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Abstract. The Lie symmetry technique is utilised to obtain three stages of similarity reductions, exact invariant
solutions and dynamical wave structures of multiple solitons of a (3+1)-dimensional generalised BKP–Boussinesq
(gBKP-B) equation. We obtain infinitesimal vectors of the gBKP-B equation and each of these infinitesimals depends
on five independent arbitrary functions and two parameters that provide us with a set of Lie algebras. Thenceforth,
the commutative and adjoint tables between the examined vector fields and one-dimensional optimal system of
symmetry subalgebras are constructed to the original equation. Based on each of the symmetry subalgebras, the Lie
symmetry technique reduces the gBKP-B equation into various nonlinear ordinary differential equations through
similarity reductions. Therefore, we attain closed-form invariant solutions of the governing equation by utilising
the invariance criteria of the Lie group of transformation method. The established solutions are relatively new and
more generalised in terms of functional parameter solutions compared to the previous results in the literature. All
these exact explicit solutions are obtained in the form of different complex wave structures like multiwave solitons,
curved-shaped periodic solitons, strip solitons, wave–wave interactions, elastic interactions between oscillating
multisolitons and nonlinear waves, lump waves and kinky waves. The physical interpretation of computational
wave solutions is exhibited both analytically and graphically through their three-dimensional postures by selecting
relevant values of arbitrary functional parameters and constant parameters.

Keywords. Lie symmetry method; generalised BKP–Bossinesq equation; invariant solutions; optimal system;
solitary wave solutions; lump waves.
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1. Introduction

Nonlinear partial differential equations (PDEs) play
an essential role in the analysis of complex nonlin-
ear phenomena in nonlinear sciences. One needs to
obtain explicit closed-form solutions to these nonlinear
equations for a clear understanding of these complex
nonlinear phenomena characterised by nonlinear PDEs.
Nonlinear evolution equations are particular forms of
nonlinear PDEs, which describe many nonlinear phe-
nomena in the disciplines of nonlinear sciences and
engineering physics such as, optical physics, plasma
physics, water waves, chemical physics, fluid dynam-
ics, oceanography, hydrodynamics and so on. For a
deep understanding of such complex nonlinear phe-
nomena in nature, seeking exact closed-form solutions
of nonlinear PDEs play a crucial role in the study of

nonlinear sciences. It is well known that numerous
analytical mathematical methods are developed by
researchers and mathematicians, to seek closed-form
solutions of nonlinear PDEs and each technique is pre-
cise for obtaining various forms of exact explicit solu-
tions. Here, our prime objective is to study localised soli-
tary wave solutions that can be described as a travelling
wave solution that maintains its shape while propagating
at a constant velocity. These solitons/solitary wave solu-
tions are obtained by cancelling dispersive and nonlinear
effects in the medium. A variety of efficient mathemat-
ical methods such as the auxiliary equation method [1],
Bäcklund and Darboux transform [2,3], Lie symmetry
method [4–9], the exp-function methods [10,11], the
direct algebraic method and modified extended direct
algebraic method [12], the inverse scattering transform
[13], the F-expansion method [14], Lax pair [15], Hirota
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technique [16], Kudryashov method [17], extended sim-
plest equation method [18], bifurcation method [19], the
(G ′/G)-expansion method [20], generalised exponen-
tial rational function method [21,22] and so on have been
proposed.

In nonlinear sciences, the Kadomtsev and Petviashvili
(KP) equation, which describes the nonlinear waves, is
introduced by Kadomtsev and Petviashvili [23], has the
bilinear form
(vt + 6vvx + vxxx)x + 3vyy = 0 (1)

(Dx Dt + D4
x + 3D2

y) f ḟ = 0. (2)

The generalised B-type KP (g-BKP) equation in (3+1)
dimensions [24–27] can be furnished as

vt y − vxxxy − 3(vxvy)x + 3vxz = 0, (3)

wherev = v(x, y, z, t) is the wave amplitude along with
three spatial coordinates and one temporal coordinate
and subscripts denote the partial derivatives of v with
respect to the respective variables. The g-BKP equa-
tion describes the evolution of quasi-one-dimensional
shallow water waves, when the effects of viscosity and
surface tension are taken to be negligible [27]. The
g-BKP equation has a wide range of applications in var-
ious fields of mathematical physics such as non-linear
optics, oceanography, nonlinear waves, string theory,
Bose–Einstein condensation, etc. Wazwaz [24] obtained
multiple soliton solutions and multiple singular soliton
solutions of the generalised KP equation by utilising
the simplified form of Hirota”s method. Wazwaz and
El-Tantawy [25] achieved multiple soliton solutions for
the g-KP equation via the Hirota method. Ma and Fan
[26] constructed N-soliton solutions of the g-BKP equa-
tion (3) by using the linear superposition principle of
linear exponential travelling waves. Ma and Zhu [27]
gained multiple wave solutions of (3) by employing
the multiple exp-function algorithms via Hirota’s per-
turbation scheme. In this paper, we focus on studying
a new form of the (3 + 1)-dimensional generalised B-
type KP–Boussinesq (gBKP-B)equation [28–31] which
describes the severe effect on dispersion relation as
well as phase shift and enhanced by adding an extra
term (vt t ) to eq. (3) and this is introduced by Wazwaz
and El-Tantawy [29]. The gBKP-B equation has the
form

vt y − vxxxy − 3(vxvy)x + vt t + 3vxz = 0. (4)

Deng et al [28] constructed the rational solution includ-
ing the semi-rational solutions and breather-type kink
soliton solutions of the (3 + 1)-dimensional B-type
KP–Boussinesq equation by using the bilinear method
and fusion and fission between lump waves and soli-
tons were also observed. Wazwaz and El-Tantawy [29]

applied the simplified Hirota technique and established
1- and 2-soliton solutions, where the coefficients of
spatial variables were arbitrary, for the generalised
BKP-B equation (4). Gao and Zhang [30] obtained
the Lie symmetry reduction with the help of a one-
dimensional optimal system. Besides, they solved the
reduced equation via the tanh method and established
some exact explicit solutions of the gBKP-B equa-
tion (4). Recently, Khalique and Moleleki [31] obtained
symmetry reductions via the Lie symmetry technique
and then they solved the reduced equation through the
(G ′/G)-expansion method. Besides, conversation laws
were derived by applying the multiplier method via the
Ibragimov approach.

Lie symmetry technique [32–35] was pioneered by
Sophus Lie (1842–1899), which is one of the best
techniques for obtaining exact analytic solutions of
nonlinear PDEs Lie symmetry technique is effective,
systematic and has been applied to many physical mod-
els and nonlinear PDEs [36–48]. This technique is
effective to get group-invariant solutions and dynamics
of localised solitary wave solutions of nonlinear PDEs.

The prime objective of this study is to obtain localised
solitary wave solutions and exact analytic solutions
of the (3 + 1)-dimensional generalised B-type KP–
Boussinesq (gBKP-B) equation by employing the Lie
group method. It is remarkable that our newly formed
solutions are completely new and never have been
reported in the literature. In [31], a few exact solu-
tions were derived with the help of symmetry reduc-
tions, direct integration and (G ′/G)-expansion method
whereas in this work, we obtained abundant exact
closed-form solutions under ten symmetry subalgebras
via one-dimensional optimal system approach. There-
fore, in this article, we attained numerous explicit
solutions compared to the solutions obtained in [30,31].
The generated exact solutions are expressed explic-
itly including arbitrary independent functional and free
parameters which are useful and helpful to describe
the internal mechanism of complex nonlinear phenom-
ena. Furthermore, the dynamical analysis of soliton
solutions of the gBKP-B equation is discussed phys-
ically using their 3D graphics via numerical simula-
tion.

