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Abstract. In this work, our goal is to find more general exact travelling wave solutions of the (1+1)- and
(2+1)-dimensional nonlinear chiral Schrödinger equation with conformable derivative by using a newly developed
analytical method. The governing model has a very important role in quantum mechanics, especially in the field of
quantum Hall effect where chiral excitations are present. In two-dimensional electron systems, subjected to strong
magnetic fields and low temperatures, the quantum Hall effect can be observed. By using the method, called the
rational sine-Gordon expansion method which is a generalised form of the sine-Gordon expansion method, we
found complex dark and bright solitary wave solutions. These solutions have important applications in the quantum
Hall effect.
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1. Introduction

In real-world, nonlinear evolution equations (NLEEs)
play significant roles because every natural phenomenon
is modelled by these types of equations. Their solu-
tions help us to better understand and analyse our
Universe. Therefore, finding analytical solutions of
NLEEs increase is important nowadays. Scientists have
proposed many methods, such as the generalised expo-
nential rational function method [1], the Lie symmetry
analysis [2], the extended trial equation method [3],
the auto-Bäcklund transformation method [4,5], the
Hirota bilinear method [6–9], the sine-Gordon expan-
sion method [10,11], modified exp(−�(ξ))-expansion
function method [12,13] etc. to get exact solutions.

In this work, we study the newly developed method,
that is the rational sine-Gordon expansion method
(RSGEM), which is the generalised form of the well-
known sine-Gordon expansion method, to obtain new
types of soliton solutions of the governing equations.
Solitons, also known as solitary waves, are important
in theoretical physics. Solitons can be seen everywhere
in natural life: in neuroscience, plasma physics, quan-

tum field theory, optical fibres, fluid dynamics, magnetic
field etc. In literature, many different types of solitons
can be seen. For example, chirped, conoidal, lumps,
M-shaped, tunable solitons, rogue waves, Bell waves,
double breather waves [14–16].

Chiral solitons arise in quantum mechanics, espe-
cially in the quantum Hall effect field. The CNLSE
has both bright and dark solitons which have significant
applications in the quantum Hall effect. In literature,
bright soliton (known as Bell-shaped soliton or non-
topological soliton) solutions symbolise the singular
travelling wave properties and the dark solitons (known
as topological soliton or simply topological defect) arise
during calculations of magnetic moment and rapidity of
special relativity.

Quantum Hall effect is a general quantum mechan-
ical statement of the classical Hall effect observed in
two-dimensional structures at very low temperatures.
The chiral nonlinear Schrödinger equation (CNLSE)
describes the edge states of the fractional quantum Hall
effect [17–20]. In 1998, Nishino et al found progressive
wave solutions, bright soliton and dark soliton, of the
(1+1)-dimensional nonlinear chiral Schrödinger equa-
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tion [21]. The CNLSE with Bohm potential has been
studied in [22–27] using various methods. The simpli-
fied extended sinh-Gordon equation expansion method
is used to obtain various soliton solutions of (2+1)-
dimensional CNLSE such as singular solitons and
combined dark–bright solitons [28]. The sine-Gordon
expansion method is proposed to get soliton solutions
of the (1+1) and (2+1)-dimensional CNLSE in [29].
Both the extended direct algebraic method and extended
trial equation method were used to get exact solutions
of the (2+1)-dimensional CNLSE [30]. These studies
have proposed different kinds of solutions including
Jacobi elliptic function solutions, optical soliton solu-
tions, dark-bright soliton solutions, hyperbolic function
solutions to science.

The (1+1)-dimensional nonlinear chiral Schrödinger
equation is given as [26]

iqt + αqxx + iβ(qq∗
x − q∗qx )q = 0, (1)

where q is the complex function which depends on
x and t , superscript ∗ represents complex conjugate, α is
the coefficient of dispersion terms and β is the nonlinear
coupling constant.

