approaches of GR and it has
become a new trend in the modern scientific period. To
achieve the desired results, the Einstein–Hilbert action
has been modified in different ways. f (G) (G is the
Gauss–Bonnet term), f (R, T ) (R is the Ricci scalar
and T ≡ RμνTμν), f (R, T, Rγ δT γ δ), f (R, �R, T )

(� ≡ ∇μ∇μ) and f (G, T ) are some modified theo-
ries [8–11]. Sotiriou and Faraoni [12] extended GR to
f (R) gravity in a straightforward way, where f (R) is a
general function of the Ricci scalar R, and f (R) grav-
ity is essentially a family of hypotheses, each defined
by a separate function, f of the Ricci scalar R. The
role of dark energy in the accelerated expansion of the
Universe has been studied using this kind of hypothe-
sis [13]. Capozziello and Laurentis [14] addressed the
dark matter problem from the perspective of f (R) grav-
ity. Qadir et al [15] also suggested that the modfication
of GR could lead to understand a few cosmic puzzles
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including quantum gravity effects, etc. Harko et al [16]
suggested the f (R, T ) gravity, based on the extensions
of f (R) theory in which the gravitational Lagrangian
is given by an arbitrary function of the Ricci scalar
R and the trace T of stress–energy momentum tensor.
The f (R, T ) gravity was introduced by extending the
idea of f (R) theory. Such an extension is motivated
to study fluid-curvature coupling (non-minimal) by the
quantum effects or exotic imperfect matter distributions.
Such types of assumptions in the gravitational analysis
would lead us to see the non-conservative behaviour
of stress–energy tensor. This gravity model along with
electromagnetic field could lead to very important out-
comes as they are expected to provide a fundamental
mathematical viewpoint of a broad theoretical detail
for the late-time cosmic acceleration, without bothering
about the postulates of dark energy. This theory could
provide us a bridge between quantum and classical win-
dows.

An anisotropic fluid would be one in which fluid’s
features are based on the flow direction. The modern
Universe, which is governed by dark energy, can be
explained by using the notion of anisotropy. At different
levels, the anisotropic fluid space–time that occurs spon-
taneously, causes inhomogeneities. Several researchers
[17–20] have recently investigated compact star mod-
els with anisotropic fluid arrangements. The presence
of anisotropy in wormholes [21], gravastars [22,23] and
cavity evolution [24–26], which are known as alternative
solutions of the field equations, may also be investigated.
Ryblewski and Florkowski [27] developed a frame-
work for highly anisotropic and strongly dissipating
hydrodynamical systems. Cavity evolution in relativis-
tic self-gravitating fluids that could lead to understand
anisotropy in matter content has been investigated by
Herrera and his collaborates [28,29] and afterwards by
Yousaf et al [30,31].

The direct coupling among Maxwell and gravitational
equations, which can be regarded as the electromag-
netic waves scattering because of space–time curvature,
has a long history of electromagnetic studies in curved
space–time. When electromagnetic influences are incor-
porated in the Lagrangian, Moffat [32] obtained static
stellar models in the background of spherical structures.
Dehghani introduced [33] a new class of black brane
modified gravity models by taking the negative choices
of cosmological constant along with an electric charge.
Tsagas [34] used a covariant method in GR to study the
role of Maxwell force for the warped manifold which
is assumed to be coupled with a perfect fluid. Herrera
et al [35] investigated the importance of charge in the
study of structure scalar (SS) that was found from the
splitting of the curvature tensor. In the study of astro-
physics, these SSs are connected with many physical

variables, particularly when the electromagnetic field
is present [36,37]. Herrera and Barreto [38] discovered
that electromagnetic radiations use rotation in the sys-
tem and, as a result, are responsible for frame dragging.
The role of electric charge on the modelling of differ-
ent stellar models received key importance in literature
[39,40,42,43].

Rej and Bhar [41] investigated the charged strange
stars model in f (R, T ) modified theory. Using f (R, T )

gravity, Houndjo [44] explored the consequences of
matter-influenced and accelerated phases in the Uni-
verse’s expansion. In the context of f (R, T, Q) hypoth-
esis, Bhatti et al discussed the gravitational collapse of
spherical compact structures [45]. The f (R, T ) grav-
ity theory with electromagnetic influences has been
popularly utilised in a number of subjects, namely
wormholes, the Universe’s accelerated acceleration,
dark matter, massive pulsars and super-Chandrasekhar
meteorites [46–50].

It is well-known that the Einstein field equation
solutions for describing the inhomogeneities in a non-
dissipative spherical symmetric fluid are regarded as
Lemaître–Tolman–Bondi (LTB). It was found, respec-
tively, by Lemaître and Tolman, and studied by Bondi
[51]. A finite or infinite spherical dust cloud expands
or contracts due to gravity in this solution. Another
expression for the LTB metric is the Tolman metric.
Humphreys et al [52] used LTB as a powerful mathemat-
ical model to understand the gravitational implosion and
the subject of cosmic censorship. It is now well-accepted
that the influence of measurable inhomogeneities in the
Universe cannot be ignored when developing efficient
cosmological theories. As a result of the new predic-
tions of type Ia supernovas that show that the Universe
is expanding, there seems to be a growing interest in
LTB [2,53,54]. There are multiple works in the fields of
astrophysics and cosmology that have been undertaken
in the sense of charged f (R, T ) gravity. Electromag-
netic influences on the evolution of LTB geometry in
modified gravity were studied by Yousaf et al [55]. The
coordinate transformation for non-static situations to
comoving coordinates was shown by Lasky and Lun
[56], with the metric being a straightforward generali-
sation of the LTB space–time to incorporate pressures.
Bhatti et al [57] studied gravitational collapse and the
dark Universe in the electromagnetic field using LTB
geometry. Recently, Herrera et al [58] described some
very important characteristics of LTB space–time. They
also generalised this formulation for dissipative cases in
GR through SS and symmetry properties.