The remaining paper is organised as follows: In §2,
we obtain the Lie point symmetries of the (3 + 1)-
dimensional gBKP-B equation. In §3, a one-dimensional
optimal system of the governing equation is derived. We
obtain numerous closed-form invariant solutions with
the aid of symmetry reductions in §4. The dynamical
analysis of the gained exact solutions based on numer-
ical simulation is given in §5. Finally, §6 is devoted to
the concluding remarks.
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2. Lie point symmetries

In this section, we derive Lie point symmetries, infinites-
imal generator, commutative table, adjoint table and
closed-form invariant solution of the (3+1)-dimensional
gBKP-B equation (4). Assume one-parameter Lie group
transformations as follows and defined in [32,33]

x∗ = x + ε ξ(x, y, t, z, v) + O(ε2),

y∗ = y + ε φ(x, y, t, z, v) + O(ε2),

z∗ = z + ε ψ(x, y, t, z, v) + O(ε2),

t∗ = t + ε τ(x, y, t, z, v) + O(ε2),

v∗ = v + ε η(x, y, t, z, v) + O(ε2), (5)

where ξ, φ, ψ, τ and η are infinitesimal generators.
Therefore, the associated infinitesimal generator is

V = ξ ∂x + φ ∂y + ψ ∂z + τ ∂t + η ∂v. (6)

The fourth prolongation Pr4 of V to the gBKP-B (4)
equation is

Pr4V = V + ηx ∂

∂vx
+ ηy ∂

∂vy
+ ηxx ∂

∂vxx

+ ηxy ∂

∂vxy
+ ηyt ∂

∂vyt
+ · · · . (7)

Utilising this prolongation including invariant condi-
tions to the gBKP-B equation (4), one obtains

ηyt − ηxxxy − 3ηxvxy − 3ηxyvx

− 3ηyvxx − 3ηxxvy + ηt t + 3ηxz = 0, (8)

where the extended coefficients ηx , ηy , ηt t , ηxx , ηxy ,
ηxz , ηyt , ηxxxy and the total derivative operators Dx ,
Dy , Dz and Dt are described in detail in [32,33].

We substitute the values of extended coefficients and
total derivatives into eq. (8), to obtain the desired deter-
mining equation as

(η)v = −1

5
(ψ)z,

(η)x = −(φ)z + 1

2
(τ )z, (η)y = −(ξ)z,

(η)t t = 3(φ)zz − 3(τ )zz,

(τ )t = 3

5
(ψ)z, (τ )y = 0, (τ )x = 0,

(ξ)t = −3

2
(τ )z, (ξ)v = 0, (ξ)x = 1

5
(ψ)z,

(ξ)y = 0, (φ)t = 0, (φ)v = 0, (φ)x = 0,

(φ)y = 3

5
(ψ)z, (ψ)t = 0, (ψ)v = 0, (ψ)x = 0,

(ψ)y = 0, (ψ)zz = 0. (9)

Afterwards, we solve the determining equations, the
desired infinitesimals generators of gBKP-B equation
(4) as follows:

ξ = c1

3
x − 3t

2
f ′
5(z) + f3(z), φ = c1y + f4(z),

ψ = 5c1

3
z + c2, τ = c1t + f5(z),

η = −c1

3
v + f1(z) + t f2(z) − y f ′

3(z) − x f ′
4(z)

+ 3

2
t2 f ′′

4 (z) + x

2
f ′
5(z) − 3

2
t (t − y) f ′′

5 (z). (10)

Consequently, we obtain the following vector fields of
gBKP-B equation (4) with the aid of (10):

V1 = x

3

∂

∂x
+ y

∂

∂y
+ 5z

3

∂

∂z

+ t
∂

∂t
− v

3

∂

∂v
,

V2 = ∂

∂z
, V3( f1) = f1(z)

∂

∂v
,

V4( f2) = t f2(z)
∂

∂v
,

V5( f3) = f3(z)
∂

∂x
− y f ′

3(z)
∂

∂v
,

V6( f4) = f4(z)
∂

∂y
+ 3

2
t2 f ′′

4 (z)
∂

∂v
− x f ′

4(z)
∂

∂v
,

V7( f5) = −3

2
t f ′

5(z)
∂

∂x
+ f5(z)

∂

∂t

− 3

2
t (t − y) f ′′

5 (z)
∂

∂v
+ x

2
f ′
5(z)

∂

∂v
. (11)

3. A one-dimensional optimal system of
subalgebras

We follow the same procedure to construct the one-
dimensional optimal system of symmetry subalgebras
as described in detail in [4,5,33,42]. We construct a
one-dimensional optimal system of symmetry subalge-
bras in this section. By means of commutation relations
between seven infinitesimal generators given in table 1,
these infinitesimals given in (11) can be written as a
linear combination of Vi as follows:

V = α1V1 + α2V2 + α3V3 + α4V4

+ α5V5 + α6V6 + α7V7. (12)

Moreover, we derive the adjoint relations as provided
in table 2. Using the Olver technique [33], the adjoint
relations of a (3 + 1)-dimensional gBKP-B equation
in table 2 are determined via computerised symbolic
computation for the commutator relations of those vec-
tor fields.
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Table 1. Commutator table.

* V1 V2 V3 V4 V5 V6 V7

V1 0 − 5
3V2

1
3V3(5z f ′

1 + f1)
5
3V4(z f ′

2)
1
3V5(5z f ′

3 − f3) V6(
5
3 z f

′
4 − f4) V7(

5
3 z f

′
5 − f5)

V2
5
3V2 0 V3( f ′

1) V4( f ′
2) V5( f ′

3) V6( f ′
4) V7( f ′

5)

V3 − 1
3V3(5z f ′

1+ f1)
−V3( f ′

1) 0 0 0 0 0

V4 − 5
3V4(z f ′

2) −V4( f ′
2) 0 0 0 0 V3(− f5 f2)

V5 − 1
3V5(5z f ′

3− f3)
−V5( f ′

3) 0 0 0 V3(− f3 f ′
4)

1
2V3( f3 f ′

5)

V6 −V6(
5
3 z f

′
4− f4)

−V6( f ′
4) 0 0 −V3(− f3 f ′

4) 0 3
2V4( f4 f ′′

5− 2 f5 f ′′
4 − f ′

4 f
′
5)

V7 −V7(
5
3 z f

′
5− f5)

−V7( f ′
5) 0 −V3(− f5 f2) − 1

2V3( f3 f ′
5) − 3

2V4( f4 f ′′
5− 2 f5 f ′′

4 − f ′
4 f

′
5)

0

Table 2. Adjoint table.

Ad V1 V2 V3 V4 V5 V6 V7

V1 V1 e
5ε
3 V2 e− ε

3 V3 e− 5ε
3 V4 e− ε

3 V5 e−εV6 e−εV7

V2 V1 − 5ε
3 V2 V2 e−εV3 e−εV4 e−εV5 e−εV6 e−εV7

V3 V1 + ε
3V3 V2 + εV3 V3 V4 V5 V6 V7

V4 V1 + 5ε
3 V4 V2 + εV4 V3 V4 V5 V6 V7 − εV3

V5 V1 + ε
3V5 V2 + εV5 V3 V4 V5 V6 − εV3 V7 − ε

2V3

V6 V1 + εV6 V2 + εV6 V3 V4 V5 + εV3 V6 V7 − 3ε
2 V4

V7 V1 + εV7 V2 + εV7 V3 V4 − εV3 V5 + ε
2V3 V6 + 3ε

2 V4 V7

3.1 Formation of invariants

To attain one-dimensional optimal system of Lie algebra
R7, thus there is a need to construct the invariant for
the suitable selection of representative factors/elements.
Thus, the desired matrix representations of ad(Vi ) can
be furnished as

Ad(exp(εW))(V)

= e−εWVeεW = V − ε[W,V]
+ 1

2!ε
2[W, [W,V]] − · · ·

= (α1V1 + · · · + αnVn)

− ε[β1V1 + · · · + βnVn, α1V1 + . . .