The (2+1)-dimensional CNLSE is given as [23]

iqt + α
(
qxx + qyy

) + i
(
β1

(
qq∗

x − q∗qx
)

+β2(qq
∗
y − q∗qy)

)
q = 0, (2)

where q is the complex function which depends on
x and t , superscript ∗ represents complex conjugate,
i = √−1 , α is the coefficient of the dispersion terms,
β1, β2 are the nonlinear coupling constants. Both eqs
(1) and (2) are nonlinear equations and this nonlinear-
ity is known as the current density. We consider the
(1+1)- and (2+1)-dimensional CNLSE with the sense
of the conformable derivative by using the RSGEM in
this framework. The conformable fractional derivative
was developed by Khalil et al [31]. In recent years, the
conformable fractional derivative has been more pre-
ferred to other fractional derivative definitions such as
Riemann–Liouville, Caputo–Fabrizio, Caputo [32–34].
The paper is organised as follows: we give definition
and some properties of conformable derivative in §2,
description of the proposed method, the rational sine-
Gordon expansion method (RSGEM) is given in §3,
application of the given method to the (1+1)- and (2+1)-
dimensional CNLSE is demonstrated in §4 and in §5,
some conclusions are given.

2. Preliminaries on conformable derivative

DEFINITION
Suppose that f : [0, ∞) → R. The conformable frac-
tional derivative of f of order α is defined as

Tα ( f ) (t) = lim
ε→0

f
(
t + εt1−α

) − f (t)

ε
,

for all t > 0, α ∈ (0, 1] [31].

Theorem. Let Tα be a fractional derivative operator
with order α and α ∈ (0, 1], f, g be α-differentiable at
point t > 0. Then [31–35]

Tα (a f + bg) = aTα ( f ) + bTα (g) , ∀a, b ∈ R.

Tα (t p) = pt p−α, ∀p ∈ R.

Tα ( f g) = f Tα (g) + gTα ( f ) .

Tα

(
f
g

)
= gTα( f )− f Tα(g)

g2 .

Tα (λ) = 0, for all constant functions f (t) = λ.

If f is differentiable then Tα ( f ) (t) = t1−α d f
dt (t) .

Theorem (chain rule). Let h, g : (a, ∞) → R be α-
differentiable functions, where 0 < α ≤ 1. Let k (t) =
h (g (t)). Then k (t) is α-differentiable and for all t with
t 	= a and g (t) 	= 0, we have [36]
(
La

αk
)
(t) = (

La
αh

)
(g (t)) · (

La
αg

)
(t) g(t)α−1.

If t = a, we have
(
La

αk
)
(t) = lim

t→a+
(
La

αh
)
(g (t)) · (

La
αg

)
(t) g(t)α−1.

3. Fundamental properties of the rational
sine-Gordon expansion method

In this section, we explain the rational sine-Gordon
expansion method (SGEM). Firstly, we give the gen-
eral facts of the well-known SGEM. Let suppose the
sine-Gordon equation

ϕxx − ϕt t = m2 sin(ϕ), (3)

where ϕ = ϕ(x, t) and m is a real constant. Con-
sidering the wave transform ϕ = ϕ(x, t) = 	(ξ),

ξ = μ (x − ct) to eq. (2), it yields the nonlinear ordi-
nary differential equation

	′′ = m2

μ2
(
1 − c2

) sin(	), (4)

where 	 = 	(ξ), ξ is the amplitude and c is the velocity
of the travelling wave. After complete simplification, we
find eq. (4) as follows:
[(

	

2

)′]2

= m2

μ2
(
1 − c2

)sin2
(

	

2

)
+ C, (5)

whereC is the constant of integration. SubstitutingC =
0, 
 (ξ) = 	/2 and a2 = m2/(μ2

(
1 − c2)

)
in eq. (5),

we get


 ′ = a sin (
) . (6)
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Setting a = 1 in eq. (6), we get


 ′ = sin (
) . (7)

Solving eq. (7) by the variables separable method, we
get two important properties of trigonometric functions
as follows:

sin(
) = sin (
 (ξ))

= 2peξ

p2e2ξ + 1

∣
∣∣
∣
p=1

= sech(ξ), (8)

cos(
) = cos (
 (ξ))

= p2e2ξ − 1

p2e2ξ + 1

∣
∣
∣∣
p=1

= tanh(ξ), (9)

where p is the non-zero integral constant. Let us con-
sider the nonlinear partial differential equation of the
following form which searches the solution;

P (ϕ, ϕx , ϕt , ϕxx , ϕt t , ϕxt , ϕxxx , ϕxxt , ...) = 0, (10)

N

(
	,

d	

dξ
,

d2	

dξ2 , . . .

