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Abstract. This paper deals with the nonlinear generalised advection–diffusion–reaction (GADR) equation subject
to some initial and boundary conditions (BCs). Some exact finite difference (EFD) schemes and non-standard
finite difference (NSFD) schemes are derived. Positivity and boundedness of the proposed NSFD schemes are
analysed analytically and numerically. Theoretical results are very well supported by solved examples. The major
achievements of NSFD schemes are that they give highly accurate solutions for very few spatial and temporal
divisions.

Keywords. Exact finite difference scheme; non-standard finite difference scheme; consistency; boundedness.

PACS Nos 02.30.Jr; 02.60.x; 05.45.Yv

1. Introduction

Advection–diffusion–reaction (ADR) equations are one
of the basic partial differential equations (PDEs) which
are used in modelling the heat and mass transfer. They
play central roles in many disciplines of engineering,
science and finances. One of the important research
directions in numerical PDEs and computational fluid
dynamics is to compute their numerical solutions. We
investigate the following generalised versions of this
class:

ϑξrr = ξt + ηξr − αξθ+1 + βξ2θ+1,

0 ≤ r ≤ 1, t ≥ 0, (1)

where ξ(r, t) is the concentration or density, ϑ is the
diffusion coefficient, η is the advective or convective
velocity and α, β are the real constants. Here, we assume
that α, ϑ, β ∈ R

+, η ∈ R and θ ∈ N [1].
Exact finite difference (EFD) and non-standard finite

difference (NSFD) methods were established for solving
practical problems in applied sciences and engineer-
ing. The books [2–4] and the survey articles [5,6]
give a comprehensive treatment on EFD and NSFD
methods. The main aim of these methods is to reduce
the numerical instabilities which emerge in the stan-
dard finite difference (FD) methods. In this approach,

non-trivial denominator functions (DFs), e.g., sin(δr),
(eδr − 1)2 are used instead of trivial denominator terms,
i.e., δr, (δr)2. Also the nonlinear term, e.g., (ξnj )

2, is

modelled by ξn+1
j−1 ξnj+1, which is non-local on the com-

putational grid. We now give a brief literature review on
the NSFD method for ADR equations.

Mickens and Shoosmith [7] proved that in best FD
scheme for arbitrary step sizes δt and δr , modified Burg-
ers’ equation has exactly the same rational solutions as
the PDE. Therefore, even for large step sizes we shall
get highly accurate solutions. Mickens [8] gave exact
solutions to a best difference equation model of a non-
linear advection–reaction PDE, aξt + ηξr = αξ + βξ2,
wherea,η,α,β are positive constants. The given scheme
minimised or eliminated a number of issues related
to numerical instabilities and ghost solutions. Then in
[9], Mickens considered a particular class of one-space
dimension, nonlinear reaction–diffusion PDEs. As an
application, the reaction–diffusion equation ξrr = ξt −
ξ + ξ2 has been studied. The NSFD scheme proposed
holds positivity, boundedness and symmetric property
under some conditions. Further in [10], Mickens con-
structed the best FD scheme for ϑξrr = ξt + ξr + αξ ,
where ϑ and α are positive parameters and studied its
stability on the basis of positive constraints. Rucker
[11] proposed EFD scheme for ξt + ξr = ξ(1 − ξ2).
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Chen et al [12] considered ϑξrr = aξt − αξ + βξ3

and studied the qualitative stability for ϑ = 0. The
numerical simulations illustrate that the scheme pro-
posed is more robust than standard explicit methods
such as forward Euler and the fourth-order Runge–
Kutta method. Further, Chen et al [12] extended the
semi-explicit and implicit scheme for the full equa-
tion. In [13], Mickens proposed the EFD scheme for
ξt + ϑξr = αξ + β

√
ξ, where ϑ , α, β are real con-

stants and compared the discretisations with the standard
one. Appadu [14] solved the one-dimensional advec-
tion diffusion equation using explicit Lax–Wendroff
scheme, the implicit Crank–Nicolson scheme and an
NSFD scheme. Appadu et al [15] used three meth-
ods to solve two test problems of advection–diffusion
equation. First was the third-order upwind scheme, sec-
ond was the fourth-order upwind scheme and third one
was the NSFD scheme. The result illustrated that NSFD
was much better than the third-order and fourth-order
upwind scheme for all the cases considered. Wang and
Roeger [16] considered the following generalised non-
linear convection–diffusion–reaction PDE:

ϑξrr = ξt + ηξr − αξ + αξθ , (2)

where ϑ , η, α > 0 and θ > 1 is a real parameter and con-
structed two EFD schemes for the case of no diffusion.
Due to its complicacy, NSFD schemes are proposed
first for diffusionless form and then for full PDE which
works for relatively large step sizes (see [16, figures 3(a),
3(b), pp. 1304]). In [17] and [18], Verma and Kayenat
proposed the EFD and NSFD schemes for the gen-
eralised Burgers–Fisher and the generalised Burgers–
Huxley equations, respectively. Recently, Mickens and
Washington [19] considered the following advection–
diffusion–reaction PDE:

ϑξrr = ξt + ηξr + αξ + βξ1/3, (3)

where (ϑ, η, α, β) are non-negative parameters and pro-
posed positivity preserving NSFD scheme for this.

In this paper, we propose two EFD schemes and three
NSFD schemes for the GADR equation (1) which are
novel and have not been analysed in the existing lit-
erature. Here we propose different NSFD schemes for
different θs and the conditions for the positivity and
boundedness of NSFD schemes are deduced and their
local truncation errors are calculated. We compute the
solutions through the proposed NSFD schemes to illus-
trate their efficiency.

Remark 1. In most of the cases, EFD scheme is very
complicated to be programmed and very difficult to use
for actual computation. Therefore, we define simpler
version of EFD scheme which we refer as NSFD, such
that this NSFD inherits certain property of the original

equation and satisfies one or more of NSFD rules [2,
p. 84]. As observed by Mickens and Shoosmith [7], we
also observe that for very few spatial divisions we get
highly accurate solutions, e.g. 10−10.