+ αnVn] + O(ε2)

= (α1V1 + · · · + αnVn)

− ε(�1V1 + · · · + �nVn), (13)

where � = �(α1, . . . , αn, β1, . . . , βn) are obtained
with the help of symbolic calculations via the com-
mutator table. The commutative relations of the seven-
dimensional Lie algebra are expressed in table 1. Putting
V = ∑7

i=1 αiVi and W = ∑7
j=1 β jV j in (11)

�1 = 0, �2 = −5

3
α2β1 + 5

3
α1β2,

�3 = 1

3
α3β1 − 1

3
α1β3 + α3β2 − α2β3

+ α7β4 − α4β7 + α6β5 − α5β6

+ 1

2
α7β5 − 1

2
α5β7,

�4 = 5

3
α4β1 − α4β2 − 5

3
α1β4 + 3

2
α7β6

+ α2β4 − 3

2
α6β7,

�5 = 1

3
α5β1 + α5β2 − 1

3
α1β5 − α2β5,

�6 = α6β1 − α2β6 − α1β6 + α6β2,

�7 = α7β1 + α7β2 − α2β7 − α1β7. (14)

For any β j , 1 ≤ j ≤ 7, it imposes

�1
∂φ

∂α1
+ �2

∂φ

∂α2
+ �3

∂φ

∂α3
+ �4

∂φ

∂α4

+ �5
∂φ

∂α5
+ �6

∂φ

∂α6
+ �7

∂φ

∂α7
= 0. (15)

Equating the various coefficients of different powers of
β j in eq. (15), we obtain seven differential equations
with φ(α1, α2, . . . , α7) as
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β1 : −5α2

2

∂φ

∂α2

+ α3

3

∂φ

∂α3
+ 5α4

3

∂φ

∂α4
+ α5

3

∂φ

∂α5

+ α6
∂φ

∂α6
+ α7

∂φ

∂α7
= 0,

β2 : 5α1

3

∂φ

∂α2
+ α3

∂φ

∂α3
+ α4

∂φ

∂α4

+ α5
∂φ

∂α5
+ α6

∂φ

∂α6
+ α7

∂φ

∂α7
= 0,

β3 : −
(α1

3
+ α2

) ∂φ

∂α3
= 0,

β4 : α7
∂φ

∂α3
−

(
5α1

3
+ α2

)
∂φ

∂α4
= 0,

β5 :
(α7

2
+ α6

) ∂φ

∂α3
−

(α1

3
+ α2

) ∂φ

∂α5
= 0,

β6 : −α5
∂φ

∂α3
+ 3α7

2

∂φ

∂α7

− (α1 + α2)
∂φ

∂α6
= 0,

β7 : −(
α5

2
+ α4)

∂φ

∂α3

+ 3α6

2

∂φ

∂α4
− α1

∂φ

∂α7
= 0. (16)

Solving system (16), one obtains φ(α1, α2, α3, α4, α5,

α6, α7) = F(α1) which is also called the general invari-
ant function of Lie algebra R

7, where F is an arbitrary
function of α1. As a result, the governing equation (4)
has one basic invariant only.

3.2 Calculation of the adjoint transformation matrix

For Fs
i : g → g defined by V → Ad(exp(εiVi ) · V)

is a linear map, for i = 1, 2, . . . , 7. The matrix Aε
i of

Fε
i , i = 1, 2, . . . , 7 with respect to basis {V1, ...,V7}

are given and defined in [33,42] as follows:

Aε
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0

0 e
5
3 ε1 0 0 0 0 0

0 0 e− ε1
3 0 0 0 0

0 0 0 e− 5
3 ε1 0 0 0

0 0 0 0 e− ε1
3 0 0

0 0 0 0 0 e−ε1 0
0 0 0 0 0 0 e−ε1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Aε
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −5

3
ε2 0 0 0 0 0

0 1 0 0 0 0 0
0 0 e−ε2 0 0 0 0
0 0 0 e−ε2 0 0 0
0 0 0 0 e−ε2 0 0
0 0 0 0 0 e−ε2 0
0 0 0 0 0 0 e−ε2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Aε
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0
ε3

3
0 0 0 0

0 1 ε3 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Aε
4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
5

3
ε4 0 0 0

0 1 0 ε4 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 ε4 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Aε
5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
ε5

3
0 0

0 1 0 0 ε5 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 −ε5 0 0 1 0

0 0 −ε5

2
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Aε
6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 ε6 0
0 1 0 0 0 ε6 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 ε6 0 1 0 0
0 0 0 0 0 1 0

0 0 0
−3ε6

2
0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Aε
7 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 ε7
0 1 0 0 0 0 ε7
0 0 1 0 0 0 0
0 0 ε7 1 0 0 0

0 0
ε7

2
0 1 0 0

0 0 0
3ε7

2
0 1 0

0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Hence, we obtain the global adjoint matrix using these
seven matrices as
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A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −5

3
ε2 A13 A14

ε5

3
− 5

3
ε2ε5 ε6 − 5

3
ε2ε6 ε7 − 5

3
ε2ε7

0 e
5ε1

3 A23 A24 e
5ε1

3 ε5 e
5ε1

3 ε6 e
5ε1

3 ε7

0 0 e− ε1
3 −ε2 0 0 0 0

0 0 e− 5ε1
3 −ε2ε7 e− 5ε1

3 −ε2 0 0 0

0 0 A53 0 e− ε1
3 −ε2 0 0

0 0 −e−ε1−ε2ε5 A64 0 e−ε1−ε2 0
0 0 A73 −3

2 e−ε1−ε2ε6 0 0 e−ε1−ε2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (17)

where

A13 = −1

3
5ε2ε3 + ε3

3
+

(
ε5

3
− 5ε2ε5

3

)

ε6

+
(

5ε4

3
− 5ε2ε4

3

)

ε7 + 1

2

(
ε5

3
− 5ε2ε5

3

)

ε7,

A23 = e
5ε1

3 ε3 + e
5ε1

3 ε5ε6 + e
5ε1

3 ε4ε7

+ 1

2
e

5ε1
3 ε5ε7,

A53 = e− ε1
3 −ε2ε6 + 1

2
e− ε1

3 −ε2ε7,

A73 = e−ε1−ε2ε4 − 1

2
e−ε1−ε2ε5

− 3

2
e−ε1−ε2ε6ε7,

A14 = −1

3
5ε2ε4 + 5ε4

3
+ 3

2

(

ε6 − 5ε2ε6

3

)

ε7,

A24 = e
5ε1

3 ε4 + 3

2
e

5ε1
3 ε6ε7,

A64 = 3

2
e−ε1−ε2ε7.

3.3 One-dimensional optimal system for the gBKP-B
equation

The general transformation equation to the generalised
gBKP-B equation (4) is

(γ1, γ2, γ3, γ4, γ5, γ6, γ7)

= (α1, α2, α3, α4, α5, α6, α7) · A, (18)

where A is the global matrix which is already derived
above.

γ1 = α1, γ2 = α2 − ε2, γ3 = α3 + 2ε3

5
,

γ4 = α4 − α3ε2 + α2ε3 − 3

5
ε4,

γ5 = α5 + 5

2
α4ε3 + ε3ε4 +

(

−5

2
ε2ε3 + 5

2
ε4

)

α3 − ε5

5
,

γ6 = α6 + 1

8
α5ε3 + 6

5
ε6,

γ7 = α7 + α6ε2 − 1

8
α3ε5 − 1

20
α3ε5 − ε2ε6 + ε7

5
,

(19)

which must have solutions for εi ’s for i = 1, 2, . . . , 7
(assuming ε1 = 0).

Case 1: For α1 = 1, the representative element Ṽ = V1.
Substituting γ1 = 1 into eq. (19) we get

ε2 = α2, ε3 = −1

2
(5α3), ε4 = −5

3
(α2α3 − α4),

ε5 = 5

4

(
25α2α

2
3 − 25α3α4 + 4α5

)
,

ε6 = 5

96
(5α3α5 − 16α6), ε7 = 5(α2α6 − α7).

Case 2: Let us consider the representative element Ṽ =
V1 + V3. We substitute α1 = α3 = 1 and γ1 = γ3 = 1
into eq. (19), to get

ε2 = α2, ε3 = 0, ε4 = −5

3
(α2 − α4),

ε5 = −5

6
(25α2 − 25α4 − 6α5) , ε6 = −5

6
α6,

ε7 = 5

48
(48α2α6 − 125α2 + 125α4 + 30α5 − 48α7) .

Case 3: Consider the representative element Ṽ = V1 +
V7. Substituting α1 = α7 = 1 and γ1 = γ7 = 1 into eq.
(19), we get

ε2 = α2, ε3 = −5α3

2
, ε4 = −5

3
(α2α3 − α4),

ε5 = 5

4

(
25α2α

2
3 − 25α3α4 + 4α5

)
,

ε6 = − 5

96
(5α3α5 − 16α6) , ε7 = 5α2α6.

