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Quark star models with logarithmic anisotropy
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Abstract. New models for the charged anisotropic stellar object were generated using the Einstein–Maxwell
field equations. A new choice of pressure anisotropy in logarithmic form was used to generate a quark star model.
Anisotropic and isotropic models were regained as a special case. We regained anisotropic models found by Maharaj,
Sunzu and Ray; Abdalla, Sunzu and Mkenyeleye; and Sunzu and Danford. The isotropic models regained include the
performance by Mak and Harko, and Maharaj and Komathiraj. Physical analysis showed that matter variables and
the gravitational potentials are well behaved. Our model does satisfy the energy conditions and stability condition.
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1. Introduction

The Einstein–Maxwell field equations are often used
to describe the behaviour of the structure and prop-
erties of the stellar objects. Stellar objects such as
dark energy stars, black holes, quark stars, gravastars,
dwarf stars, compact stars and neutron stars have the
highest densities which result in their collapse [1].
Schwarzshild [2] developed a model with the stress
tensor energy–momentum for the perfect fluid. Stellar
models generated using the field equations with astro-
physical significance include the works performed in
[3–13].

Pressure anisotropy is significant in modelling rela-
tivistic matter as it affects the stability, structure and
physical property of relativistic bodies [14–25]. The
electric field plays a great role in examining the grav-
itational behaviour of compact objects like quark stars
[23,26–28]. Models generated for stellar objects with
both electric field and pressure anisotropy can be seen
in [14,17,29,30].

The equations of state in different forms such as lin-
ear, quadratic, Van der Waals, polytropic and Chaplygin,
can be used in modelling the relativistic compact stel-
lar objects. Recent charged anisotropic models with the
linear equation of state include the studies conducted in
[14,23,25,31]. The exact models with quadratic equa-
tion of state are found in [14,16,17,24,27,31,32]. Models
with Van der Waals equation of state are given in [33].

Models with the polytropic equation of state can be seen
in [16–18,27,34]. Models that used the Chaplygin equa-
tion of state can be seen in [35–39].

Solutions for the field equations have been obtained
using anisotropy in polynomial forms [3,40]. Abdalla et
al [25] generated charged anisotropic quark star mod-
els using anisotropy as a rational function. We generate
new exact solutions of the field equations for charged
anisotropic matter using a linear quark equation of state.
In this work, we apply a new choice of anisotropy in
logarithmic form. This form of anisotropy is missing in
other choices made in the past. The generated model
generalises several models found in the past.

2. Basic field equations

The static and spherically symmetric space–time is
given by the interior line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2),

(1)

where λ(r) and ν(r) are gravitational potentials. The
energy–momentum tensor is defined as

τi j=diag
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where pt is the tangential pressure, ρ is the energy den-
sity, E is the electric field and pr is the radial pressure.
The system of field equations for a charged anisotropic
stellar object is given as

1

r2 (1 − e−2λ) + 2λ′

r
e−2λ = ρ + 1

2
E2, (3a)

−1

r2 (1 − e−2λ) + 2ν′

r
e−2λ = pr − 1

2
E2, (3b)

e−2λ

(
ν′′ + ν′2 − ν′λ′ + ν′

r
− λ′

r

)
= pt + 1

2
E2, (3c)

σ = 1

r2 e−λ(r2E), (3d)

where σ represents the proper charge density. The
energy density and radial pressure are related with linear
equation of state given by

pr = 1

3
(ρ − 4B), (4)

where B is the bag constant. The bag equation is con-
sistent with the quark star model. Models for quark
stars include the works by Komathiraj and Maharaj [26],
Maharaj et al [41], Sunzu et al [3], Sunzu and Danford
[23] and Abdalla et al [25].

We transform system (3) by

x = Cr2, A2y2(x) = e2ν(r), Z(x) = e−2λ(r), (5)

as given by Durgapal and Bannerji [42]. The trans-
formed system of field equations becomes

ρ = 3pr + 4B, (6a)

pr
C

= Z
ẏ
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Ż + B

C

)
+ (Z − 1)

x

)
, (6c)

pt = pr + 	, (6d)

E2

2C
= (1 − Z)

x
− Ż

2
− 3Z

ẏ

y
− B

C
, (6e)

σ = 2

√
CZ

x

(
x Ė + E

)
. (6f)

System (6) is presented in six equations with eight vari-
ables (	, pt , Z , pr , E , y, ρ, σ ).