Sussman derived thermodynamically viable LTB
models which were assumed to be coupled with a
viscous matter content [59]. Zibin [60] implemented
the linear scalar perturbations on the LTB dust cloud
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to understand the relation between large cosmological
voids and luminosity measurements of the supernova
with some specific backgrounds. Duffy and Nolan [61]
considered some specific configurations of LTB met-
rics and after applying the perturbation technique, they
found finite regular data points at the Cauchy horizon.
Firouzjaee and Mansouri [62] explored the creation of
Hawking radiation with respect to the apparent hori-
zon for the LTB black hole compact objects. Sussman
[63] studied the association of ‘look-alike’ LTB scalars
with an FLRW metric through a weighed scalar averag-
ing procedure. Sussman and Larena [64] provided the
relation between entropy and density growth for LTB
space–time. After a few years, Sussman and Jaime [65]
calculated a few non-static irregular dust LTB models.
Paliathanasis [66] described irregular analytical models
in a specific gravity theory by considering the mod-
ified version of Szekeres space–times. Herrera et al
[67] noticed a striking resemblance between LTB cos-
mological models and hyperbolically symmetric matter
configurations. They found the non-radiating nature of
all non-complex LTB models. In this regard, GLTB can
be quite useful for dissipating fluxes that are arbitrarily
minimal. From the preceding analysis, it is evident that
there is a solid argument for generalising LTB spaces
to enable for dissipative fluxes using f (R, T ) theory
including electromagnetic effects.

In this article, we shall focus on various strategies for
determining specific solutions for geodesic radiating flu-
ids having the same features as LTB. The lay-out of this
paper is as follows: Section 2 deals with the fundamen-
tal idea of f (R, T ) gravity with an electromagnetic field
and spherical symmetric dissipative viscous matter com-
positions. A link is also established between the Weyl
tensor and inhomogeneous energy density. We shall also
take a look at Bianchi identities and how constraint equa-
tions are emerged. In §3, we derive expressions for the
SS that arise from the orthogonal decomposition of the
Riemann tensor, as well as the implications of the elec-
tric field. Section 4 investigates the LTB space–time. We
generalise the LTB to the dissipative case in §5. In §6
and 7, we investigate the LTB extensions based on sym-
metry characteristics and SS, respectively. Finally, in the
concluding part, we have summarised our findings.

2. Fundamental equations, fluid distribution and
kinematic variables

We use the anisotropic fluid structure having the energy–
momentum tensor, Tης , in the analysis. We assume that
the comoving frame under which we define four velocity
as uα = (−1, 0, 0, 0). Presume that the fluid within the
relativistic interior is locally anisotropic in existence,

having an expression

Tηζ = μVηVζ + qηVζ + Vηqζ + εlηlζ , (1)

where ε is the radiation density, qη indicates the heat
flux, lη is a null four-vector and Vη is the four-velocity
of the fluid. The associated line element is provided by

ds2 = −dt2 + G2 dr2 + M2 d
2, (2)

where the metric coefficients M and G depend on t and
r only. Both of these function are positive. Also G is
dimensionless and M has the same dimensions as r .
The vectors satisfy

V ηVη = −1, V ηqη = 0, lηVη = −1, lηlη = 0
(3)

and in a comoving coordinate system, we can write

V η = δ
η
0 , qη = qG−1δ

η
1 , lη = δ

η
0 + G−1δ

η
1 , (4)

where qη = qχη and χη is a unit four-vector in radial
direction, which satisfies

χηχη = 1, χηVη = 0, χη = G−1δ
η
1 . (5)

Equation (1) can be written alternatively as

Tηζ = μ̃VηVζ + q̃(Vηχζ + χηVζ ) + εχηχζ , (6)

where tilde describes z̃ = z + ε.

2.1 Maxwell f(R, T) field equations

The action integral for the modified gravity theories can
be written as

S = 1

16π

∫
f (R, T )

√−g d4x + Sm + Se, (7)

where R ≡ gγ ζ Rγ ζ , T ≡ gγ ζTγ ζ , Sm and Se are the
matter and electromagnetic actions (for details, please
see [68]). The stress–energy tensor takes the form

Tηζ = −2δ(Lm
√−g)

δgηζ
√−g

, (8)

where T = Tηζ gηζ is the trace of stress–energy
momentum tensor. In the electromagnetic field, the
energy–momentum tensor is given as

Eηζ = 1

4π

(
Fη

ζ Fηγ − 1

4
Fγ δFγ δgηζ

)
, (9)

where φη is the four-potential and Fηζ = φζ,η − φη,ζ is
the Maxwell field tensor. The Maxwell field equations
can be written as

Fηζ
ζ = μ0 J

η, F[ηζ ;γ ] = 0. (10)

Take μ0 = 4π as the magnetic permutability and J η

is the four velocity vector. We can have in comoving
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coordinate as

φη = φδ
η
0 , J η = σV η, (11)

where the scalar potential and charge density are
described by φ and σ , respectively. The charge con-
servation equation, J η

η = 0, is a mathematical formula
that describes how charges are conserved, and generates

s(r) = 4π

∫
σGM2 dr. (12)

Using eq. (10) with η = 0 and φ′(t, r) = 0 we have

φ′ = sG

M2 . (13)

Finally, the required Maxwell- f (R, T ) field equations
after calculations takes the form through Einstein tensor
as (Gηζ ) as

Gηζ = 8πT eff
ηζ + 8πQηζ , (14)

Qηζ = 1

fR
Eηζ (15)

and

T eff
ηζ = 1

fR

[
Tηζ (1 + fT ) + fTρgηζ + R

2
gηζ

×
(

f (R, T )

R
− fR

)
+ (∇η∇ζ − fRgηζ�)

]
.