Case 4: We take representative element Ṽ = V1 +V2 +
V4. Substituting α1 = α2 = α4 = 1 and γ1 = γ2 =
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γ4 = 1 into eq. (19), we get

ε2 = 0, ε3 = −5α3

2
, ε4 = −25

3
α3,

ε5 = −5

4
(25α3 − 4α5) ,

ε6 = 5

96
(5α3α5 − 16α6) ,

ε7 = − 5

96
(25α3α5 − 80α6 + 96α7) .

Case 5: For α2 = 1, the representative element Ṽ = V2.
By substituting γ2 = 1 into eq. (19), we get

ε3 = 0, ε6 = −α7.

Case 6: Select a representative element Ṽ = V2 + V3.
Substituting γ2 = γ3 = 1, γi = 0, i = 1, 4, 5, 6, 7 and
α2 = α3 = 1 into eq. (19), we obtain the solution

ε2 = ε3 = −8
α6

α5
, ε4 = −2

(

α5 − 32
α2

6

α2
5

)

,

ε5 = 0, ε6 = −8α2
6 − α5α7

α5
.

Case 7: For α2 = α4 = 1, the representative element
Ṽ = V2 + V4. By substituting γ2 = γ4 = 1 into eq.
(19) we get

ε3 = 0, ε6 = −α7.

Case 8: Select a representative element Ṽ = V2 +V3 +
V5. Substituting γ1 = 0, γ2 = γ3 = γ5 = 1, γi =
0, i = 4, 6, 7 and α2 = α3 = α5 = 1 into eq. (19), we
obtain the solution

ε2 = α4 − 8α6, ε3 = −8α6, ε4 = 64α2
6,

ε5 = 0, ε6 = (α4 − 8α6)α6 − α7.

Case 9: Select a representative element Ṽ = V2 +V5 +
V6. Substituting γ2 = γ5 = γ6 = 1, γi = 0, i =
1, 3, 4, 7 and α2 = α5 = α6 = 1 into eq. (19), we
obtain the solution

ε3 = 0, ε6 = −α7 + ε2.

Proceeding as above, we can find the value of εi ’s for
certain members of optimal system.

Eventually, an optimal system of one-dimensional
symmetry subalgebras for a gBKP-B equation is fur-
nished in the following way:

(i) T1 = V1

(ii) T2 = V1 + V3

(iii) T3 = V1 + V7

(iv) T4 = V1 + V2 + V4

(v) T5 = V2

(vi) T6 = V2 + V3

(vii) T7 = V2 + V4

(viii) T8 = V2 + V3 + V5

(ix) T9 = V2 + V5 + V6

(x) T10 = V2 + V4 + V5 (20)

4. Exact invariant solutions

This section constructs a variety of closed-form invari-
ant solutions for the corresponding symmetry subalge-
bras by solving the Lagrange’s characteristic equation
[33]

dx

ξ
= dy

φ
= dz

ψ
= dt

τ
= dv

η
. (21)

4.1 Subalgebra T1 := V1 = x
3

∂
∂x + y ∂

∂y + 5z
3

∂
∂z + t ∂

∂t

− v
3

∂
∂v

The Langrange’s system (21) becomes

dx

x/3
= dy

y
= dz

5z/3
= dt

t
= dv

−v/3
(22)

which gives the similarity solution

v(x, y, z, t) = V (X, Y, T )

z
1
5

(23)

with

X = x

z
1
5

, Y = y

z
3
5

and T = t

z
3
5

.

Putting (23) into (4), we get

VXXXY + 3VXVXY + 3VY VXX + 3

5
XVXX + 9

5
(T VXT

+ YVXY ) + 6

5
VX − (VTT + VYT ) = 0. (24)

To get the group-invariant solution, apply the Lie group
method again which results in new infinitesimal gener-
ators:

ξX = − 9

10
a1T + a3, ξY = a2, ξT = a1

and

ηV = 18

50
(a1 − a2)T

2 + 1

50
(50a4 − 18a1Y )T

+ 3

10
a1X − 3

5
a2X − 1

5
a3Y + a5, (25)

where ai ’s (1 ≤ i ≤ 5) are arbitrary constants.
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Case (i): When a1 �= 0 and other constants are zero
From eq. (25), the associated characteristic equation
becomes

dX

−(9/10)T
= dY

0
= dT

1

= dV

(18/50)T 2 − (18/50)YT + (3/10)X
. (26)

Solving eq. (26), we obtain

V (X, Y, T )=G(R, S)+ 3

100
T

(
7T 2 − 6TY + 10X

)
,

(27)

with

R = X + 9T 2

20
, S = Y.

Using eq. (27) into (24), we get the following (1 + 1)
nonlinear partial differential equation:

GRRRS + 3GRGRS + 3GSGRR + 3

5
RGRR + 9

5
SGRS

+ 3

10
GR + 9

25
S = 0. (28)

Infinitesimals of (28) are

ξR = −1

2
b1R + b2, ξS = b1S

and

ηG = −1

5
Sb2 + 1

2
b1G + b3. (29)

On simplifying (29), we obtain

G(R, S) = S
1
2 H(w) − 2

5
(A2S + 5A3) (30)

with w = S
1
2 (R − 2A2), and A2 = b2/b1 and A3 =

b3/b1 are constants. Using eq. (30) into (28), we get

25wH (4) + 100H (3) + 15H ′(7 + 10H ′ + 10wH ′′)
+ 45wH ′′ + 15(2w + 5H)H ′′ + 18 = 0 (31)

which gives the solutions

H(w) = δ1 − 2

5
w and H(w) = δ2

w
− 3

10
w, (32)

where δ1 and δ2 are arbitrary constants.
Accordingly, we derive exact-invariant solution of

gBKP-B (4)

v(x, y, z, t) = δ1

√
y

z
+ 3t x

10z
+ 21t3 − 36t2y

100z2 + 2A2y

5z
4
5

− 2

5

(
5A3

5
√
z

+ xy

z

)

, (33)

v(x, y, z, t) = 21t2(2t − 3y)

200z2 + 3x(t − y)

10z
+ yA2

5z
4
5

+ 20δ2z

(xz − 40A2z
6
5 + 9t2)

− 2A3

5z
1
5

. (34)

Case (ii): When a1 = a2 �= 0 and other constants are
zero
From eq. (25), the associated characteristic equation
becomes

dX

−(9/10)T
= dY

1
= dT

1

= dV

−(18/50)YT − (3/10)X
. (35)

Solving eq. (35), we obtain

V (X, Y, T ) = G(R, S) − 3

100
T

(
T 2 + 6TY + 10X

)

(36)

with

R = X + 9T 2

20
, S = Y − T .

Using eq. (36) into (24), we get the following (1 + 1)
nonlinear partial differential equation:

GRRRS + 3GRGRS + 3GSGRR + 3

5
RGRR + 9

5
SGRS

+ 3

10
GR + 9

25
S = 0. (37)

Infinitesimals of (37) are

ξR = −1

2
b1R + b2, ξS = b1S

and

ηG = −1

5
Sb2 + 1

2
b1G + b3. (38)

On simplifying (38), we get

G(R, S) = S
1
2 H(w) − 2

5
(A2S + 5A3) , (39)

with w = S
1
2 (R − 2A2), and A2 = b2/b1 and A3 =

b3/b1 are constants.
Using eq. (39) into (37), we get

25wH (4) + 100H (3) + 15H ′(7 + 10H ′ + 10wH ′′)
+ 45wH ′′ + 15(2w + 5H)H ′′ + 18 = 0 (40)

which gives the solutions

H(w) = δ3 − 3

10
w and H(w) = δ4

w
− 3

10
w, (41)

where δ3 and δ4 are arbitrary constants.
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Accordingly, we derive exact invariant solutions of
gBKP-B (4) as

v(x, y, z, t) = 21t3

200z2 − 63yt2

200z2 − 3xy

10z
+ δ3

√
y − t

z

+ (y − t)

5z
4
5

A2 − 2A3

z
1
5

, (42)

v(x, y, z, t) = 3t

100z2

(
t2 + 6t y + 10xz

)

+ 20δ4z

9t2 + 20xz − 40A2z
4
5

− 2(y − t)

5z
4
5

A2 − 3(y − t)

200z2

×
(

9t2 + 20xz − 40A2z
6
5

)
− 2A3

z
1
5

.