)
= 0,

where N is a nonlinear ordinary equation (NODE)
whose partial derivatives of 	 depends on ξ . In the
SGEM, the solution of eq. (10) is considered in the fol-
lowing form:

	 (ξ)=
n∑

i=1

tanhi−1 (ξ) [Bi sech(ξ)+Ai tanh(ξ)]+A0.

(11)

Equation (11) can be rearranged by considering eqs (8)
and (9) as follows:

	 (
) =
n∑

i=1

cosi−1 (
) [Bi sin (
)

+Ai cos (
)]+A0. (12)

We know that rational functions are more general than
polynomial functions. If we consider the solution func-
tion as a rational function, we can find considerably
better wave solutions than the above form. Contrary to
other works in the literature, our solution functions have
two auxiliary functions, viz. sech(ξ) , tanh(ξ). We con-
sider the following solution form [37]:

	 (ξ)

=
∑M

i=1 tanhi−1 (ξ) [Ai sech(ξ)+Ci tanh(ξ)]+A0
∑M

i=1 tanhi−1 (ξ) [Bi sech(ξ)+Di tanh(ξ)]+B0

(13)

which is also written as

	 (
)

=
∑M

i=1 cosi−1 (
) [Ai sin(
)+Ci cos(
)]+A0
∑M

i=1 cosi−1 (
) [Bi sin(
)+Di cos(
)] + B0
.

(14)

Ai , Bi ,Ci , Di , A0, B0 are constants to be determined
later. The values of Ai , Bi ,Ci , Di are not zero at the
same time. Applying the balance principle between the
highest power nonlinear term and highest derivative
in NODE, the value of M is identified. Reducing the
expression that corresponds to the same denominator
and taking the coefficients of sini (
) cos j (
) to zero,
we get a set of algebraic equation Ai , Bi ,Ci , Di , A0,

B0, μ and c, the values of which are found by solving
the set of algebraic equations by relevant software. In
the end, we substitute these values into eq. (13) and get
new travelling wave solutions to eq. (10).

4. Applications of the RSGEM

4.1 Solutions of the conformable (1+1)-dimensional
CNLSE

The conformable (1+1)-dimensional chiral nonlinear
Schrödinger’s equation is given as

iqμ
t + αqxx + iβ

(
qq∗

x − q∗qx
)
q = 0, (15)

where 0 < μ ≤ 1 is conformable derivative order, α, β

are real constants. We shall take α = 1 in this paper.
Let us consider the wave transform given as follows:

q (x, t) = u (ζ ) eiθ , ζ = p

(
x + v

tμ

μ

)
,

θ = kx + w
tμ

μ
+ φ, (16)

where p represents the soliton shape, v is the velocity,
k is the soliton frequency, w is the wave number and
φ is the phase constant. Using the conformable deriva-
tive operator, we put eq. (16) into eq. (15), and we obtain
imaginary and real parts of the following nonlinear ordi-
nary differential equation:

p2u′′ + 2kβu3 − (w + k2)u = 0, (17)

(2k + v) pu′ = 0. (18)

Homogen balance principle gives M = 1 in eq. (17).
For M = 1, eq. (14) turns to

u (ζ ) = A1 sin(ζ ) + C1 cos(ζ ) + A0

B1 sin(ζ ) + D1 cos(ζ ) + B0
. (19)

Putting eq. (19) and its second-order derivative
into eq. (17), we get a polynomial in powers of
sini(
) cos j(
) functions. Collecting the coefficients
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of sini (
) cos j (
) of similar power and equating
each sum to zero, gives an algebraic equation system.
Inserting the system of algebraic equations produces the
values of A1, B1,C1, D1, A0, B0 and other parameters.
By substituting the values of the parameters for eq. (13),
we obtain some new rational travelling wave results for
eq. (1).