(16)

The charged f (R, T ) field equations for our model are

(
2Ġ

G
+ Ṁ

M

)
Ṁ

M
−

(
1

G2

) [
2M ′′

M
+

(
M ′

M

)2

− 2G ′M ′

GM
− G2

M2

]
= 8πμ̃eff + Q0

= 8π
Lμ̃ + χ00

fr
+ Q0 (17)

− 2

(
M ′

M
− G ′M ′

GM

)
= −8π q̃effG = −Lq̃G − χ01

fR
8π

(18)

− G2

(
2M̈

M
+

(
Ṁ

M

)2)
+

(
M ′

M

)2

−
(
G

M

)2

= 8πG2εeff + Q2 = LεG2 + χ11

fR
8π + Q2 (19)

− M2
(
G̈

G
+ M̈

M
+ Ġ Ṁ

GM

)
+

(
M

G

)2 (
M ′′

M
− G ′M ′

GM

)

= 8πχ33 + Q3 = χ22

fR
+ Q3, (20)

where

Q0 = 1

fR

s2

M4 , Q2 = − 1

fR

s2G2

M4

and

Q3 = 1

fR

s2

M2 . (21)

The primes as well as dots depict the derivatives of r
and t. The terms χ j j are listed in the Appendix, and
Q0, Q2, Q3 contain charge terms.

In an adiabatic system, Misner–Sharp mass is found
to be the energy. In charged f (R, T ) theory, Misner and
Sharp mass [69] can be written as follows:

m = (M3)

2
R23

23 = M

2

[
Ṁ2 −

(
M ′

G

)2

+ 1

]
+ s2

2
.

(22)

The velocity U of the collapsing fluid can be defined in
terms of areal velocity with respect to time as

U = Ṁ . (23)

Then we can write eq. (22) in the following form:

E = M ′

G
=

[
1 +U 2 − 2m(t, r)

M
+ s2

2

]1/2

. (24)

We have the following relation for mass from eqs (18),
(19) and (23) as

ṁ = −4π(εeffU + q̃eff E)M2 +
(

s2

2M

).

− Q2
ṀM2

2G2

(25)

and

m′ = 4π

(
μ̃eff + q̃eff

U

E

)
G2M ′

+
(

s2

2M

)′
+ M2ḾQ0. (26)

After integration of eq. (26) we get

m =
∫ r

0
4πM2

(
μ̃eff + q̃eff

U

E

)
M ′ dr

+
∫ r

0

[(
s2

2M

)′
+ M2M ′Q0

]
dr. (27)

The effects of modified terms can be seen easily from
the above expression. We partially integrate eq. (22) to
get
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3m

M3 = 4πμ̃eff − 4π

M3

∫ r

0
M3

(
μ̃′

eff − 3q̃eff
M ′U
ME

)
dr

+ 3

M3

∫ r

0

[(
s2

2M

)′
+ M2M ′Q0

]
dr. (28)

It establishes a link between the matter quantity and
physical properties including electric charge, energy
density and heat flux.

2.2 Matching conditions

We have examined outside
∑

and also Vadiya space–
time in this instance of limited arrangements; in the
dissipationless case, the Schwarzchild space–time is
represented by

ds2 = −2dν dρ −
[

1 − 2C(ν)

ρ

]
dν2 + ρ2d
2, (29)

where m is the mass of the system. On the matching of
interior and exterior manifolds, we get

dt =� dν

(
1 − 2C(ν)

ρ

)
, (30)

R =� ρ(ν), (31)(
dν

dt

)−
2 =�

(
1 − 2C(ν)

ρ
+ 2

dρ

dν

)
. (32)

Through the continuity of second differential condition
of Darmois conditions, we get

m(t, r) =� C(ν), (33)

2

(
Ṁ ′
M

)
=� −G

[
2
M̈

M
+

(
Ṁ

M

)2]

+ 1

G

[(
M ′

M

)2

−
(
G

M

)2
]

. (34)

It is worthy to stress that the matching of eqs (2) and
(29) on � implies

ε =� L

4πρ2 . (35)

The luminance of the sphere over its exterior is calcu-
lated as L∑.

L =� L∞
(

1 − 2m

ρ
+ 2

dρ

dν

)−1

(36)

and

L∞ = dC

dν
=� −

[
dm

dt

(
dν

dt

)−1
]

, (37)

where L∞ is the total luminance observed at infinity by
an investigator at stationary position.

dν

dt
=� 1 + z, (38)

with

dν

dt
=�

(
M ′

G
+ Ṁ

)−1

. (39)

As a result, the time for the creation of the black hole is
calculated as(
M ′

G
+ Ṁ

)
=� E +U =� 0. (40)

Also observe that

L =� L∞
(E +U )2 (41)

and from eqs (23), (24), (32) and (39) we get

dρ

dν
=� U (U + E). (42)

2.3 The Weyl tensor

One can define the Weyl tensor as follows:

Cρ
ηζμ = Rρ

ηζμ − 1

2
Rρ

ζ gημ + 1

2
Rηζ δ

ρ
μ − 1

2
Rημδ

ρ
ζ

+ 1

2
Rρ

μgηζ + 1

6
R(δ

ρ
ζ gημ − gηζ δ

ρ
μ), (43)

whose electric part

Eηζ = CημζνV
μVν, (44)

having non-vanishing components for our spherical sys-
tem are found as follows:

E11 = 2

3
G2ε, E22 = −1

3
M2ε, E33 = E22 sin2 θ,

(45)

where

ε = 1

2

[
M̈

M
− G̈

G
−

(
Ṁ

M
− Ġ

G

)
Ṁ

M

]

+ 1

2G2

[
−M ′′

M
+

(
G ′

G
+ M ′

M

)
M ′

M

]
− 1

2M2 . (46)

Now, using eqs (17), (19) and (20) in eqs (22) and (46),
we have

4π(μ̃eff − εeff) − ε = 3m

M3 − 8π
χ33

M2 − Q0 − Q2

G2

− Q3

M2 − s2

2M
. (47)

This demonstrates that the Weyl tensor is affected
by energy density inhomogeneity, local anisotropy in
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the presence of effective and usual charge terms with
f (R, T ) extra degrees of freedom.