(43)

4.2 Subalgebra T2:= V1 + V3

Lagrange’s equation for subalgebra T2 is

dx

x/3
= dy

y
= dz

5z/3
= dt

t
= dv

f1(z) − (v/3)
. (44)

On that account, eq. (44) furnishes the similarity form

v(x, y, z, t) = V (X, Y, T )

z
1
5

+ 3

5z
1
5

∫
f1(z)

z
4
5

dz (45)

with

X = x

z
1
5

, Y = y

z
3
5

and T = t

z
3
5

.

Taking the similarity solution v from (45) into (4), we
acquire the newly diminished equation

5(VTT + VYT ) − 6VX − 15(VXVY )X

− 9(T VXT + YVXY ) − 3XVXX − 5VXXXY = 0.

(46)

Again, employing LST on eq. (46), new infinitesimals
are given as

ξX = −9a1

10
T + a3, ξY = a2, ξT = a1,

ηV = 1

50
(18a1 − 18a2)T

2

+ 1

50
(−18Ya1 + 50a4)T + 3

10
Xa1

− 3

5
Xa2 − 1

5
a3Y + a5, (47)

where ai ’s (1 ≤ i ≤ 5) are arbitrary constants.

For a1 = a2 �= 0 and all other constants are zero.
From eq. (47), we get the characteristic system as

dX

−(9/10)T
= dY

1
= dT

1
= dV

−(18/50)YT − (3/10)X
(48)

which gives

V (X, Y, T ) = F(R, S) − 3

100
T (T 2 + 10X + 6TY )

(49)

with

R = X + 9T 2

20
, S = Y − T .

Using (49) and (46), we have the reduced equation

50FRRRS + 150(FSFR)R + 30RFRR

+ 15FR + 90SFRS + 18S = 0. (50)

Again, applying the Lie symmetry method on eq. (50),
the new infinitesimals are

ξR = −1

2
b1R + b2, ξS = b1S,

ηF = −1

5
Sb2 + 1

2
b1F + b3, (51)

where bi ’s (1 ≤ i ≤ 3) are arbitrary constants. The
characteristic system for (51) is

dR

−(1/2)b1R + b2
= dS

b1S

= dF

−(1/5)Sb2 + (1/2)b1F + b3
(52)

that gives the similarity form

F(R, S) = √
SH(w) − 2

5
(SB2 + 5B3) (53)

withw = √
S(R − 2B2), and B2 = b2/b1 and B3 =

b3/b1 are constants. Using (53) and (50), we get an ODE

25wH (4) + 100H (3) + 15H ′(7 + 10H ′ + 10wH ′′)
+ 45wH ′′ + 15(2w + 5H)H ′′ + 18 = 0. (54)

On solving (54), we have

H(w) = δ5 − 3

10
w

and

H(w) = δ6

w
− 3

10
w, (55)

where δ5 and δ6 are any two arbitrary constants.
Accordingly, we obtain the following solutions of the

gBKP-B (4):
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z = 0.961 z = 3 z = 4.81

Figure 1. Three distinct complex structures of elastic interactions between curve-shaped lumps and oscillating multisolitons
for solution (43) with parameters A2 = 1.7, A3 = 31, δ4 = 15.7 and y = 0.7.

v(x, y, z, t) = 21t3

200z2 − 63t2y

200z2 − 3xy

10z

+ δ5

√−t + y

z
+ (−t + y)B2

5z
4
5

+ 3

5z
1
5

∫
f1(z)

z
4
5

dz − 2B3

z
1
5

, (56)

v(x, y, z, t) = 3

5z
1
5

∫
f1(z)

z
4
5

dz

− 3t

100z2 (t2 + 6t y + 10xz)

+ 20δ6z

(9t2 + 20xz − 40z
6
5 B2)

− 3(y − t)

200z2 (9t2 + 20xz − 40z
6
5 B2)

− 2B2(y − t)

5z
4
5

− 2B3

z
1
5

. (57)

4.3 Subalgebra T3 := V1 + V7 when f5(z) = Az

The related Lagrange’s system is interpreted as

dx
x
3 − 3A

2 t
= dy

y
= dz

5z
3

= dt

t + Az
= dv

A
2 x − v

3

. (58)

Equation (58) produces

v(x, y, z, t) = V (X, Y, T )

z
1
5

+ 3

64
A(18At + 16x − 9A2z), (59)

with

X = 16x + 9A(4t − 3Az)

16z
1
5

,

Y = y

z
3
5

and T = 2t − 3Az

2z
3
5

.

We obtain a new reduction equation on solving (59)
and (4)

5(VTT + VYT ) − 6VX − 15(VXVY )X − 9(T VXT

+ YVXY ) − 3XVXX − 5VXXXY = 0. (60)

By the application of Lie symmetry method on eq. (60),
the desired infinitesimals are

ξX = −9a1

10
T + a3, ξY = a2, ξT = a1,

ηV = 1

50
(18a1 − 18a2)T

2 + 1

50
(−18Ya1 + 50a4)T

+ 3

10
Xa1 − 3

5
Xa2 − 1

5
a3Y + a5, (61)

where ai ’s (1 ≤ i ≤ 5) are arbitrary constants.
Suppose a1 = a2 �= 0 and all other constants are zero.

By eq. (61), the characteristic equation becomes

dX

−(9/10)T
= dY

1
= dT

1

= dV

−(18/50)YT − (3/10)X
, (62)

which provides

V (X, Y, T ) = F(R, S) − 3

100
T (T 2 + 10X + 6TY ),

(63)

with

R = X + 9T 2

20
, S = Y − T .

Using (63) and (60), we get the following equation:

50FRRRS + 150(FSFR)R + 30RFRR + 15FR

+ 90SFRS + 18S = 0. (64)
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t = 1 t = 1.6 t = 2.3

Figure 2. Three distinct complex structures of lump wave solitons for solution (57) with parameters a0 = 4,
B2 = 1.7, B3 = 31, δ6 = 15.7, y = 11 and f1(z) = a0z.

Applying Lie symmetry method on eq. (64) again, we
get the set of infinitesimals as

ξR = −1

2
b1R + b2, ξS = b1S,

ηF = −1

5
Sb2 + 1

2
b1F + b3, (65)

where bi ’s (1 ≤ i ≤ 3) are arbitrary constants. Charac-
teristic equation for (65) is

dR

−(1/2)b1R + b2
= dS

b1S

= dF

−(1/5)Sb2 + 1
2b1F + b3

(66)

which derives the similarity form

F(R, S) = √
SH(w) − 2

5
(SB2 + 5B3) (67)

with w = √
S(R − 2B2), and B2 = b2/b1 and B3 =

b3/b1 are constants. Using (67) and (64), we get an ODE

25wH (4) + 100H (3) + 15H ′(7 + 10H ′ + 10wH ′′)
+ 45wH ′′ + 15(2w + 5H)H ′′ + 18 = 0. (68)

We solve (68), to get

H(w) = δ7 − 3

10
w

and

H(w) = δ8

w
− 3

10
w, (69)

where δ7 and δ8 are any two arbitrary constants.
Group-invariant solutions of the gBKP-B equation (4)

with the help of back substitution are:

v(x, y, z, t) = 9t3

400z2 − 63t2y

200z2 − 189t2A

400z

+ δ7

√
2(y − t) + 3Az

2z
+ 27At

400z
(4y + 23Az)

+ (2(y − t) + 3Az) B2

10z
4
5

− 3x

20
(2y − 5Az)

− 27A2

800
(6y + 23Az) − 2B3

z
1
5

, (70)

v(x, y, z, t) = −27

32
A2(t − Az)

− 1

320z
(16x − 27A2z + 36At)(6t + 5z − 144Az)

− (2y − t + 3Az)B2

5z
4
5

+ 20δ8z

(18t2 − 27A2z2 + 36Atz + 40xz − 80B2z
6
5 )

− 3

800z2 (2t − 3Az)2(2t + 6y − 3Az)

− 2B3

z
1
5

− 3

20

(2y − t + 3Az)

z
4
5

× (18t2 − 27A2z2 + 36Atz + 40xz − 80B2z
6
5 ).