The article is organised as follows. We present the
derivation of EFD schemes for the nonlinear GADR
equation (1) in §2. It follows that different NSFD
schemes are proposed for different θs and their posi-
tivity-boundedness properties are discussed in detail in
§3. In §4, we calculate the local truncation errors of
NSFD schemes. Section 5 presents several simulations
aimed at establishing the validity of the methods and §6
closes this work with some concluding observations.

2. Derivation of EFD schemes

In this section, we derive EFD schemes for the nonlin-
ear GADR equation (1). Kumar et al [1] derived the
following solitary wave solution of (1) using homoge-
neous balance method:

ξ(r, t) =
[
p

2

{
1 + tanh

(
pr + qt

2

)}]1/θ

=
[

p

1 + exp(−(pr + qt))

]1/θ

, (4)

where

p = αθ2

ϑ(1 + θ)
, q = αθ2 (αθ − ηθ − η)

ϑ(1 + θ)2

and

β = ϑ(1 + θ)

θ2 . (5)

From (4), we get(
1

ξ(r, t)

)θ

−
(

1

ξ(r + δr, t)

)θ

= 1

p

[{1 + exp(−(pr + qt))}
− {1 + exp(−p(r + δr) + qt))}]

=
(

1 − exp(−pδr)

p

)
{exp(−(pr + qt))} . (6)

Similarly, we compute the forward and backward differ-
ences in space and time with the non-trivial DFs given
as follows:

∂rξ = ξ(r + δr, t) − ξ(r, t)

τ1

= (p − (ξ(r, t))θ ) (ξ(r + δr, t))θ∑θ−1
k=0 (ξ(r, t))θ−k−1 (ξ(r + δr, t))k

, (7)
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∂rξ = ξ(r, t) − ξ(r − δr, t)

τ2

= (p − (ξ(r, t))θ ) (ξ(r − δr, t))θ∑θ−1
k=0 (ξ(r, t))θ−k−1 (ξ(r − δr, t))k

, (8)

∂tξ = ξ(r, t + δt) − ξ(r, t)

χ2

= q

p

(p − (ξ(r, t))θ ) (ξ(r, t + δt))θ∑θ−1
k=0 (ξ(r, t + δt))θ−k−1 (ξ(r, t))k

, (9)

∂ tξ = ξ(r, t) − ξ(r, t − δt)

χ1

= q

p

(
p − (ξ(r, t))θ

)
(ξ(r, t − δt))θ∑θ−1

k=0 (ξ(r, t − δt))θ−k−1 (ξ(r, t))k
, (10)

where the notations of DFs are explained as follows:

τ1 = 1 − exp(−pδr)

p
, τ2 = exp(pδr) − 1

p
,

χ1 = exp(qδt) − 1

q
, χ2 = 1 − exp(−qδt)

q
. (11)

Now, we select ξrr ≈ ∂r∂rξ , then using (8), we get

∂r∂rξ = ∂r

(
ξ(r, t) − ξ(r − δr, t)

τ2

)

= ∂rξ(r, t) − ∂rξ(r − δr, t)

τ2

= 1

τ2

{
(p − (ξ(r, t))θ ) (ξ(r + δr, t))θ∑θ−1
k=0 (ξ(r, t))θ−k−1 (ξ(r + δr, t))k

− (p − (ξ(r − δr, t))θ ) (ξ(r, t))θ∑θ−1
k=0 (ξ(r − δr, t))θ−k−1 (ξ(r, t))k

}
.

(12)

We denote

�1 =
θ−1∑
k=0

(ξ(r, t))θ−k−1 (ξ(r + δr, t))k ,

�2 =
θ−1∑
k=0

(ξ(r − δr, t))θ−k−1 (ξ(r, t))k

and write ξnj as follows:

ξnj = ξ(r j , tn) =
[

p

1 + exp(−(pr j + qtn))

]
. (13)

Applying (13) in (12), we deduce the following:

ϑξrr ≈ ϑ(∂r∂rξ)

= ϑ

τ2

[
p((ξnj+1)

θ�2 − (ξnj )
θ�1) − (ξnj )

θ ((ξnj+1)
θ�2 − (ξnj−1)

θ�1)

�1�2

]
(14)

= ϑp

τ2�1�2

[
(ξnj+1)

θ
{
(ξnj )

θ−1 + ξnj−1(ξ
n
j )

θ−2

+ · · · + (ξnj−1)
θ−2ξnj + (ξnj−1)

θ−1
}

−(ξnj )
θ
{
(ξnj+1)

θ−1

+ξnj (ξ
n
j+1)

θ−2 + · · · + (ξnj )
θ−2ξnj+1 + (ξnj )

θ−1
}]

− ϑ(ξnj )
θ

τ2�1�2

[
(ξnj+1)

θ
{
(ξnj )

θ−1

+ξnj−1(ξ
n
j )

θ−2 + · · · + (ξnj−1)
θ−2ξnj + (ξnj−1)

θ−1
}

−(ξnj−1)
θ
{
(ξnj+1)

θ−1 + ξnj (ξ
n
j+1)

θ−2

+ · · · + (ξnj )
θ−2ξnj+1 + (ξnj )

θ−1
}]

= ϑp

τ2�1�2

[
(ξnj )

θ−1
(
(ξnj+1)

θ − (ξnj )
θ
)

+(ξnj )
θ−2ξnj+1

(
(ξnj+1)

θ−1ξnj−1 − (ξnj )
θ
)

+ · · · + (ξnj+1)
θ−1

(
ξnj+1(ξ

n
j−1)

θ−1(ξnj )
θ
)]

− ϑ(ξnj )
θ

τ2�1�2

[
(ξnj+1)

θ−1(ξnj−1)
θ−1

(
ξnj+1 − ξnj−1

)

+(ξnj+1)
θ−2(ξnj−1)

θ−2ξnj

(
(ξnj+1)

2 − (ξnj−1)
2
)

+(ξnj+1)
θ−3(ξnj−1)

θ−3(ξnj )
2
(
(ξnj+1)