2.4 The Bianchi identities, Weyl tensor and an Ellis
equation

For our spherical relativistic system, the two constrained
Bianchi identities are obtained as follows:

˜̇μeff + (μ̃eff + εeff)
Ġ

G
+ 2Ṁ

M
μ̃eff + q̃ ′

eff

G
+ 2

M ′

MG
q̃eff

+ 1

8π fR

(
s2

M4

).

− 1

8π fR

× Ġs2

GM4 +
(
Ġ

G
+2Ṁ

M

)
1

fR

s2

8πM4 −Z0=0=0,

(48)

˜̇qeff + 2

(
Ġ

G
+ M

M

)
q̃eff + ε′

eff

G
+ 2M ′

MG
εeff

− 1

8π fR

(
s2

G2M4

)′
− 1

8π fR

(
2
G ′

G
+M ′

M

)
s2

G2M4

− 2
M ′

G2

1

8π fR

s2

M5
− Z1 = 0, (49)

where Z0 and Z1 are due to the non-conserved nature
of this theory. A constrain equation for the Weyl tensor
that is widely called Ellis equation is found as follows:

[ε − 4π(μ̃eff − εeff)]′ + (ε + 4πεeff)
3M ′

M

= −12πG
Ṁ

M
q̃eff + 4πM ′

M3 χ33+ 4π

M2 χ ′
33+

3M ′Q2

G2M

+
(

Q2

2G2

)′
−

(
Q0

2

)′
. (50)

The causes of inhomogeneous energy density in
Maxwell- f (R, T ) gravity can be studied using the
above-mentioned equation. Yousaf and his collaborators
[70] studied the emergence of irregular energy density
in the presence of electric charge with different realistic
matter configurations.

3. SS in a charged field

We shall use a collection of SS in our investigation
that would be obtained by splitting the Riemann ten-
sor orthogonally. We take the tensors Yηζ and Xηζ [71]
as

Y eff
ηζ = Rηγ ζδV

γ V δ, (51)

X eff
ηζ = ∗R∗

ηγ ζδV
γ V δ = 1

2
ηερ

ηγ R
∗
ερζδV

γ V δ, (52)

where R∗
ηζγ δ = 1

2ηεγρδR
ερ
ηζ and ηεργ δ represents the

Levi–Civita tensor. By following the procedure of [58],
we found the modified SS as follows:

Y eff
T = 4π (μ̃eff + εeff) + χ5B + Q7,

Y eff
T F = ε − 4πεeff + χ7B + Q8, (53)

X eff
T = 8πμ̃eff + χ9B + Q9,

XT F = −ε − 4πεeff + χ10B + Q10. (54)

These results are obtained from eqs (51) and (52)
after using eqs (6), (14) and (43). Here the values of
χ5B, χ9B, χ10B, χ7B are given in Appendix containing
the dark source terms. The ordinary SS can be explic-
itly obtained from the above equations by swapping the
effective variables with ordinary one. Also, utilising eqs
(28) and (47) with eq. (53) we may get

Y eff
T F = − 8πεeff + 4π

M3

∫ r

0
M3

(
μ̃′

eff − 3q̃eff
M ′U
ME

)

− 3

M3

∫ r

0

((
s2

2M

)′
+ M2M ′Q0

)
dr

+ 8πχ33

G2 + χ7B +
(

− Q0 − Q2

G2 − Q3

M2

− s2

2M

)
. (55)

In the above equation, we configured the relation
between scalar null fluid, density inhomogeneity, dis-
sipative variables and Weyl tensor using Y eff

T F . It is also
important to recall that Herrera et al [71] used this SS
to express Tolman mass. One can use this SS, Y eff

T F , to
analyse the stability of the shear-free condition in the
geodesic background. The SS expressed in eqs (53) and
(54) in terms of structural variables of the line element
(2) can be written as

Y eff
T = −2

M̈

M
− G̈

G
+ χ5B + Q7 − Q0

2
− Q2

2G2 ,

Y eff
T F = − G̈

G
+ M̈

M
+ χ7B + Q8 + Q2

2G2 , (56)

X eff
T =

(
2
Ġ

G
+ Ṁ

M

)
Ṁ

M

− 1

G2

[
2
M ′′

M
+ M ′2

M2 − 2
G ′M ′

GM

]

+ 1

M2 + χ9B + Q9 − Q0, (57)
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X eff
T F =

(
Ṁ

M
− Ġ

G

)
Ṁ

M

+ 1

G2

[
M ′′

M
−

(
G ′

G
+ M ′

M

)
M ′

M

]

+ 1

M2 + χ10B + Q10 + Q2

2G2 . (58)

In term of these SS, the Weyl tensor and energy density
inhomogeneity differential equation can be described as

(X eff
T F + 4πμ̃eff)