(71)

4.4 Subalgebra T4 := V1 + V2 + V4

The associated Lagrange’s system of T4 is

dx

x/3
= dy

y
= dz

(5z/3) + 1

= dt

t
= dv

t f2(z) − (v/3)
. (72)

The similarity form of eq. (72) is

v(x, y, z, t) = V (X, Y, T )

(3 + 5z)
1
5
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z = 1.3 z = 3.81 z = 18

Figure 3. Three distinct complex structures of elastic interactions between curve-shaped lump wave solitons and oscillating
multisolitons for solution (71) with parameters A = 0.16, B2 = 1.37, B3 = 1.2, δ8 = 5 and y = 0.11.

+ 3t

(3 + 5z)
1
5

∫
f2(z)

(3 + 5z)
4
5

dz

with

X = x

(3 + 5z)
1
5

, Y = y

(3 + 5z)
3
5

and

T = t

(3 + 5z)
3
5

. (73)

On substitution of v from (73) in (4), we get

VXXXY + 6VX + 3(VXVY )X + 9(T VXT + YVXY )

+ 3XVXX − (VTT + VYT ) = 0. (74)

For eq. (74), the set of infinitesimals can be provided as

ξX = −9a1

2
T + a3, ξY = a2, ξT = a1,

ηV = 3

2
(a1 − 2a2)X − (9Ta1 + a3)Y

+ 9T 2a1 − 9T 2a2 + Ta4 + a5, (75)

where ai ’s (1 ≤ i ≤ 5) are arbitrary constants. Let
a1 �= 0 and the remaining constants are zero.

For eq. (75), the characteristic equation becomes

dX

−9
2T

= dY

0
= dT

1
= dV

(3/2)X − 9TY + 9T 2 . (76)

Similarity form for eq. (76) is

V (X, Y, T ) = F(R, S) + 3RT

2
− 9ST 2

2
+ 15T 3

8
(77)

with

R = X + 9T 2

4
, S = Y.

With the help of (77) and (74), we find a PDE

FRRRS + 3(FSFR)R + 3RFRR + 3

2
FR

+ 9SFRS + 9S = 0. (78)

Now, apply LSM on eq. (78), then we derive the appro-
priate infinitesimals

ξR = −1

2
b1R + b2, ξS = b1S,

ηF = −Sb2 + 1

2
b1F + b3, (79)

where bi ’s (1 ≤ i ≤ 3) are arbitrary constants.
For eq. (79), the characteristic equation becomes

dR

−(1/2)b1R + b2
= dS

b1S
= dF

−Sb2 + (1/2)b1F + b3
.

(80)

Similarity solution for eq. (80) is presented as follows:

F(R, S) = √
SH(w) − 2

b1
(Sb2 + b3) (81)

with

w = √
S

(

R − 2
b2

b1

)

.

On combining (81) and (78), we can promptly obtain

wH (4) + 4H (3) + 6wH ′H ′′ + 3HH ′′

+ 15wH ′′ + 6(H ′)2 + 21H ′ + 18 = 0. (82)

On solving (82), we have

H(w) = δ9 − 3

2
w

and

H(w) = δ10

w
− 3

2
w, (83)
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where δ9 and δ10 are arbitrary constants.
On solving by substitution, we get the general solu-

tions of the gBKP-B (4):

v(x, y, z, t) = 3t

(3 + 5z)
1
5

∫
f2(z)

(3 + 5z)
4
5

dz

+ 6t (7t2 − 6t y + 2t (3 + 5z)x)

8(3 + 5z)2 +
√

y

3 + 5z
δ9

− 3y

8(3 + 5z)2

(

9t2 + 4(3 + 5z)x + 3
b2

b1
(3 + 5z)

6
5

)

− b2

b1

2y

(3 + 5z)
4
5

− b3

b1

2

(3 + 5z)
1
5

, (84)

v(x, y, z, t) = 3t

(3 + 5z)
1
5

∫
f2(z)

(3 + 5z)
4
5

dz

+ (15t3 − 36t2y)

8(3 + 5z)2 + 3t (9t2 + 4(3 + 5z)x)

8(3 + 5z)
4
5

− b3

b1

2

(3 + 5z)
1
5

− 3y

8(3 + 5z)2

×
(

9t2 + 4(3 + 5z)x − 8
b2

b1
(3 + 5z)

6
5

)

− b2

b1

2y

(3 + 5z)
4
5

+ 4δ10(3 + 5z)
(

9t2 + 4(3 + 5z)x − 8b2
b1

(3 + 5z)
6
5

) . (85)

4.5 Subalgebra T5 := V2 = ∂
∂z

The associated Lagrange’s system reads as

dx

0
= dy

0
= dz

1
= dt

0
= dv

0
(86)

which gives

v(x, y, z, t) = V (X, Y, T ) (87)

with invariants

X = x, Y = y, T = t.

Using (87) into (4), we thus obtain the (2 + 1)-
dimensional reduced nonlinear PDE:

VXXXY + 3VXVXY + 3VY VXX − VTT − VYT = 0
(88)

which has the general solution

V (X, Y, T ) = c3

+ 2c2 tanh

(

c1T + c2X − c2
1Y

c1 − 4c3
2

+ c4

)

, (89)

where c1, c2, c3 and c4 are constants of integration.
Therefore, the resulting solution of the gBKP-B equa-

tion (4) is

v(x, y, z, t) = c3

+ 2c2 tanh

(

c4 + c1t + c2x − c2
1 y

c1 − 4c3
2

)

. (90)

Further, Let us take

V (X, Y, T ) = H(w), (91)

where w = aX + bY + cT .

Here a, b and c are arbitrary constants. Taking (91)
into (88), we have

a3bH (4) + 6a2bH ′H ′′ − c(b + c)H ′′ = 0. (92)

The primitives are

H(w) = δ11 + δ12w, H(w) = δ13 + c(b + c)

6a2b
w

and

H(w) = δ14 + 2a

w
+ c(b + c)

6a2b
w, (93)

where δ11, δ12, δ13 and δ14 are arbitrary constants.
Hence, we acquire the following exact invariant solu-

tions of gBKP-B (4):

v(x, y, z, t) = δ11 + δ12 (ax + by + ct) , (94)

v(x, y, z, t) = δ13 + c(b + c)

6a2b
(ax + by + ct) , (95)

v(x, y, z, t) = δ14 + 2a

(ax + by + ct)

+ c(b + c)

6a2b
(ax + by + ct) . (96)

4.6 Subalgebra T6 := V2 + V3 = ∂
∂z + f1(z)

∂
∂v

Lagrange’s system reads as

dx

0
= dy

0
= dz

1
= dt

0
= dv

f1(z)
(97)

which gives

v(x, y, z, t) = V (X, Y, T ) +
∫

f1(z) dz (98)

with invariants X = x, Y = y, T = t.
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Substituting (98) into (4), we thus obtain the (2 + 1)-
dimensional reduced nonlinear PDE:

VXXXY + 3VXVXY + 3VY VXX − VTT − VYT = 0
(99)

which has the general solution

V (X, Y, T ) = c3

+ 2c2 tanh

(

c1T + c2X − c2
1Y

c1 − 4c3
2

+ c4

)

, (100)

where c1, c2, c3 and c4 are constants of integration.
Therefore, the resulting solution of the gBKP-B equa-

tion (4) is

v(x, y, z, t) = c3 + 2c2 tanh

×
(

c4 + c1t + c2x − c2
1 y

c1 − 4c3
2

)

+
∫

f1(z) dz. (101)

Further, we consider that

V (X, Y, T ) = H(w), (102)

where w = aX + bY + cT .

Here, a, b and c are arbitrary constant parameters.
We substitute (102) into (99), to obtain

a3bH (4) + 6a2bH ′H ′′ − c(b + c)H ′′ = 0. (103)

The primitives are

H(w) = δ15 + δ16w

and

H(w) = δ17 + 2a

w
+ c(b + c)

6a2b
w, (104)

where δ15, δ16 and δ17 are arbitrary constants.
Hence, we acquire the following exact-invariant solu-

tions of gBKP-B equation (4):

v(x, y, z, t) = δ15 + δ16 (ax + by + ct) +
∫

f1(z) dz,

(105)

v(x, y, z, t) = δ17 + 2a

(ax + by + ct)

+ c(b + c)

6a2b
(ax + by + ct) +

∫

f1(z) dz. (106)

4.7 Subalgebra T7 := V2 + V4

Lagrange’s system for T7 is

dx

0
= dy

0
= dz

1
= dt

0
= dv

t f2(z)
. (107)

Equation (107) provides the following similarity solu-
tion:

v(x, y, z, t) = V (X, Y, T ) + t
∫

f2(z)dz (108)

with invariants X = x, Y = y and T = t.
After substitution of (108) into (4), we find a new

reduction equation as

VTT + VYT − 3VXVXY − 3VY VXX − VXXXY = 0
(109)

that provides the general solution

V (X, Y, T ) = c3

+ 2c2 tanh

(

c2X + c1T − c2
1Y

c1 − 4c3
2

+ c4

)

, (110)

where c1, c2, c3 and c4 are arbitrary constants of inte-
gration.