3 −(ξnj−1)
3
)
+· · ·

+ ξnj+1ξ
n
j−1(ξ

n
j )

θ−2
(
(ξnj+1)

θ−1 − (ξnj+1)
θ−1

)

+(ξnj )
θ−1

(
(ξnj+1)

θ − (ξnj−1)
θ
)]

(15)

= ϑp(ξnj )
θ−1

�2

(
ξnj+1 − ξnj

τ2

)

+ ϑp

τ2�1�2

{
(ξnj )

θ−2ξnj+1

(
(ξnj+1)

θ−1ξnj−1 − (ξnj )
θ
)
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+ · · · + (ξnj+1)
θ−1

(
ξnj+1(ξ

n
j−1)

θ−1 − (ξnj )
θ
)}

− ϑ(ξnj )
θ

τ2�1�2

(
ξnj+1 − ξnj−1

){
(ξnj+1)

θ−1(ξnj−1)
θ−1

+ (ξnj+1)
θ−2(ξnj−1)

θ−2ξnj

(
ξnj+1 + ξnj−1

)

+ · · · + (ξnj )
θ−1

θ−1∑
k=0

(
ξnj−1

)θ−k−1 (
ξnj+1

)k}

= q

p

(
ξnj+1 − ξnj

τ2

)
+

(
ϑp

θ

(ξnj )
θ−1

�2
θ

−q

p

)(
ξnj+1 − ξnj

τ2

)
+

(
ϑp

τ2�1�2

)
c − ϑ(ξnj )

θ

�1�2

(16)(
ξnj+1 − ξnj−1

τ2

){
(ξnj+1)

θ−1(ξnj−1)
θ−1 + · · ·

+(ξnj )
θ−1

θ−1∑
k=0

(
ξnj−1

)θ−k−1 (
ξnj+1

)k}
. (17)

Here we denote

c = (ξnj )
θ−2ξnj+1

(
(ξnj+1)

θ−1ξnj−1 − (ξnj )
θ
)

+ · · · + (ξnj+1)
θ−1

(
ξnj+1(ξ

n
j−1)

θ−1 − (ξnj )
θ
)

and verify that(
ϑp

θ

(ξnj )
θ−1

�2
θ

− q

p

)
≈

(
ϑp

θ
− q

p

)
= η.

Case I: Choosing δr = (−q/p) δt, we deduce from (4)
and (11) as follows:

ξ(r + δr, t) = ξ(r, t − δt)

and

1

χ2
=

(−q

p

)
1

τ2
. (18)

Using (18) in (16), we arrive at

ϑξrr ≈
(

ξnj − ξn−1
j

χ2

)
+ η

(
ξnj+1 − ξnj

τ2

)

+
(

ϑp

τ2�1�2

)
c−ϑ(ξnj )

θ

�1�2

(
ξnj+1−ξnj +ξnj −ξnj−1

τ2

)

×
(

(ξnj+1)
θ−1(ξnj−1)

θ−1 + · · ·

+(ξnj )
θ−1

θ−1∑
k=0

(
ξnj−1

)θ−k−1 (
ξnj+1

)k)

=
(

ξnj − ξn−1
j

χ2

)
+η

(
ξnj+1 − ξnj

τ2

)
+
(

ϑp

τ2�1�2

)
c

−ϑ(ξnj )
θ

�1�2

⎛
⎝

(
p − (ξnj+1)

θ
)

(ξnj )
θ

�1

+
(
p − (ξnj )

θ
)

(ξnj−1)
θ

�2

⎞
⎠

(
(ξnj+1)

θ−1(ξnj−1)
θ−1

+ · · · + (ξnj )
θ−1

θ−1∑
k=0

(
ξnj−1

)θ−k−1 (
ξnj+1

)k)

=
(

ξnj − ξn−1
j

χ2

)
+η

(
ξnj+1 − ξnj

τ2

)
+
(

ϑp

τ2�1�2

)
c

−ϑ(ξnj )
θ

�1�2

[
p

(
(ξnj )

θ�2 + (ξnj−1)
θ�1

�1�2

)
− (ξnj )

θ

×
(

(ξnj+1)
θ�2 + (ξnj−1)

θ�1

�1�2

)]

×
(

(ξnj+1)
θ−1(ξnj−1)

θ−1 + · · ·

+(ξnj )
θ−1

θ−1∑
k=0

(ξnj−1)
θ−k−1(ξnj+1)

k

)

=
(

ξnj − ξn−1
j

χ2

)
+ η

(
ξnj+1 − ξnj

τ2

)

+
(

ϑp

τ2�1�2

)
c −

[(
ϑp(θ + 1)

θ2

)(
(ξnj )

θ

�1
θ

)

×
{

1

2

(
(ξnj )

θ

�1
θ

+ (ξnj−1)
θ

�2
θ

)}

−
(

ϑ(θ + 1)

θ2

)
(ξnj )

θ

(
(ξnj )

θ

�1
θ

)

×
{

1

2

(
(ξnj+1)

θ

�1
θ

+ (ξnj−1)
θ

�2
θ

)}]
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×
(

(ξnj+1)
θ−1(ξnj−1)

θ−1 + · · · + (ξnj )
θ−1 ∑θ−1

k=0(ξ
n
j−1)

θ−k−1(ξnj+1)
k

θ(θ+1)
2

�2
θ

)

=
(

ξnj − ξn−1
j

χ2

)
+ η

(
ξnj+1 − ξnj

τ2

)
+

(
ϑp

τ2�1�2

)
c − α

(
(ξnj )

θ

�1
θ

){
1

2

(
(ξnj )

θ

�1
θ

+ (ξnj−1)
θ

�2
θ

)}

×

⎛
⎜⎜⎜⎜⎜⎝

(ξnj+1)
θ−1(ξnj−1)

θ−1 + · · · + (ξnj )
θ−1

θ−1∑
k=0

(ξnj−1)
θ−k−1(ξnj+1)

k

θ(θ+1)
2

�2
θ

⎞
⎟⎟⎟⎟⎟⎠

+ β(ξnj )
θ

(
(ξnj )