Case 1: When the coefficients are as follows:

A1 = p

2

√
B2

0 − D2
1

kβ
, A0 = i pD1

2
√
kβ

,

C1 = i pB0

2
√
kβ

, W = −k2 − p2

2
, B1 = 0, (20)

we get

q1 (x, t) =
ei(kx+

(−k2− p2
2 )tμ

μ
+φ) p sech(p(x + vtμ

μ
))

√
B2

0 − D2
1 + i p(D1 + B0 tanh(p(x + vtμ

μ
)))

2
√
kβ(B0 + D1 tanh(p(x + vtμ

μ
)))

. (21)

Case 2: For the coefficients

A1 = − p

2

√
B2

0 − D2
1

kβ
,C1 = i pB0

2
√
kβ

,

w = −k2 − p2

2
, A0 = D1 = 0, (22)

we get the following wave solution:

q2 (x, t) = −
ei(kx+

(−k2− p2
2 )tμ

μ
+φ) p(−i sinh(p(x + vtμ

μ
))B0 +

√
B2

0 − D2
1)

2
√
kβ(cosh(p(x + vtμ

μ
))B0 + B1)

. (23)

Case 3: For the values

C1 = − i pB0√
kβ

, A0 = − i pD1√
kβ

,

w = −k2 − 2p2, A1 = B1 = 0, (24)

we get

q3 (x, t) = −i
ei(kx+

(−k2−2p2)t
μ

μ +φ) p(D1 + B0 tanh(p(x + vt
μ

μ
)))

√
kβ(B0 + D1 tanh(p(x + vtμ

μ
)))

. (25)

Case 4: When

A1 =
√(−B2

0 + D2
1

)
C2

1

B0
, k = −

√

− p2

2
− w,

β = p2B2
0

2
√

2
√−p2 − 2wC2

1

, A0 = D1 = 0, (26)

we have

q4 (x, t) =
ei(−

√
− p2

2 −wx+wt
μ

μ
+φ)

(
sech(p(x+ vt

μ

μ
))

√
(−B2

0 +D2
1)C2

1

B0
+ C1 tanh(p(x + vt

μ

μ
))

)

B0 + sech(p(x + vtμ

μ
))B1

. (27)

Case 5: For the selected coefficients

A1 = −
p
√
B2

0 − B2
1 − D2

1

2
√
kβ

, A0 = − i pD1

2
√
kβ

,

C1 = − i pB0

2
√
kβ

, w = −k2 − p2

2
, (28)
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we have

q5 (x, t) = −
ei(kx+

(−k2− p2
2 )tμ

μ
+φ) p(i sinh(p(x − 2ktμ

μ
))B0 + i cosh(p(x − 2ktμ

μ
))D1 +

√
B2

0 − B2
1 − D2

1)

2
√
kβ(cosh(p(x − 2ktμ

μ
))B0 + B1 + sinh(p(x − 2ktμ

μ
))D1)

. (29)

Case 6: If the coefficients are selected as

A0 = A1D1√
B2

1 + D2
1

, p =
√

2
(−k2 − w

)
,

β =
(
k2 + w

) (
B2

1 + D2
1

)

2k A2
1

, C1 = B0 = 0, (30)

we get

q6(x, t)

=
ei(kx+

wtμ
μ

+φ)A1

(

1 + cosh(
√

2(−k2−w)(x− 2ktμ
μ

))D1
√
B2

1 +D2
1

)

B1 + sinh(
√

2(−k2 − w)(x − 2ktμ
μ

))D1
.

(31)

Case 7: For

p =
√

−k2 − w

2
, β =

(
k2 + w

)
B2

0

2kC2
1

,

A0 = C1D1

B0
, A1 = B1 = 0, (32)

we have

q7(x, t) =
ei(kx+

wtμ
μ

+φ)C1

(
D1 + B0 tanh

(√−k2−w(x− 2ktμ
μ

)√
2

))

B0

(
B0 + D1 tanh(

√−k2−w(x− 2ktμ
μ

)√
2

)

) .