3. Model formulation

To solve the field of eqs (6), we specify two quanti-
ties namely, the metric function y and the measure of
anisotropy 	. The metric potential is specified as

y = (a + x f )d , (7)

where f , d and a are real constants. This metric function
is continuous, regular and finite throughout the inte-
rior of the star. The same metric function was used by
Komathiraj and Maharaj [26], Maharaj et al [41], Sunzu
et al [3], Sunzu and Danford [23] and Abdalla et al [25].
We keep the same choice to regain models generated in
the past.

We consider a new measure of anisotropy as

	 = (
∑n

i=1 βi x i )ln(α + cx)

(1 + qx)t
,

n ∈ N, α ≥ 1, c ≥ 0, t ∈ Z, (8)

where βi and q are arbitrary real constants. This choice
is regular and continuous throughout the interior of the
stellar objects under the given conditions. It is presented
as an elementary function and can vanish at the centre,
which is an important property for pressure anisotropy.
Furthermore, it can be set to vanish within the stel-
lar interior to give isotropic models. The nature of this
anisotropy is missing in studies performed in the past.
This work provides new insight for investigating the
properties of charged anisotropic quark stars. Interest-
ingly, we regain several models studied in the past. When
α = e and c = 0, we regain the models performed
by Abdalla et al [25]. For α = e, c = 0, t = 0 and
β1 = β2 = 0, we regain the models generated by
Sunzu and Danford [23]. For c = 0, α = e, q = 0,
we obtain the models studied by Sunzu et al [3] and
Maharaj et al [41]. When α = 1 and c = 0 or βi = 0, we
regain several isotropic models studied by Komathiraj
and Maharaj [26]. Therefore, our work is also a gener-
alisation of other quark star models.

Using eqs (7) and (8) in (6c), we obtain

Ż +
[

1

2x
+ (4 f ( f d + 1) − 3 f )x f −1

2(a + (1 + f d)x f )

+2 f (d − 1)x f −1

a + x f

]
Z

= (1 − (2x B/C) + (x	/C)) (a + x f )

2x
(
f dx f + x f + a

) . (9)

Equation (9) is, in general, a nonlinear ordinary differ-
ential equation governing the model.

4. Non-singular model

The generalised non-singular model in our study is
obtained by considering f = 1, d = 2, n = 3 and
t = −1. Equation (9) then becomes
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Ż +
(

1

2x
+ 3

a + 3x
+ 2

a + x

)
Z

= (1 + (	x/C) − (2x B/C)) (a + x)

2x (3x + a)
. (10)

Solving eq. (10), we obtain

Z = 35a3 + 35a2x + 21ax2 + 5x3

35 (a + x)2 (a + 3x)

+ (K (x)/C)

(a + x)2 (a + 3x)

− 2B

C

(
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)

+ h

2
√
x (a + x)2 (a + 3x)

. (11)

The gravitational potentials and matter variables become

e2ν = A2 (a + x)4 , (12a)
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(12b)
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where K̇ (x) is the derivative of K (x) with respect to x .
If we set a = e, c = 0 and q = 0, we regain the

anisotropic model found by Maharaj et al [41]. More-
over, if we set β1 = β2 = β3 = 0, the isotropic models
for quark stars generated by Komathiraj and Maharaj
[26] are regained. If we set c = 0, α = e and q = 0,
we obtain the models generated by Sunzu et al [3] and
Maharaj et al [41].

5. Physical analysis

A realistic stellar model should satisfy some physical
properties including the energy conditions, regularity,
casaulity and stability. In this section, we show that
the generated non-singular model satisfies the physical
properties.

5.1 Energy conditions

A physical stellar model should satisfy the following
energy conditions:
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(i) Null energy conditions: ρ ≥ 0
(ii) Weak dominant energy conditions: ρ − pr ≥ 0

and ρ − pt ≥ 0
(iii) Strong dominant energy conditions: ρ−3pr ≥ 0

and ρ − 3pt ≥ 0
(iv) Strong energy conditions: ρ − pr − 2pt ≥ 0.

All the energy conditions are satisfied by our model.
This shows that the model is physically viable.