′ = −3
M ′

M
X eff
T F + 4π q̃eff(� − σ)G

+ 3M ′

M
χ10B + χ ′

10B + 4πM ′

M3 χ33 + 4π

M2 ´χ33 + Q4,

(59)

where � and σ are expansion and shear scalars, respec-
tively. One can analyse XT F to be the inhomogeneity
factor, after switching the effective energy density with
the ordinary one. This result applies to both the charged
and non-charged spherically symmetric cases. This
means that effective variables due to Maxwell- f (R, T )

gravity are trying to reduce the effects in making this SS
to be an inhomogeneity factor. For non-dissipative case,
eq. (59) reduces to the following relation:

(X eff
T F + 4πμ̃eff)

′ = −3
M ′

M
X eff
T F + 3M ′

M
χ10B

+ χ ′
10B + 4πM ′

M3 χ33 + 4π

M2 χ ′
33 + Q4. (60)

Now, if we apply constant curvature uncharged condi-
tion on the above equation, we notice that XT F = 0, ⇔
μ′

eff = 0, denoting XT F as the factor of inhomogeneity.
On the other hand, if μ̃′

eff = 0 then we get

(X eff
T F )′ = −3

M ′

M
X eff
T F + 3M ′

M
χ10B + χ ′

10B

+ 4πM ′

M3 χ33 + 4π

M2 ´χ33 + Q4 (61)

giving

ln X eff
T F = ln

f (t)

C3 ,

where

ln f (t) = ln g(r) +
∫ (

1

X eff
T F

3M ′

M
χ10B + χ ′

10B

+ 4πM ′

M3 χ33 + 4π

M2 ´χ33 + Q4

)
dr

X eff
T F = f (t)

M3 . (62)

One can observe that f (t) = 0 necessarily implies
X eff
T F = 0, thereby indicating it as an inhomogeneity/

regularity factor. It has been proved in GR that the shear-
free case implies the existence of zero complex system.
The extra degrees of freedom of Maxwell- f (R, T )grav-
ity are trying to reduce the impact of XT F as there are
extra terms (χ7B and Q2) whose disappearance are also
necessary to obtain the regular configuration of the non-
static LTB geometry.

4. LTB space–time

Now, we consider a geodesic, dissipation-less fluid to
obtain the general mathematical formulation of LTB.
On integrating eq. (18) with qeff = εeff = 0, we get

G(t, r) = M ′

(1 + κ(r))1/2 (63)

with κ as an arbitrary function of r . By using the above
equation with eq. (2), LTB model becomes

ds2 = −dt2 + M ′2

1 + κ(r)
dr2 + M2(dθ2 + sin2 θ dφ2).

(64)

This metric is usually compatible with an irregular dis-
tribution of non-interacting cloud. Equations (22) and
(63) provide

Ṁ2 = 2m

M
+ κ(r) − s2

M
(65)

and from eqs (25) and (26) we see that

m = m(r), (66)

m′ = 4πμ̃effM
2M ′ +

(
s2

2M

)′
+ M2M ′Q0. (67)

In this scenario, one can write [58]

μ̇eff = μeff

(
Ġ

G
+ 2

Ṁ

M

)
+ QA, (68)

resulting in

μeff = h(r)

GM2 +
∫

QA dr, (69)

where h(r) is an integration function.

μeff = 3h(r)(1 + κ(r))1/2

(M3)′
+

∫
QA dr. (70)

It shows that energy density inhomogeneity is affected
by an electric charge and one can obtain the f (R, T )

results in the absence of electric field. Equation (65)
can also be written as

Ṁ2 = 2m

M∗ + κ(r), (71)
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where M∗ = m − s2

2 describes the mass of the charged
system. In the background of eq. (64), the well-known
SS Y eff

T , Y eff
T F , X eff

T F and X eff
T take the form

Y eff
T F = M̈

M
− M̈ ′

M ′ + χ5B + Q8 + Q2

2G2 ,

Y eff
T = −2

M̈

M
− M̈ ′

M ′ + χ7B + Q7 − Q0

2
− Q2

2G2 ,

(72)

X eff
T = 2Ṁ Ṁ ′

MM ′ + Ṁ2

M2 − κ

M2 − κ ′

MM ′
+χ9B + Q9 − Q0, (73)

X eff
T F = Ṁ2

M2 − Ṁ Ṁ ′
MM ′ − κ

M2 + κ ′

2M ′M
+χ10B + Q10 + Q2

2G2 . (74)

The inclusion of an electromagnetic f (R, T ) correc-
tion has greatly modified the above versions of SS in
the dissipation-less relativistic fluid. One can observe
that the expression of Y eff

T F is independent of κ , thus
indicating that this complexity of the system does not
depend on κ even in charged case.

5. Application of LTB to the dissipative case

The LTB space–time clearly excludes dissipative fluxes,
as seen in the preceding section. By having dissipative
fluxes, we can now solve the issue in the extension of a
general LTB metric. We shall make it a condition that all
GLTBs become LTBs under the condition of vanishing
dissipative fluxes. As we are looking for space–times
that are as ‘close’ to LTB as possible, we shall con-
sider the geodesics motion of the shearing dust cloud
along with q̃eff 	= 0. It is important to note that the
consideration of pure dust (i.e., no dispersion) necessar-
ily corresponds to a geodesic fluid. However, this result
does not hold if one considers the case of dissipative
dust. Therefore, eq. (18) gives

G(t, r) = M ′

(1 + B(t, r))1/2 , (75)

with

1 + B(t, r) =
[∫

4π q̃effM dt + c(r)

]2

. (76)

Since in the non-dissipative case eq. (75) should become
eq. (63), it follows that

c(r) = (1 + κ(r))1/2. (77)

The line element takes the form using eq. (75) in eq. (2),
and we get

ds2 = −dt2 + (M ′)2

[∫
4π q̃effM dt + c(r)