Therefore, the resultant solution of the gBKP-B equa-
tion (4) is

v(x, y, z, t) = c3

+ 2c2 tanh

(

c2x + c1t − c2
1y

c1 − 4c3
2

+ c4

)

+ t
∫

f2(z)dz. (111)

Moreover, let

V (X, Y, T ) = H(w), (112)

where w = aX +bY + cT, and a, b and c are arbitrary
constant parameters.

Taking (112) into (109), we acquire the following
reduced ODE:

a3bH (4) + 6a2bH ′H ′′ − c(c + b)H ′′ = 0. (113)

The primitives are

H(w) = δ18 + c(c + b)

6a2b
w

and

H(w) = 2a

w
+ δ19 + c(c + b)

6a2b
w, (114)

where δ18 and δ19 are arbitrary constants.
Finally, we obtain the following solutions of the

gBKP-B equation (4):

v(x, y, z, t) = δ18 + c(c + b)

6a2b
(ax + by + ct)

+ t
∫

f2(z)dz, (115)



Pramana – J. Phys.           (2022) 96:31 Page 15 of 20    31 

t = 1 t = 3.831 t =15

Figure 4. Three distinct complex structures of lump waves for solution (106) with parameters a = 191, b = 3,
c = 10.3, δ17 = 10, z = 0.019 and f1(z) = z.

t = 1 t = 19 t = 35

Figure 5. Three distinct complex structures of multiple lumps and kinky solitons for solution (116) with parameters
δ19 = 10, a = 10, b = 12, c = 2, z = 1.3 and f2(z) = z.

v(x, y, z, t) = δ19 + 2a

(ax + by + ct)

+ c(c + b)

6a2b
(ax + by + ct)

+ t
∫

f2(z)dz. (116)

4.8 Subalgebra T8 := V2 + V3 + V5 =
f3(z)

∂
∂x + ∂

∂z + ( f1(z) − y f ′
3(z))

∂
∂v

For simplification, we assume f1(z) = −a0 f ′
3(z).

In this case, the related Lagrange’s equation reads as

dx

f3(z)
= dy

0
= dz

1

= dt

0
= dv

−(y + a0) f ′
3(z)

(117)

which gives

v(x, y, z, t) = V (X, Y, T ) − (y + a0) f3(z) (118)

with invariants X = x − ∫
f3(z) dz, Y = y, T = t.

Substituting (118) into (4), we thus obtain the (2+1)-
dimensional reduced nonlinear PDE:

VXXXY + 3VXVXY + 3VY VXX − VTT − VYT = 0
(119)

which has the general solution

V (X, Y, T ) = c3

+ 2c2 tanh

(

c1T + c2X − c2
1Y

c1 − 4c3
2

+ c4

)

, (120)

where c1, c2, c3 and c4 are integration constants.
Therefore, the resulting solution of gBKP-B equation

(4) is

v(x, y, z, t) = c3 + 2c2 tanh

×
(

c4 + c1t + c2x − c2

∫

f3(z) dz − c2
1y

c1 − 4c3
2

)

− (y + a0) f3(z). (121)

Further, we consider that

V (X, Y, T ) = H(w), (122)
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where w = aX + bY + cT and a, b and c are arbitrary
constant parameters. Putting (122) into (119), we have

a3bH (4) + 6a2bH ′H ′′ − c(c + b)H ′′ = 0. (123)

Primitives are

H(w) = δ20 + δ21w, H(w) = δ22 + c(b + c)

6a2b
w

and

H(w) = δ23 + 2a

w
+ c(b + c)

6a2b
w, (124)

where δ20, δ21, δ22 and δ23 are arbitrary constants.
Hence, we acquire the following exact invariant solu-

tions of gBKP-B equation (4):

v(x, y, z, t) = δ20

+ δ21

(

ax + by + ct − a
∫

f3(z) dz

)

− (y + a0) f3(z), (125)

v(x, y, z, t) = δ22

+ c(b + c)

6a2b

(

ax + by + ct − a
∫

f3(z) dz

)

− (y + a0) f3(z), (126)

v(x, y, z, t) = δ23 + 2a
(
ax + by + ct − a

∫
f3(z) dz

)

+ c(b + c)

6a2b

(

ax + by + ct − a
∫

f3(z) dz

)

− (y + a0) f3(z). (127)

Again, we use the group-theoretic technique to obtain
generators of (119)

ξX = a1

3
X + a4, ξY = a1Y + a3,

ξT = a1T + a2, ηV = −a1

3
V + a5T + a6, (128)

where ai ’s (1 ≤ i ≤ 6) are arbitrary constants.
Then, the associated Lagrange’s system is

dX

(a1/3)X + a4
= dY

a1Y + a3
= dT

a1T + a2

= dV

−(a1/3)V + a5T + a6
. (129)

Let us suppose a2 and a5 are non-zero and others are
zero. On solving eq. (129), we have the following sim-
ilarity form:

V (X, Y, T ) = a5

2a2
T 2 + F(R, S) (130)

with R = X and S = Y.

Substituting (130) into (119), we thus obtain the (1 +
1)-dimensional PDE as

FRRRS + 3FRFRS + 3FSFRR − a5

a2
= 0. (131)

Applying Lie symmetry method on eq. (131) again, the
set of infinitesimals is

ξR = −1

4
b1R + b3, ξS = b1S + b2,

ηF = 1

4
Fb1 + b4, (132)

where bi ’s (1 ≤ i ≤ 4) are arbitrary constants.
Suppose b1 �= 0 and all others are zero. Then, char-

acteristic equation for (132) is

dR

−(1/4)R
= dS

S
= dF

(1/4)F
(133)

which derives the similarity form

F(R, S) = S
1
4 H(w) with w = S

1
4 R. (134)

Using (134) and (131), we get an ODE

wH (4) + 4H (3) + 6H ′(H ′ + wH ′′)

+ 3HH ′′ − 4
a5

a2
= 0 (135)

which gives

H(w) = δ24 −
√

2a5

3a2
w, (136)

where δ24 is an arbitrary constant.
Exact invariant solutions of the gBKP-B equation (4)

with the help of back substitution is

v(x, y, z, t) = a5

a2

t2

2

+ y
1
4

[

δ24 +
√

2a5

3a2
y

1
4

(

−x +
∫

f3(z)dz

)]

− (y + a0) f3(z). (137)

4.9 Subalgebra T9 := V2 + V5 + V6

For simplification, in this case, we assume f3(z) =
f4(z). Lagrange’s system (21) for T9 is

dx

f4(z)
= dy

f4(z)
= dz

1

= dt

0
= dv

(3/2)t2 f ′′
4 (z) − (x + y) f ′

4(z)
. (138)

Equation (138) provides the following similarity solu-
tion:
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t = 0.07 t = 5 t = 37

Figure 6. Three distinct complex structures of elastic interactions between curve-shaped multiple lumps and oscillating
multisolitons for solution (127) with parameters δ23 = 11, a0 = 1, a = 19, b = 5, c = 7, y = 1 and f3(z) = z.

v(x, y, z, t) = V (X, Y, T ) + 3

2
t2 f ′

4(z)

− (x + y) f4(z) (139)

with X = x−∫
f4(z)dz, Y = y−∫

f4(z)dz and T = t .
After substitution of (139) into (4), we find a new

reduction equation as

VTT + VYT − 3VXVXY − 3VY VXX − VXXXY = 0
(140)

that provides the general solution

V (X, Y, T ) = c3

+ 2c2 tanh

(

c2X + c1T − c2
1Y

c1 − 4c3
2

+ c4

)

, (141)

where c1, c2, c3 and c4 are arbitrary constants of inte-
gration. Therefore, the resultant solution of the gBKP-B
equation (4) is

v(x, y, z, t) = c3

+ 2c2 tanh

(

c2x + c1t − c2
1 y

c1 − 4c3
2

+ c4

)

+ 3

2
t2 f ′

4(z) − (x + y) f4(z). (142)

Moreover, we consider that

V (X, Y, T ) = H(w), (143)

where w = aX+bY+cT . Here, a, b and c are arbitrary
constants.