5.2 Regularity

The gravitational potential e2ν in eq. (12a) is a decreas-
ing function while the gravitational potential in eq. (12b)
is an increasing function with the radial distance r . They
are finite, regular and continuous functions throughout
the interior of the stellar object. It can be observed that
the gravitational potential e2ν is minimum at the cen-
tre (x = 0) whereas the gravitational potential e2λ is
maximum at the centre. The radial pressure, tangential
pressure and energy density are decreasing functions
with the maximum values at the centre. We can also
observe that pr = pt at the centre, which is physically
realistic.

5.3 Casuality

The speed of sound v for a compact star should be less
than the speed of light c. The speed of sound for rela-
tivistic stellar object is given as v = dpr/dρ. From eqs
(12c) and (12d), we obtain v = 1

3 < 1. This agrees with
the equation of state given in eq. (4).

5.4 Stability

The adiabatic index (�) is used for an anisotropic rela-
tivistic stellar object as the measure of stability. When
� ≥ 4

3 , an object is said to be stable from gravitational
collapse. The adiabatic index � is given by

� = v

(
1 + ρ

pr

)
. (13)

The minimum value of the adiabatic index at the centre
(x = 0) of the relativistic object is given as

�0 = 1

3
+ 6C + aB

6C − aB
. (14)

From eq. (14), the adiabatic index at the centre of the
star �0 ≥ 4

3 for aB ≥ 0. Since the bag constant B > 0
for quark stars, �0 ≥ 4

3 for aB ≥ 0, which shows that
the model is stable from gravitational collapse.

Figure 1. Weak dominant energy conditions (ρ− pr , ρ− pt ).

Figure 2. Strong dominant energy conditions (ρ − 3pr ,
ρ − 3pt , ρ − pr − 2pt ).

Figure 3. Radial pressure (pr ).
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Figure 4. Tangential pressure (pt ).

Figure 5. Energy density (ρ).

Figure 6. Adiabatic index (�).

Figure 7. Electric field (E2).

Figure 8. Measure of anisotropy (	).

6. Discussion

The model in system (12) is well behaved throughout the
interior of the stellar object. The graphs are plotted by
using Python programing language by specifying the
values of the constants as q = −0.5, α = 1, A =
−0.5, B = 0.05, C = 0.5, c = 0.3, β1 = 0.01, β2 =
0.02, β3 = 0.03 for the energy conditions, namely weak
dominant energy conditions, ρ − pr and ρ − pt (figure
1), strong dominant energy conditions, ρ−3pr , ρ−3pt
and strong energy condition, ρ− pr −2pt (figure 2). We
also plot the radial pressure pr (figure 3), the tangential
pressure pt (figure 4), the energy density, ρ (figure 5),
the adiabatic index (figure 6), the electric field E2 (figure
7) and the measure of anisotropy 	 (figure 8).

From figures 1 and 2, it is observed that the energy
conditions ρ − pr ≥ 0, ρ − pt ≥ 0, ρ − 3pr ≥ 0,
ρ − 3pt ≥ 0 and ρ − pr − 2pt ≥ 0. Thus, all the
energy conditions are satisfied by our model. The radial
pressure pr , the tangential pressure pt and the energy
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density ρ plotted in figures 3, 4 and 5, respectively, are
decreasing functions from the core to the boundary of
the stellar object. They are maximum at the centre of
the star. This behaviour is physical as we expect these
quantities to be maximum at the core of the star. We
observe from figure 6 that the adiabatic index is greater
than 4

3 as required. This indicates that our model is
stable.

The electric field E2 is a decreasing function with
the radial coordinate as shown in figure 7. In electro-
static, a charged sphere is neutral at the centre and the
electric field increases with the increase in the radial dis-
tance. However, in stellar objects, the anisotropy may
influence the electric field to decrease with the radial
distance. This is also evident in models found by Feroze
and Siddiqui [32] and Sunzu et al [40,43]. The pressure
anisotropy 	 in figure 8 is finite, regular and continuous.
We note that 	 = 0 at the centre and increases from the
core to the surface of the stellar object. It indicates that
anisotropy 	 ≥ 0 which indicates that pt ≥ pr .

7. Conclusion

We have obtained new exact solutions by using Einstein–
Maxwell field equations for a charged quark star. The
model indicates that the matter variables are well
behaved. We have regained several models studied in
the past. We have also found that the model satisfies
energy and stability conditions.
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