]2 dr2

+ M2(dθ2 + sin2 θ dφ2) (78)

or from eq. (77) it becomes

ds2 = −dt2 + (M ′)2

[∫
4π q̃effM dt + (1 + κ(r))1/2

]2 dr2

+ M2(dθ2 + sin2 θ dφ2). (79)

The SS, Y eff
T , Y eff

T F , X eff
T and X eff

T F of Maxwell- f (R, T )

gravity take the form

Y eff
T = −2

M̈

M
− M̈ ′

M ′ + Ḃ

1 + B

(
Ṁ ′
M ′ − 3Ḃ

4(1 + B)

)

+ B̈

2(1 + B)
+ χ5B + Q7 − Q0

2
− Q2

2G2 , (80)

Y eff
T F = M̈

M
− M̈ ′

M ′ + Ḃ

1 + B

(
Ṁ ′
M ′ − 3Ḃ

4(1 + B)

)

+ B̈

2(1 + B)
+ χ7B + Q8 + Q2

2G2 , (81)

X eff
T = 2Ṁ Ṁ ′

MM ′ + Ṁ2

M2 − B

M2 − B ′

MM ′ − Ṁ Ḃ

M(1 + B)

+ χ9B + Q9 − Q0, (82)

X eff
T F = Ṁ2

M2 − Ṁ Ṁ ′
MM ′ − B

M2 + B ′

2MM ′ + Ṁ Ḃ

2M(1 + B)

+ χ10B + Q10 + Q2

2G2 . (83)

In the dissipative case, we get SS with electromagnetic
effects. If we want to go forward to reach a certain set of
straightforward solutions, more criteria will be required.
As previously demonstrated, the criterion for selecting
such circumstances will be defined by the need that the
findings provided, represent the ‘closest’ scenario to
LTB space–time when dissipative fluxes are included.
In addition, the final criteria are a bit hazy as well, leav-
ing a lot of space for interpretation.

6. Extension of LTB depending on SS

After analysing eqs (72)–(74) and (80)–(83), we observed
that (a) the SS YT F and YT are independent of κ in LTB
and (b) there are two different SS, i.e., YT and YT F for
the GLTB. In this context, eqs (72) and (80) provide
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Ḃ

1 + B

[
Ṁ ′
M ′ − 3Ḃ

4(1 + B)

]
+ B̈

2(1 + B)
= 0. (84)

On integrating the above equation, we get

M ′ Ḃ1/2

(1 + B)3/4 = C1(r). (85)

By using eqs (76) and (77), we obtain

C1(r) = (8π q̃effM)1/2M ′

(1 + κ(r))1/2 + ∫
4π q̃effM dt

, (86)

where C1(r) is an integration function. Equation (85)
gives

B + 1 = 4[
C1(r)2

∫ dt
M ′2 + C2(r)

]2 , (87)

where C2(r) is another integration function, which
might have some connections to M(r) as follows. Equa-
tion (87) yields

Ḃ = − 8C2
1(r)

(M ′)2
[
C2

1(r)
∫ dt

M ′2 + C2(r)
]3 . (88)

Then the combination of eqs (76) and (88) gives

2π q̃eff = C2
1(r)

M(C ′)2
[
C2

1(r)
∫ dt

(M ′)2 + C2(r)
]2 . (89)

One can see that the above equation is independent of
charge, rather it depends on f (R, T ) terms that are fabri-
cated with the fluid dissipation. Finally, the comparison
of eq. (86) with eq. (89) give

C2(r) = 2(1 − 4π q̃effMM ′2)
C(r) + ∫

4π q̃effM dt
. (90)

Thus, we have obtained the GLTB because of modi-
fied SS in the presence of electric charge. For the given
choices of C1, C2 and R, the role of effective form of
dissipative variable qeff can be studied. When the dis-
sipative fluxes disappear from the system, the GLTB
becomes LTB.

7. Extension of LTB based on properties of
symmetry

In this section, we shall take an approach that depends
on the symmetry characterisation to reach GLTB space–
times. Here we suppose that our metric obeys proper
matter collineation. We obtain three equations for the
dissipative dust cloud as

ξ0 ˙̃μeff + ξ1μ̃′
eff + 2μ̃effξ

0
,0 − 2q̃effGξ1

,0 + 2Q00ξ
0
0

+ Q̇00ξ
0 + Q́00ξ

1 = 0, (91)

− ξ0 ˙̃qeff − ξ1q̃ ′
eff + μ̃eff

ξ0
,1

G

− q̃eff

(
ξ0
,0 + ξ0 Ġ

G
+ ξ1 G

′

G
+ ξ1

,1

)

+ εeffGξ1
,0 + Q00ξ

0
1

G
+ Q11ξ

1
0

G
= 0, (92)

ξ0 ˙εeff + ξ1ε′
eff − 2q̃eff

ξ0
,1

G

+ 2εeff

(
ξ0 Ġ

G
+ ξ1 G

′

G
+ ξ1, 1

)

+ Q11ξ
1
1

G2 + Q̇00ξ
0

G2 + Q́11ξ
0

G2 = 0. (93)

Next, we shall proceed our analysis by taking the fol-
lowing two subcases:

7.1 Diffusion approximation, εeff = 0, qeff 	= 0

In this scenario, eqs (18) and (75) provide

8πqeffG = Ḃ

1 + B

M ′

M
. (94)

Next, we obtain ξ0 = Z(t) and it follows from eqs (91)
and (92) that

Z(t)μ̇eff + ξ1μ′
eff + 2μeff Ż(t) − 2qeffGξ1

,0

+ 2Q00 ˙Z(t) + Q̇00Z(t) + Q′
00ξ

1 = 0, (95)

Z(t)q̇eff + ξ1q ′
eff + qeff

(
Ż(t) + Z(t)

Ġ

G

+ ξ1 G
′

G
+ ξ1

,1

)
+ Q00Z ′(t)

G
+ Q11ξ

1
0

G
= 0, (96)

which may be simplified as follows:

ξ1[ln(qeffGξ1)]′ + Z(t)[ln(qeffGZ(t))].