θ

�1/θ

)

×1

2

(
(ξnj+1)

θ

�1
θ

+ (ξnj−1)
θ

�2
θ

)(
(ξnj+1)

θ−1(ξnj−1)
θ−1 + · · · + (ξnj )

θ−1 ∑θ−1
k=0(ξ

n
j−1)

θ−k−1(ξnj+1)
k

θ(θ+1)
2

�2
θ

)
. (19)

Due to the non-local discrete representations, the term
c of eq. (19) can be approximated to zero. Thus, we get
the EFD scheme of eq. (1) as follows:

EFDS1:

ϑ

(
ξnj+1 − 2ξnj + ξnj−1

τ1τ2

)
=

(
ξnj − ξn−1

j

χ2

)
+ η

(
ξnj+1 − ξnj

τ2

)
+

(
ϑp

τ2�1�2

)
c − α

(
(ξnj )

θ

�1/θ

)

×1

2

(
(ξnj )

θ

�1/θ
+ (ξnj−1)

θ

�2/θ

)(
(ξnj+1)

θ−1(ξnj−1)
θ−1 + · · · + (ξnj )

θ−1 ∑θ−1
k=0(ξ

n
j−1)

θ−k−1(ξnj+1)
k

θ(θ+1)
2

�2
θ

)
+ β(ξnj )

θ

×
(

(ξnj )
θ

�1/θ

)
1

2

(
(ξnj+1)

θ

�1/θ
+ (ξnj−1)

θ

�2/θ

)(
(ξnj+1)

θ−1(ξnj−1)
θ−1 + · · · + (ξnj )

θ−1 ∑θ−1
k=0(ξ

n
j−1)

θ−k−1(ξnj+1)
k

θ(θ+1)
2

�2
θ

)
.

(20)

Theorem 1. An implicit EFD scheme for the nonlinear
GADR equation (1) is given by (20). The step-size sat-
isfies δr = − (q/p) δt, and the DFs satisfy (11).

Case II: Choosing δr = (q/p) δt, we deduce from (4)
and (11) as follows:

ξ(r + δr, t) = ξ(r, t + δt)

and

1

χ1
=

(
q

p

)
1

τ2
. (21)

Proceeding in the same fashion, we arrive at the follow-
ing equation:

EFDS2 :

ϑ

(
ξnj+1 − 2ξnj + ξnj−1

τ1τ2

)
=

(
ξn+1
j − ξnj

χ1

)
+ η

(
ξnj+1 − ξnj

τ2

)
+

(
ϑp

τ2�1�2

)
c − α

(
(ξnj )

θ

�1/θ

)

×1

2

(
(ξnj )

θ

�1/θ
+ (ξnj−1)

θ

�2/θ

)(
(ξnj+1)

θ−1(ξnj−1)
θ−1 + · · · + (ξnj )

θ−1 ∑θ−1
k=0(ξ

n
j−1)

θ−k−1(ξnj+1)
k

θ(θ+1)
2

�2
θ

)
+ β(ξnj )

θ

×
(

(ξnj )
θ

�1/θ

)
1

2

(
(ξnj+1)

θ

�1/θ
+(ξnj−1)

θ

�2/θ

)(
(ξnj+1)

θ−1(ξnj−1)
θ−1+ · · · +(ξnj )

θ−1∑θ−1
k=0(ξ

n
j−1)

θ−k−1(ξnj+1)
k

θ(θ+1)
2

�2
θ

)
. (22)
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Theorem 2. An explicit EFD scheme for the nonlinear
GADR equation (1) is given by (22). The step-size sat-
isfies δr = (q/p) δt, and the DFs satisfy (11).

3. Non-standard finite difference schemes

We propose the following non-standard FD schemes for
the non-linear GADR equation (1) for θ ∈ N, where

 = τ1τ2, R = χ2/
 and R1 = χ2/τ2.

• Case I: For θ = {1, 2}

ϑ

(
ξnj+1 − 2ξnj + ξnj−1




)

=
(

ξn+1
j − ξnj

χ2

)
+ η

(
ξnj − ξnj−1

τ2

)

−α(ξnj )
θ+1 + β(ξnj )

2θ ξn+1
j , (23)

ξn+1
j = (ϑR + ηR1)ξ

n
j−1 + (1 − 2ϑR − ηR1)ξ

n
j + ϑRξnj+1 + αχ2(ξ

n
j )

θ+1

1 + βχ2(ξ
n
j )

2θ
. (24)

• Case II: For θ = 3

ϑ

(
ξnj+1 − 2ξnj + ξnj−1




)

=
(

ξn+1
j − ξnj

χ2

)
+ η

(
ξnj − ξnj−1

τ2

)

−α(ξnj )
4 + β(ξnj )

5ξnj−1ξ
n+1
j , (25)

ξn+1
j = (ϑR + ηR1)ξ

n
j−1 + (1 − 2ϑR − ηR1)ξ

n
j + ϑRξnj+1 + αχ2(ξ

n
j )

4

1 + βχ2ξ
n
j−1(ξ

n
j )

5
. (26)

• Case III: For θ ≥ 4

ϑ

(
ξnj+1 − 2ξnj + ξnj−1




)

=
(

ξn+1
j − ξnj

χ2

)
+ η

(
ξnj − ξnj−1

τ2

)

−α(ξnj )
θ+1 + β(ξnj )

2θ−2ξnj−1ξ
n
j+1ξ

n+1
j , (27)

ξn+1
j = (ϑR + ηR1)ξ

n
j−1 + (1 − 2ϑR − ηR1)ξ

n
j + ϑRξnj+1 + αχ2(ξ

n
j )

θ+1

1 + βχ2ξ
n
j−1(ξ

n
j )

2θ−2ξnj+1
. (28)

Theorem 3. Let ∃ p ∈ R
+ such that 0 ≤ ϑR + ηR1 ≤

1 − ϑR with α, ϑ, β ∈ R
+ and η ∈ R. Then the NSFD

scheme (24) satisfies the positivity and boundedness
property for θ = 1, i.e.,

0 ≤ ξnj ≤ p ⇒ 0 ≤ ξn+1
j ≤ p,

for all j , n.