(33)

Case 8: When

A1 =
C1

√
−B2

0 + D2
1

B0
, A0 = C1D1

B0
,

β =
(
k2 + w

)
B2

0

2kC2
1

, p = −
√

2
(−k2 − w

)
, B1 = 0,

(34)

the following solution is obtained:

q8 (x, t) =
ei(kx+

wtμ
μ

+φ)C1(D1 + sech(p(−x + 2ktμ
μ

))

√
−B2

0 + D2
1 − B0 tanh(p(−x + 2ktμ

μ
)))

B0(B0 − D1 tanh(p(−x + 2ktμ
μ

)))
. (35)

4.2 Solutions of the conformable (2+1)-dimensional
CNLSE

The conformable (2+1)-dimensional chiral nonlinear
Schrödinger’s equation is given by

iqμ
t + α

(
qxx + qyy

)

+i(β1(qq
∗
x − q∗qx ) + β2(qq

∗
y − q∗qy))q = 0,

(36)

where 0 < μ ≤ 1 is the conformable derivative order,
α, β1, β2 are real constants. Let us consider the wave
transform as follows:

q (x, y, t) = u (ζ ) eiθ , ζ = ax + by − v
tμ

μ
,

θ = r x + sy + w
tμ

μ
+ φ, (37)

where v is the velocity, r is the soliton frequency, w is the
wave number, φ is the phase constant, a, b, r, s are real
constants. Using conformable derivative, we put eq. (37)
into eq. (36) and we obtain the imaginary and the real
parts of the nonlinear differential equation as follows:

α
(
a2 + b2) u′′ − (

α
(
r2 + s2) + w

)
u

+2 (rβ1 + sβ2) u
3 = 0, (38)

(2α (ar + bs) − v) u′ = 0. (39)

Homogen balance principle gives M = 1 in eq. (38).
For M = 1, eq. (14) turns to

u (ζ ) = A1 sin(ζ ) + C1 cos(ζ ) + A0

B1 sin(ζ ) + D1 cos(ζ ) + B0
. (40)

Putting eq. (40) and its second-order derivative into eq.
(38), yields a polynomial in powers of sini(
) cos j(
)

functions. Collecting the coefficients of sini(
) cos j

(
) of similar power and equating each sum to zero,
gives an algebraic equation system. Inserting the sys-
tem of algebraic equations produces the values of
A1, B1,C1, D1, A0, B0 and other parameters. By sub-
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stituting the values of the parameters for eq. (13), we
obtain some new rational travelling wave results for eq.
(1).

Case 1: When

w = −α(α2
(
a2 + b2

)2
B4

1 + 8αs
(
a2 + b2

)
B2

1C
2
1β2 + 8C4

1

((
2s2 + a2 + b2

)
β2

1 + 2s2β2
2

)
)

16C4
1β2

1

,

r = −α
(
a2 + b2

)
B2

1 + 4sβ2C2
1

4β1C2
1

, B0 = B1, A0 = A1 = D1 = 0, (41)

we get the following solution:

q1 (x, y, t) = e
i

(
− α(a2+b2)B2

1 +4sβ2C
2
1

4β1C
2
1

x+sy+w tμ
μ

+φ

)

C1 tanh(1
2 (ax + by − 2α(sb+r)tμ

μ
))

B1
. (42)

Case 2: If

β1 = −α
(
a2 + b2

)
B2

1 + 4sβ2
(
A2

1 + C2
1

)

4r
(
A2

1 + C2
1

) ,

w = −1

2
α

(
2r2 + 2s2 + a2 + b2) ,

B0 = B1C1√
A2

1 + C2
1

, A0 = D1 = 0, (43)

we have

q2 (x, y, t) = ei(r x+sy+wtμ
μ

+φ) sech(ax + by − 2α(ra+sb)tμ

μ
)(A1 + sinh a(ax + by − 2α(ra+sb)tμ

μ
)C1)

B1

(

sech(ax + by − 2α(ra+sb)tμ
μ

) + C1√
A2

1+C2
1

) . (44)

Case 3: When

β = −

√

−α2a2B4
1 − 4α2r B2

1C
2
1β1 − 4C2

1β2(C2
1β2 +

√
−α

(
αr2 + w

)
B4

1 + 2αr B2
1C

2
1β1 + C4

1β2
2 )

αB2
1

,

s =
C2

1β2 +
√

−α
(
αr2 + w

)
B4

1 + 2αr B2
1C

2
1β1 + C4

1β2
2

αB2
1

, B0 = −B1, A0 = A1 = D1 = 0, (45)

we get

q3 (x, y, t) = e
i

(

r x+C2
1β2+

√
−α(αr2+w)B4

1 +2αr B2
1C

2
1β1+C4

1β2
2

αB2
1

y+wtμ
μ

+φ

)

B1
coth

(
1

2

(
ax + by − 2abs

tμ

μ

))
C1. (46)

Case 4: If the coefficients are selected as

β1 = α
(
a2 + b2

) (
B2

0 − D2
1

) − sβ2A2
1

r A2
1

,

w = α
(−r2 − s2 + a2 + b2) , A0 = B1 = C1 = 0,

(47)

we have
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Figure 1. The 3D, 2D and contour simulations of the absolute value of eq. (23).