+ Q00Z ′(t)
G

+ Q11ξ
1
0

G
= 0. (97)

Multiplying the above equation by qeffG, it becomes

(qeffGξ1)′ + (qeff ZG). + Q00Z ′(t)
G

+ Q11ξ
1
,0

G
= 0.

(98)

Additionally, a partial solution may be expressed as

qeffGξ1 = −ψ̇(t, r) + χ̇ (t, r), (99)

qeffGZ(t) = ψ ′(t, r) + χ ′(t, r). (100)
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From eqs (94) and (100), we have

ψ ′(t, r) = Z(t)

8π

Ḃ

1 + B

M ′

M
− χ ′(t, r). (101)

Thus, GLTB has been obtained.

7.2 Streaming-out approximation, ε 	= 0, q = 0

In this background, we have qeff = 0 and εeff 	= 0. Then
[58]

μ̇eff + μeff

(
Ġ

G
+ 2

Ṁ

M
+

)
+ QA = 0, (102)

which after integration gives

μeff = j (r)

GM2 +
∫

QA

μeff
dt, (103)

where j (r) is an integration function. Following that, in
this approach, eqs (91)–(93) will take the form

ξ0(μeff + εeff)
. + ξ1(μeff + ε′

eff + 2(μeff + εeffξ
0
,0

− 2εeffGξ1
,0 + 2Q00ξ

0
0 + Q̇00ξ

0 + Q′
00ξ

1 = 0,

(104)

ξ0 ˙εeff + ξ1ε′
eff − (μeff + εeff)

ξ0
,1

G

+ εeff

(
ξ0
,0 + ξ0 Ġ

G
+ ξ1 G

′

G
+ ξ1

,1

)
− εeffGξ1

,0

+ Q00ξ
0
1

G
+ Q11ξ

1
0

G
= 0, (105)

ξ0 ˙εeff + ξ1ε′
eff − 2εeff

ξ0
,1

G

+ 2εeff

(
ξ0 Ġ

G
+ ξ1 G

′

G
+ ξ1

,1

)
+ Q11ξ

1
1

G2

+ Q̇00ξ
0

G2 + Q′
11ξ

0

G2 = 0. (106)

Let us consider ξ0 = Z(t). Then, from eqs (104)–(106)
we have

Z(t)(μeff + εeff)
. + ξ1(μeff + εeff)

′ + 2(μeff + εeff)

× Ż(t) − 2εeffGξ1
,0 + 2Q00 ˙Z(t) + Q̇00Z(t)

+ Q′
00ξ

1 = 0, (107)

Z(t) ˙εeff + ξ1ε′
eff + εeff

(
Ż(t) + Z(t)

Ġ

G
+ ξ1 G

′

G

+ ξ1
,1

)
− εeffGξ1

,0 + Q00ξ
0
1

G
+ Q11ξ

1
0

G
= 0, (108)

Z(t) ˙εeff + ξ1ε′
eff + 2εeff

(
Z(t)

Ġ

G
+ ξ1 G

′

G
+ ξ1

,1

)
= 0.

(109)

We can also write the above expression as

Z(t)[ln(εeffG
2)]. + ξ1[ln(εeff(Gξ1)2)]′

+ Q11ξ
1
1

G2 + Q̇00ξ
0

G2 + Q′
11ξ

0

G2 = 0, (110)

or alternatively as

Z(t)(εeffG
2). + 1

ξ1 (εeff(Gξ1)2)′ + Q11ξ
1
1

G2

+ Q̇00ξ
0

G2 + Q′
11ξ

0

G2 = 0. (111)

In this case, we can write Bianchi identity (eq. (49)) in
the following form:

[ln(εeff(GM)2)]. + 1

G
[ln(εeffM

2)]′ + QD = 0. (112)

It can also be written as

[εeff(GM)2]. + G(εeffM
2)′ + QD = 0. (113)

Thus, one can get the GLTB for a given LTB from the
above equation. The details for the procedure of plug-
ging the known values in the above equation can be seen
in [58].

8. Conclusion

Using the f (R, T ) theory with charge field, several
methods for achieving spherically symmetric, geodesic,
dissipative dust solutions to Einstein equations were for-
mulated. Both alternatives are aimed to create solutions
that are as similar as possible to the non-dissipative
situation (LTB). To do so, we looked at LTB space–
time dependent on some symmetry properties of LTB
and then analysed them despite the presence of struc-
ture scalars. In this study, we examined the impact of
f (R, T ) modifications with charge on some dynamical
effects of changing stellar bodies. For this research, we
used a spherically symmetric geometry that is thought
to be coupled with the anisotropic radiating matter.

We assumed that the relativistic fluid distribution in a
charge field has a shearing viscous property and emits
radiations in the free streaming and diffusion approxi-
mations. There is no scattering as the dissipation occurs.
Charged f (R, T ) gravity was then believed to mediate
the extra degrees of freedom. After that, the associated
field equations and dynamical equations were found.
We also provided a connection between the Weyl ten-
sor and other physical quantities using Misner–Sharp
mass formalism. This relationship could be significant
in stellar system modelling. The representation of the
Riemann curvature tensor was then broken down using
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the orthogonal decomposition technique. For our stel-
lar model, we used this strategy with modified f (R, T )

gravity. The trace and trace-free sections of tensorial
entities were analysed, which are particularly important
in the study of gravitational collapse, stellar evolution
and other phenomena. These trace and trace-less com-
ponents are known as f (R, T ) structure scalars.