From the given conditions, we have, 1−2ϑR−ηR1 ≥
0. Thus from (24), we conclude that

ξnj ≥ 0 ⇒ ξn+1
j ≥ 0, ∀ j and n.

For boundedness, we have to show ξn+1
j ≤ p. To prove

this, we subtract upside of (24) with downside and arrive
at

(ϑR + ηR1)ξ
n
j−1 + (1 − 2ϑR − ηR1)ξ

n
j + ϑRξnj+1

+αχ2(ξ
n
j )

2 − p − βpχ2(ξ
n
j )

2

≤ (ϑR + ηR1)p + (1 − 2ϑR − ηR1)p + ϑRp

+αχ2(ξ
n
j )

2 − p − αχ2(ξ
n
j )

2 = 0 (∵ α = βp).

(29)

Thus, we have

0 ≤ ξnj ≤ p ⇒ 0 ≤ ξn+1
j ≤ p. (30)

Hence the proof is complete.

Theorem 4. Let ∃ p ∈ R
+ such that 0 ≤ ϑR + ηR1 ≤

1−ϑR−αχ2 p with α, ϑ, β ∈ R
+ and η ∈ R. Then, the

NSFD scheme (24) satisfies the positivity and bounded-
ness property for θ = 2, i.e.,

0 ≤ ξnj ≤ √
p ⇒ 0 ≤ ξn+1

j ≤ √
p,

for all j and n.

From the given conditions, we have 1−2ϑR−ηR1 ≥
0. Thus, from (24), we conclude that

ξnj ≥ 0 ⇒ ξn+1
j ≥ 0, ∀ j and n.
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For boundedness, we require ξn+1
j ≤ √

p. Similar to
the proof of Theorem 1 we proceed to arrive at

(ϑR + ηR1)ξ
n
j−1

+(1 − 2ϑR − ηR1 − β
√
pχ2(ξ

n
j )

3)ξnj

+ϑRξnj+1 + αχ2(ξ
n
j )

3 − √
p

≤ (ϑR + ηR1)
√
p

+(1 − 2ϑR − ηR1 − β
√
pχ2(ξ

n
j )

3)
√
p

+ϑR
√
p + αχ2(ξ

n
j )

3 − √
p = 0. (31)

This completes the proof.

Theorem 5. Let ∃ p ∈ R
+ such that ϑR + ηR1 −

αχ2 p ≥ 0 and 1 − 2ϑR − ηR1 − αχ2 p ≥ 0 with
α, ϑ, β ∈ R

+ and η ∈ R. Then the NSFD scheme
(26) satisfies the positivity and boundedness property
for θ = 3, i.e.,

0 ≤ ξnj ≤ p1/3 ⇒ 0 ≤ ξn+1
j ≤ p1/3,

for all j and n.

From the given conditions, we have, ϑR + ηR1 ≥ 0
and 1 − 2ϑR − ηR1 ≥ 0. Thus from (26), we conclude
that

ξnj ≥ 0 ⇒ ξn+1
j ≥ 0, ∀ j and n.

For boundedness, we require ξn+1
j ≤ p1/3. Similar to

the above discussion, we arrive at

(ϑR + ηR1)ξ
n
j−1 + (1 − 2ϑR − ηR1

−βp1/3χ2ξ
n
j−1(ξ

n
j )

4)ξnj +ϑRξnj+1+αχ2(ξ
n
j )

4− p1/3

≤ (ϑR + ηR1 − βp2/3χ2(ξ
n
j )

4)ξnj−1

+(1−2ϑR−ηR1)p
1/3+ϑRp1/3+αχ2(ξ

n
j )

4− p1/3

≤ (ϑR + ηR1 − βp2/3χ2(ξ
n
j )

4)p1/3

+(−ϑR − ηR1)p
1/3 + αχ2(ξ

n
j )

4 = 0. (32)

Thus, the proof is complete.

Theorem 6. Let ∃ p ∈ R
+ such that

(
1−2ϑR−ηR1

θ−3

)
−

αχ2 p ≥ 0, ϑR+ηR1 −αχ2 p ≥ 0 and ϑR−αχ2 p ≥ 0
with α, ϑ, β ∈ R

+ and η ∈ R. Then, the NSFD scheme
(28) satisfies the positivity and boundedness property
for θ ≥ 4, i.e.,

0 ≤ ξnj ≤ p1/θ ⇒ 0 ≤ ξn+1
j ≤ p1/θ ,

for all j and n.

From the given conditions, we have, ϑR + ηR1 ≥ 0
and 1 − 2ϑR − ηR1 ≥ 0. Hence, we have

ξnj ≥ 0 ⇒ ξn+1
j ≥ 0, ∀ j and n.

For boundedness, we have to show ξn+1
j ≤ p1/θ . For

proving this, we subtract upside of (28) with downside
and arrive at

G =
(
ϑR + ηR1 − βp1/θχ2ξ

n
j+1(ξ

n
j )

2θ−2
)

ξnj−1

+(1 − 2ϑR − ηR1)ξ
n
j + ϑRξnj+1

+αχ2(ξ
n
j )

θ+1 − p1/θ

≤ (ϑR + ηR1)p
1/θ + (1 − 2ϑR − ηR1)ξ

n
j

+
(
ϑR − βp2/θχ2(ξ

n
j )

2θ−2
)

ξnj+1

+αχ2(ξ
n
j )

θ+1 − p1/θ

≤ (2ϑR + ηR1 − 1)p1/θ + (1 − 2ϑR − ηR1) ξnj

−βp
3
θ χ2(ξ

n
j )

2θ−2 + αχ2(ξ
n
j )

θ+1. (33)

Now we write

(1 − 2ϑR − ηR1) ξnj

= (θ − 3)

(
1 − 2ϑR − ηR1

θ − 3

)
ξnj

=
(

1 − 2ϑR − ηR1

θ − 3

) (θ−3) times︷ ︸︸ ︷(
ξnj + ξnj + · · · + ξnj

)
. (34)