Putting (143) into (140), one obtains

a3bH (4) + 6a2bH ′H ′′ − c(c + b)H ′′ = 0 (144)

which generates

H(w) = δ25 + δ26w,

H(w) = δ27 + c(c + b)

6a2b
w

and

H(w) = 2a

w
+ δ28 + c(c + b)

6a2b
w, (145)

where δ25, δ26, δ27 and δ28 are arbitrary constants.
Finally, we derive exact solutions of the gBKP-B

equation (4) as

v(x, y, z, t) = δ25 − (x + y) f4(z)

+
[

ct + ax + by − (a + b)
∫

f4(z)dz

]

δ26

+ 3

2
t2 f ′

4(z), (146)

v(x, y, z, t) = δ27 − (x + y) f4(z)

+
[

ct + ax + by − (a + b)
∫

f4(z)dz

]
c(b + c)

6a2b

+ 3

2
t2 f ′

4(z), (147)

v(x, y, z, t) = δ28 − (x + y) f4(z)

+ 2a
[
ct + ax + by − (a + b)

∫
f4(z)dz

]

+ 3

2
t2 f ′

4(z)

+
[

ct + ax + by − (a + b)
∫

f4(z)dz

]
c(b + c)

6a2b
.

(148)

4.10 Subalgebra T10 := V2 + V4 + V5

For simplification, we assume f2(z) = a0 f ′
3(z). As we

have demonstrated already, we can find the exact solu-
tions for T10.
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z = 0.75 z = 1 z = 1.5

Figure 7. Three distinct complex structures of elastic interactions between curve-shaped lumps and parabolic solitons for
solution (148) with parameters δ28 = 10, a = 11.5, b = 2, c = 0.72, y = 3 and f4(z) = 1 + z2.

The solutions are as follows:

v(x, y, z, t) = c4

+ 2c2 tanh

(

c3 + c2

(

x −
∫

f3(z) dz

)

− c1

(

t − c1y

c1 − 4c3
2

))

+ (−y + ta0) f3(z), (149)

v(x, y, z, t) = δ29 + c(b + c)

6a2b

×
(

ax + by + ct − a
∫

f3(z) dz

)

− (y − ta0) f3(z), (150)

v(x, y, z, t) = δ30 + 2a
(
ax + by + ct − a

∫
f3(z) dz

)

+ c(b + c)

6a2b

(

ax + by + ct − a
∫

f3(z) dz

)

− (y − ta0) f3(z), (151)

v(x, y, z, t) = a5

a2

t2

2

+ y
1
4

[

δ31 +
√

2a5

3a2
y

1
4

(

−x +
∫

f3(z)dz

)]

− (y − ta0) f3(z), (152)

where c1, c2, c3, c4, δ29, δ30 and δ31 are constants.

5. Physical interpretation of soliton solutions

The nature of mathematical expressions can be made
more predictable through their physical analysis. Graph-
ical representation of the explicit solutions are much
beneficial to explain the physically meaningful behaviour

of the system. Also, it provides vital information to
understand the phenomena physically. Numerical sim-
ulations have been performed to obtain the best view
of graphical representations. Solitons are solitary wave
packets and are known for their elastic scattering prop-
erty that they do not change their shapes and amplitudes
after mutual collision. Moreover, they play a prevalent
role in the propagation of light in fibre, optical bista-
bility and many other phenomena in plasma and fluid
dynamics. In this section, we have analysed solutions
(43), (57), (71), (106), (116), (127) and (148) of the
g-BKPB equation (4) using their graphical structures.
The graphical representations of the generated solutions
describe the characteristics of multiple solitons. Various
types of solitary wave solutions such as multiwave soli-
tons, parabolic waves, quasiperiodic solitons and lump
waves solitons have been exhibited. The choice of arbi-
trary constants and arbitrary functions contributes to the
physically meaningful profiles.

Figure 1 describes curve-shaped elastic multisolitons
observed for solution (43). This graphical representation
is obtained by taking suitable values to the arbitrary con-
stants as A2 = 1.7, A3 = 31, δ4 = 15.7 and y = 0.7
for −20 ≤ x ≤ 20 and −10 ≤ t ≤ 10.

Figure 2 depicts lump-type solitons for expression
(57). The appropriate values of the introduced arbitrary
constants are taken as a0 = 4, B2 = 1.7, B3 = 31,
δ6 = 15.7, y = 11 and arbitrary function as f1(z) =
a0z, for −10 ≤ x ≤ 10, 1 ≤ t ≤ 5. The study of lump
waves has a widespread application in many fields such
as oceanographic engineering, non-linear optics, etc.

Figure 3 represents the elastic behaviour of curved-
shaped multisoliton structure/characteristic of solution
(71). The profile is plotted by considering suitable values
of parameters as y = 0.11, for −10 ≤ x ≤ 10, −10 ≤
t ≤ 10, A = 0.16, B2 = 1.37, B3 = 1.2 and δ8 = 5.

Figure 4 reveals wave profile of the lump-type solitons
in three-dimensional space of solution (106) that was
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observed via numerical simulation for −10 ≤ x ≤ 10,
−10 ≤ y ≤ 10, a = 191, b = 3, c = 10.3, δ17 = 10,
z = 0.019 and f1(z) = z.

Figure 5 is plotted by choosing suitable arbitrary con-
stants as a = 10, b = 12, c = 2, z = 1.3, δ19 = 10
and function as f2(z) = z in the particular solution
(116). These three figures are traced at t = 1, 19 and
35 for −50 ≤ x ≤ 50, −50 ≤ y ≤ 50. These figures
show lump-type soliton behaviour in the spatial profile.
Lump-type solitons are localised in almost all directions
in space.

Figure 6 shows elastic interactions between curved-
shaped multisolitons and lumps are exhibited in this
figure for the solution via eq. (127). The profile shows
interaction between multisolitons and lumps by taking
suitable values of arbitrary functional as f3(z) = z and
remaining parameters as a = 19, b = 5, c = 7, y = 1,
δ23 = 11 and a0 = 1. This profile is traced at t = 0.07,
5 and 37 for −10 ≤ x ≤ 10, −10 ≤ z ≤ 10.

Figure 7 represents the annihilation of parabolic
curved-shaped profile of eq. (148) in 3D graphics.
Interesting intersections of both lump-type solitons and
parabolic solitons are observed for v in this figure at
z = 0.75, z = 1 and z = 1.5 ∀ − 10 ≤ x ≤ 10,
−10 ≤ t ≤ 10. This profile is traced by taking the val-
ues of constants as δ28 = 10, a = 11.5, b = 2, c = 0.72,
y = 3 and arbitrary function as f4(z) = 1 + z2.

6. Conclusion

In summary, we have investigated the generalised
BKP–Boussinesq (gBKP-B) equation using the sym-
metry reduction method, which is a robust, productive,
impressive and strong mathematical tool for solving
nonlinear PDEs. Lie point symmetries of the gBKP-
B equation were considered and then used to derive a
one-dimensional optimal system of symmetry subalge-
bras. Subsequently, three stages of symmetry reductions
of the governing equation were carried out using the
obtained symmetry subalgebras. The gBKP-B equa-
tion was transformed into various nonlinear ODEs
which were then solved to attain the exact closed-
form solutions of the equation. The solutions obtained
have rich localised physical structures as there are
five arbitrary independent functions and two param-
eters that are involved in the infinitesimal genera-
tors. The graphical analysis of the newly established
solutions has been done by using MATHEMATICA
codes via numerical simulation. The different dynam-
ical features and characteristics of multiple solitons
of the considered equation are especially analysed
based on the suitable selection of arbitrary parame-
ters and arbitrary independent functions. Some of the
newly established solutions are more important and

useful to explain various nonlinear complex physical
phenomena, which makes this work more physically
meaningful.
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