Figure 2. The 3D, 2D and contour simulations of the absolute value of eq. (31).
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Figure 3. The 3D, 2D and contour simulations of the absolute value of eq. (42).

Figure 4. The 3D, 2D and contour simulations of the absolute value of eq. (44).
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Figure 5. The 3D, 2D and contour simulations of the absolute value of eq. (46).

Figure 6. The 3D, 2D and contour simulations of the absolute value of eq. (48).
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q4 (x, y, t) =
e
i

(
r x+sy+ α(−r2−s2+a2+b2)tμ

μ
+φ

)

sech
(
ax + by − 2α(sb+ra)tμ

μ

)
A1

B0 + D1 tanh
(
ax + by − 2α(sb+ra)tμ

μ

) . (48)

Case 5: If

s = −α
(
a2 + b2

)
D2

1 + 4rβ1

4β2
,

w = α

16

(
− 8

(
2r2 + a2 + b2)

−
(
α

(
a2 + b2

)
D2

1 + 4rβ1
)2

β2
2

)
,

A1 = −
√
B2

1 + D2
1

D1
, A0 = 1,C1 = B0 = 0, (49)

we have

q5(x, y, t) =
ei(r x+sy+wtμ

μ
+φ)

(

cosh(ax + by − 2α(sb+ra)tμ

μ
) −

√
B2

1 +D2
1

D1

)

B1 + sinh(ax + by − 2α(sb+ra)tμ
μ

)D1
. (50)

Case 6: If

β2 =
(
α
(
r2+s2

)+w
)
D2

1−2rβ1
2s ,

A1 = −
√
B2

1 −B2
0 +D2

1

D1
, C1 = B0

D1
,

b = −
√

−2w−(α(r2+s2)+a2)
α

, A0 = 1, (51)

we have

q6 (x, y, t) = e
i
(
r x+sy+wtμ

μ
+φ

)

×

(
D1 − sech

(
ax + by − 2α(sb+ra)tμ

μ

)√
−B2

0 + B2
1 + D2

1 + B0 tanh
(
ax + by − 2α(sb+ra)tμ

μ

))

D1(B0 + sech(ax + by − 2α(sb+ra)tμ
μ

)B1 + D1 tanh(ax + by − 2a(sb+ra)tμ
μ

))
.

(52)

5. Conclusion

In this framework, we proposed a newly developed
analytical method which is the rational sine-Gordon
expansion method (RSGEM). The main advantage of
this method is that it provides more general solutions that
include solutions that are obtained by different meth-
ods. This method is effective in finding new solutions
to governing models with powerful nonlinearity. Using

the new method, we constructed new exact travelling
wave solutions to the conformable (1+1)- and (2+1)-
dimensional chiral nonlinear Schrödinger’s equation
which describe the edge states of the fractional quan-
tum Hall effect. We acquired explicit soliton solutions
including bright, dark, singular, combined dark-bright
soliton solutions of the conformable (1+1)- and (2+1)-
dimensional CNLSE by using RSGEM. These types
of soliton solutions (solitary waves) often have been
used for understanding stable or unstable nonlinear
dynamic models such as fluid dynamics, quantum
physics, nuclear physics, electromagnetism etc. Chiral
solitons play a vital role in the field of quantum Hall

effect, where chiral excitations are known to appear. In
future, it can be extended to other perturbation terms of
the mentioned models by using the proposed method.
The solutions to be obtained for different order values
of the CNLS equation can provide novelties in the quan-
tum Hall effect field where chiral excitations appear.
Consequently, we estimate that the results found in this
paper may be used to explain phenomena, especially in
nuclear physics and quantum mechanics.
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