Using (34) in (33), we get

G ≤
(

1−2ϑR−ηR1

θ−3
− βp3/θχ2(ξ

n
j )

θ+1(ξnj )
θ−4

)
ξnj

+
(

1 − 2ϑR − ηR1

θ − 3

) (θ−4) times︷ ︸︸ ︷(
ξnj + · · · + ξnj

)

+(2ϑR + ηR1 − 1)p1/θ + αχ2(ξ
n
j )

θ+1

≤
(

1 − 2ϑR − ηR1

θ − 3

)
p1/θ

+
(

1−2ϑR−ηR1

θ−3
− βp

4
θ χ2(ξ

n
j )

θ+1(ξnj )
θ−5

)
ξnj

+
(

1 − 2ϑR − ηR1

θ − 3

) (θ−5) times︷ ︸︸ ︷(
ξnj + · · · + ξnj

)

+(2ϑR + ηR1 − 1)p1/θ + αχ2(ξ
n
j )

θ+1

≤
(

1 − 2ϑR − ηR1

θ − 3

)
p2/θ

+
(

1−2ϑR−ηR1

θ−3
− βp5/θχ2(ξ

n
j )

θ+1(ξnj )
θ−6

)
ξnj

+
(

1 − 2ϑR − ηR1

θ − 3

) (θ−6) times︷ ︸︸ ︷(
ξnj + · · · + ξnj

)

+(2ϑR + ηR1 − 1)p1/θ + αχ2(ξ
n
j )

θ+1. (35)
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Table 1. Comparison of maximum error for α = 0.001, η = 0.01, ϑ = 0.1 for different values
of N , t , δt and θ

N = 4, θ = 1 N = 4, θ = 3

t δt = 0.01 δt = 0.001 Avg. CPU δt = 0.01 δt = 0.001 Avg. CPU

0.01 5.9375E−10 5.9726E−11 0.4375 7.75784E−8 7.90878E−9 0.546
0.1 5.97243E−10 6.32095E−11 0.6015 7.90048E−8 9.3957E−9 0.539
1 6.226E−10 8.83225E−11 0.6335 8.98719E−8 2.02193E−8 0.6015
10 6.41898E−10 1.07538E−10 1.4835 9.82605E−8 2.85285E−8 1.485

N = 8, θ = 1 N = 8, θ = 3

t δt = 0.01 δt = 0.001 Avg. CPU δt = 0.01 δt = 0.001 Avg. CPU

0.01 5.9375E−10 5.95506E−11 0.5005 7.76515E−8 7.83932E−9 0.5315
0.1 5.95503E−10 6.13037E−11 0.508 7.83172E−8 8.57962E−9 0.5705
1 6.08543E−10 7.422E−11 0.8435 8.38107E−8 1.41389E−8 0.6405
10 6.17964E−10 8.36047E−11 2.3965 8.793E−8 1.8198E−8 2.336

N = 12, θ = 1 N = 12, θ = 3

t δt = 0.01 δt = 0.001 Avg. CPU δt = 0.01 δt = 0.001 Avg. CPU

0.01 5.9375E−10 5.94921E−11 0.4995 7.76758E−8 7.81557E−9 0.5775
0.1 5.94918E−10 6.06617E−11 0.531 7.80887E−8 8.30522E−9 0.539
1 6.03659E−10 6.93225E−11 0.8195 8.17064E−8 1.20285E−8 0.813
10 6.0992E−10 7.5561E−11 3.6645 8.446E−8 1.47281E−8 3.508

Proceeding in the same manner, after (θ − 6) steps, we
arrive at

G ≤ −βpχ2(ξ
n
j )

θ+1

+
(

1 − 2ϑR − ηR1

θ − 3

)
(θ − 3)p1/θ

+(2ϑR + ηR1 − 1)p1/θ + αχ2(ξ
n
j )

θ+1 = 0.

Thus, we complete the proof.

4. Local truncation error

To compute the truncation error, we apply Taylor’s
series expansion on the proposed NSFD scheme given
by eq. (1) where ξnj = ξ(r j , tn), r̄i ∈ (r j , r j+1) and
t̄n ∈ (tn, tn+1). Following are the notations of the dif-
ference equations for the partial derivatives in time and
space, respectively:

∂tξ
n
j = ξn+1

j − ξnj

φ2
, ∂rξ

n
j = ξnj − ξ kj−1

τ2
,

∂r ∂̄rξ
n
j = ξnj+1 − 2ξnj + ξnj−1

τ
.

The local truncation error ζ n
j of NSFD scheme (24) is

as follows:

ζ n
j = (∂tξ

n
j − ξt (r j , tn)) − ϑ(∂r ∂̄rξ

n
j − ξrr (r j , tn))

+η(∂rξ
n
j − ξr (r j , tn)) − α((ξnj )

θ+1

−(ξ(r j , tn))
θ+1) + β((ξnj )

2θ ξn+1
j

−(ξ(r j , tn))
2θ+1)

=
(

δt

χ2
− 1

)
ξt (r j , tn) − ϑ

(
(δr)2



− 1

)
ξrr (r j , tn)

+η

(
δr

τ2
− 1

)
ξr (r j , tn)

+(δt)2

2χ2
ξt t (r j , tn) + (δt)3

6χ2
ξt t t (r j , t̄n)

−ϑ
(δr)4

12

ξrrrr (r̄ j , tn) − η(δr)2

2τ2
ξrr (r j , tn)

+η(δr)3

6τ2
ξrrr (r̄ j , tn) + βδtξt (r j , tn)(ξ(r j , tn))

2θ

+β
(δt)2

2
ξt t (r j , tn)(ξ(r j , tn))

2θ

+β
(δt)3

6
ξt t t (r j , t̄n)(ξ(r j , tn))

2θ . (36)

From eq. (36), we make the following analysis on the
order of accuracy and consistency:

(i) In the DFs (11),

lim
δr→0

δr

τ2
→ 1, lim

δt→0

δt

χ2
→ 1
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Table 2. Comparison of maximum error for α = 0.001, η = 0.01, ϑ = 0.1 for different
values of N , t , δt and θ

N = 4, θ = 4 N = 4, θ = 8

t δt = 0.01 δt = 0.001 Avg. CPU δt = 0.01 δt = 0.001 Avg. CPU

0.01 1.30488E−7 1.33651E−8 0.562 2.64762E−7 2.77706E−8 0.453
0.1 1.33477E−7 1.64627E−8 0.4765 2.76989E−7 4.02626E−8 0.492
1 1.56095E−7 3.90835E−8 0.6565 3.68093E−7 1.31964E−7 0.6175
10 1.73694E−7 5.64914E−8 1.5385 4.40123E−7 2.03079E−7 1.6485

N = 8, θ = 4 N = 8, θ = 8

t δt = 0.01 δt = 0.001 Avg. CPU δt = 0.01 δt = 0.001 Avg. CPU

0.01 1.30685E−7 1.32241E−8 0.57 2.65803E−7 2.72189E−8 0.516
0.1 1.32036E−7 1.47634E−8 0.5545 2.71085E−7 3.34217E−8 0.5155
1 1.43421E−7 2.63695E−8 0.7345 3.16619E−7 8.03274E−8 0.6875
10 1.52074E−7 3.48712E−8 2.481 3.52054E−7 1.1501E−7 2.493

N = 12, θ = 4 N = 12, θ = 8

t δt = 0.01 δt = 0.001 Avg. CPU δt = 0.01 δt = 0.001 Avg. CPU

0.01 1.3075E−7 1.31758E−8 0.4925 2.66149E−7 2.70286E−8 0.578
0.1 1.31587E−7 1.41912E−8 0.571 2.69419E−7 3.11089E−8 0.508
1 1.39024E−7 2.19597E−8 0.9535 2.98806E−7 6.24619E−8 0.8445
10 1.44817E−7 2.7614E−8 3.6435 3.22565E−7 8.55203E−8 3.6565

Table 3. Comparison of maximum error for α = 0.01, ϑ = 1, N = 4, δt = 0.0001

t/η 0 0.001 0.01 0.1 1 10 Avg. CPU

θ = 1
0.001 3.125E−12 2.49651E−12 3.1601E−12 5.9726E−11 6.25384E−10 6.28183E−9 0.5698
0.005 3.125E−12 2.48157E−12 3.31581E−12 6.1283E−11 6.4094E−10 6.43523E−9 0.5126
0.025 3.12503E−12 2.41822E−12 4.06109E−12 6.87292E−11 7.14656E−10 7.05974E−9 0.5885
0.125 3.12513E−12 2.24431E−12 6.44231E−12 9.23791E−11 9.34086E−10 8.01686E−9 0.7208

θ = 2
0.001 1.81291E−10 1.53793E−10 9.36832E−11 2.56844E−9 2.73156E−8 2.74742E−7 0.52217
0.005 1.81284E−10 1.52488E−10 1.0714E−10 2.70158E−9 2.86451E−8 2.87928E−7 0.5475
0.025 1.81255E−10 1.46951E−10 1.71857E−10 3.34789E−9 3.50461E−8 3.42419E−7 0.5655
0.125 1.81176E−10 1.31779E−10 3.78635E−10 5.40083E−9 5.41179E−8 4.27138E−7 0.7993

θ = 4
0.001 1.13443E−9 9.89432E−10 3.15532E−10 1.33651E−8 1.43857E−7 1.44837E−6 0.568
0.005 1.13336E−9 9.74841E−10 4.55888E−10 1.47277E−8 1.57442E−7 1.58346E−6 0.557
0.025 1.12883E−9 9.1299E−10 1.13187E−9 2.14338E−8 2.23855E−7 2.1526E−6 0.587
0.125 1.11634E−9 7.43776E−10 3.29172E−9 4.27389E−8 4.22129E−7 3.06104E−6 0.784

and

lim
δr→0

(δr)2



→ 1.

(ii) ζ n
j = O(δt) + O(δr) if δr → 0 and δt → 0.

Thus, we can say that the exact solution satisfies
the difference equation (1) except for small error.

Similarly, we calculate the truncation error for the NSFD
schemes given in eqs (26) (for θ = 3) and (28) (for case

θ ≥ 4). They are also consistent with first order in time
and first order in space for all appropriate values of j
and n.

Theorem 7. (Consistency Theorem)Forα, ϑ, β ∈ R
+

and η ∈ R, the NSFD schemes defined by (23), (26) and
(28) are consistent with first order in time and first order
in space for all appropriate values of j and n.
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Table 4. Comparison of maximum error for α = 0.05, ϑ = 5, N = 4, δt = 0.001

t/η −0.0005 −0.005 −0.05 −0.5 −5 Avg. CPU

θ = 1
0.001 1.59375E−10 1.875E−10 4.6875E−10 3.28125E−9 3.14062E−8 0.5314
0.01 1.59391E−10 1.87662E−10 4.70373E−10 3.29754E−9 3.15741E−8 0.5312
0.1 1.59424E−10 1.87984E−10 4.73591E−10 3.33026E−9 3.19545E−8 0.5418

θ = 2
0.001 9.20058E−9 1.04243E−8 2.26615E−8 1.45034E−7 1.36874E−6 0.5158
0.01 9.2017E−9 1.04359E−8 2.27834E−8 1.46324E−7 1.38196E−6 0.5094
0.1 9.20352E−9 1.04572E−8 2.30619E−8 1.49139E−7 1.41275E−6 0.5584

θ = 3
0.001 3.187E−8 3.56441E−8 7.33849E−8 4.50792E−7 4.2248E−6 0.525
0.01 3.14647E−8 3.52874E−8 7.35145E−8 4.55949E−7 4.28206E−6 0.4846
0.1 3.07746E−8 3.46792E−8 7.37266E−8 4.67871E−7 4.41726E−6 0.5312