The energy density of the fluid with the input of
electric charge and X eff

T , has some correspondence
according to our findings. X eff

T F controls energy density
inhomogeneity with the passage of time in the absence of
dissipation. Indeed, Y eff

T is the mass density, while Y eff
T F

combines both energy density inhomogeneity and local
anisotropy. The extra degrees of freedom of Maxwell-
f (R, T ) gravity is trying to reduce the impact of XT F ,
thereby making it difficult for the regular compact object
to enter in the inhomogeneous window. To obtain the
regular configuration of the non-static LTB geometry,
the extra terms of f (R, T ) theory need to vanish. All our
results reduce to GR [58] under the limit f (R, T ) = R.

Acknowledgements

This work was supported by University of the Punjab
Research Project for the fiscal year 2021–2022.

Appendix A

The parts of the equations are given below:

χ00 =
[
μ fT −

(
f − R

2
fR

)
+ f ′′

R

G2

− ḟ R
( Ġ
G

+ 2
Ṁ

M

)
− f ′

R

(
G ′

G3 − 2M ′

G2M

)]
, (A.1)

χ01 =
[
ḟ ′
R − Ġ

G

(
ḟ R + f ′

R

)]
, (A.2)

χ11 =
[
−μG2 fT +

(
f − R

2
fR

)
G2 − GĠ ḟR

−G ′

G
f ′
R + G2 f̈ R + ḟ RG

2
(
Ġ

G
+ 2

Ṁ

M

)

+ f ′
RG

2
(
G ′

G3 − 2M ′

G2M

)]
, (A.3)

χ22 =
[
−μM2 fT +

(
f − R

2
fR

)
M2 + MM ′

G2 f ′
R

−MṀ ḟR + M2 f̈ R − M2

G2 f ′′
R + M2

(
Ġ

G

+2
Ṁ

M

)
ḟ R + f ′

R

(
G ′

G3 − 2M ′

G2M

)
M2

]
. (A.4)

Some more terms are given below:

χ5B = 4π(1 + fT )

fR
(q̃) + 4π

fR

[
−χ00 + χ11

G2

]

+ 4π

[
3

(
μ fT + � fR − f + R

2
fR

)

−vζ vγ ∇γ ∇ζ fR

−vηvδ∇η∇δ fR + vγ vδ∇γ ∇δ fR

]

+ 8π fR

[
� fR − 4

(
ρ fT + � fR − f + R

2
fR

)]
,

(A.5)

χ7B = 4πχ11

G2 fR
+ 1

χηχζ − hηζ

3

×
[

4π

((
μ fT + � fR − f + R

2
fR

)

× (2vηvζ + gηζ + δηζ ) − vηv
γ ∇γ ∇ζ fR

−vζ v
δ∇η∇δ fR + vγ vδ∇γ ∇δ fRδηζ

)

+8π

3
hηζ fR

[
� fR

−4

(
ρ fT + � fR − f + R

2
fR

)]

−1

3
hηζ

[
4π(μ̃eff + εeff) + χ5B

]]
, (A.6)

χ9B = −8π

fR

(
χ00 + 1 + fT

fR
ε

)
+ 12πε

1 + fT
fR

+ 8π

fR

(
4

(
μ fT − f + R

2
fR

)
+ � fR

)
+ � fR

− gηζ π

fR
[εερ

η επρζ g
μπ∇μ∇ε fR − εερ

η επεζ g
μπ

∇μ∇ρ fR − εερ
η ερθζ g

θμ∇μ∇ε fR

εεθζ g
μθ∇μ∇ρ fR], (A.7)

χ10B = −4πχ11

G2 fR
+ 1

χηχζ − hηζ

3

×
[(

4εgηζ

1 + fT
fR

− 4εhηζ

1 + fT
fR

− μ̃hηζ

8π

3

)

− 8π

3 fR

(
3∇η∇ζ fR − 4

(
ρ fT + � fR − f

+ R

2
fR

)
hηζ

)
− 1

3
hηζ (8πμ̃eff + χ9D) − π

fR

×
[
εερ
η επρζ g

μπ∇μ∇ε fR − εερ
η επεζ g

μπ∇μ∇ρ fR
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−εερ
η ερθζ g

θμ∇μ∇ε fR

+εερ
η εεθζ g

μθ∇μ∇ρ fR
]]

. (A.8)

Appendix B

The charge terms are given as follows:

Q00 = 1

fr

s2

8πM4 , Q11 = − 1

fr

s2

8πG2M4 ,

Q22 = 1

R4

1

fr

s2

8πM2 , (B.1)

Q33 = 1

R4 sin2 θ

[(
1 + fT

fr

)
s2

8πM2 − fT
s2

2M4 M
2
]

,

Q00 =
[(

1 + fT
fr

)
s2

8πM4 − fT
s2

2M4

]
, (B.2)

Q11 = −
(

1 + fT
fr

)
s2G

8πGM4 + fT G
2 M2

2M4 ,

Q22 =
[(

1 + fT
fr

)
s2

8πM2 − fT
s2

2M4 M
2
]

, (B.3)

Q33 =
[(

1 + fT
fr

)
s2

8πM2 sin2 θ − fT
s2

2M4 M
2 sin2 θ

]
,

(B.4)

Q4 = Q′
10 +

(
Q2

G2

)′
+ 3M ′

M
Q10 + 3M ′

MG2 Q2

−
(
Q0

2

)′
,

Q7 = 4π(Qγ ζV
ζV γ + Qγ δV

γ V δ), (B.5)

Q8 = 1

χηχζ − hηζ

3

(
4π

(
Qηζ + Qγ ζVηV

γ

+ Qγ δδηζV
γ V δ

)
− 1

3
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