θ = 4
0.001 5.74431E−8 6.38256E−8 1.27651E−7 7.65905E−7 7.14826E−6 0.478
0.01 5.74457E−8 6.39377E−8 1.28859E−7 7.78193E−7 7.27652E−6 0.5374
0.1 5.74478E−8 6.41243E−8 1.31574E−7 8.0712E−7 7.57157E−6 0.4968

Table 5. Comparison of maximum error for η = 0.005, ϑ = 2.5, N = 4, δt = 0.01

t/α 0.0001 0.001 0.01 0.1 1 Avg. CPU

θ = 2
1 3.39681E−12 9.43717E−11 1.14072E−9 1.33509E−6 0.000386522 0.536
5 3.39681E−12 9.43719E−11 1.14071E−9 1.33057E−6 0.000157928 0.611
10 3.39682E−12 9.43722E−11 1.1407E−9 1.32481E−6 3.23914E−05 0.689

θ = 4
1 7.04112E−11 1.06923E−9 1.3475E−8 5.91796E−6 0.00038442 0.52
5 7.04113E−11 1.06923E−9 1.34742E−8 5.82899E−6 8.14671E−6 0.625
10 7.04113E−11 1.06924E−9 1.34733E−8 5.71595E−6 5.05095E−8 0.691

θ = 8
1 2.88535E−10 3.2227E−9 4.01034E−8 1.10421E−05 0.000125661 0.534
5 2.88535E−10 3.22277E−9 4.00957E−8 1.05472E−05 6.46785E−9 0.623
10 2.88536E−10 3.22285E−9 4.00861E−8 9.92523E−6 2.26485E−14 0.725

θ = 16
1 5.56392E−10 5.32141E−9 6.50101E−8 1.26382E−05 3.28476E−6 0.579
5 5.56395E−10 5.32166E−9 6.4978E−8 1.11827E−05 6.66134E−16 0.62
10 5.56399E−10 5.32196E−9 6.49378E−8 9.48926E−6 0 0.674

5. Numerical results

We solve the non-linear GADR equation (1) through the
proposed NSFD schemes along with the discretised ini-
tial condition in time and BCs in space given as follows:

ξ0
j =

[
p

1 + e(−pr j )

]
, j = 0, 1, 2, . . . , N ,

ξn0 =
[

p

1 + e(−qtn)

]
, n = 0, 1, 2, . . . , M,

ξnj =
[

p

1 + e(−p−qtn)

]
, n = 0, 1, 2, . . . , M.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(37)

The absolute maximum error is defined as:

Maximum error = max
j

|ε(r j , tn) − ξ(r j , tn)|.

Here ε(r j , tn) is the exact solution given in eq. (4) and
ξ(r j , tn) is the NSFD solution at the grid point (r j , tn).
The NSFD solutions hold conditions for positivity and
boundedeness. We have done numerical implementation
in Mathematica 11.3 with the hardware configuration:
64-bit operating system, ×64-based processor, Intel(R)
Core(TM) i7-4790 CPU @3.60 GHz, 4 GB of RAM
and used the ‘TimeUsed’ command to compute the CPU
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Figure 1. Comparison of solutions for α when η = 0.01,
ϑ = 0.001, t = 0.1, θ = 3 δr = 0.0625 and δt = 0.001.

Figure 2. Comparison of solutions for ϑ when α = 0.002,
t = 5, η = 0.0001, δr = 0.0625 and δt = 0.01.

Figure 3. Comparison of solutions for η when ϑ = 1,
α = 0.0001, θ = 2, t = 0.5, δr = 0.0625 and δt = 0.001.

Figure 4. Comparison of solutions for η when
α = ϑ = 0.0001, θ = 1, t = 0.1, δr = 0.0625 and
δt = 0.001.

Figure 5. Comparison of solutions for θ when η = 0.1,
ϑ = 0.0008, α = 0.005, t = 0.1, δr = 0.0625 and
δt = 10−4.

time given in seconds. For plottings we have used Origin
8.5.

Tables 1 and 2 present the numerical results of GADR
equation at different values of t , θ , N and δt for α =
0.001, η = 0.01, ϑ = 0.1. In these tables, we have com-
puted the absolute maximum error between the exact
and the NSFD solutions. Here we get highly accurate
solution at N = 4 only. We have also taken less number
of temporal division, i.e., for t = δt = 0.01, we have
M = 1 only but then also we are getting O(10−10) accu-
rate solution. The increment in T also does not affect
the accuracy much. Table 3 presents the absolute max-
imum error for different values of η ≥ 0, θ and t when
α = 0.01, ϑ = 1, N = 4, δt = 0.0001. As we increase
η and θ , the error also increases a little bit but we can
see that the accuracy of the presented method is high for
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Figure 6. Comparison of solutions for t when
α = ϑ = 0.0001, η = 1, t = 5, θ = 2, δr = 0.0625
and δt = 0.001.

Figure 7. Graph of errors for various values of N when
ϑ = 0.1, η = 0.01, α = 0.001, θ = 3, t = 1 and δt = 0.001.

Figure 8. Graph of errors for various values of δt when
ϑ = α = η = 0.001, t = 1, θ = 1 and δr = 0.03125.

Figure 9. NSFD solutions for η = 0.5, ϑ = α = 0.001,
θ = 2, N = 80 and δt = 0.01.

Figure 10. NSFD solutions for η = −0.8, ϑ = 0.01,
α = 0.1, θ = 1, N = 80 and δt = 0.001.

almost all the ηs. Similarly, table 4 presents the absolute
maximum error for different values of η < 0, θ and t
when α = 0.05, ϑ = 5, N = 4, δt = 0.001. Here, as
we decrease η, there is a slight increment in the error in
the respective θs but overall here too we get good accu-
racy even at θ = 4 and η = −5. Table 5 presents the
absolute maximum error for different values of α, θ and
t when η = 0.005, ϑ = 2.5, N = 4, δt = 0.01. Here,
as we increase α upto 0.1 the error increases, but here
impact of time and θ is very less on the error. For α = 1,
the case is quite different. Here, as we increase θ and t,
error decreases upto zero. Thus, our proposed method
gives highly accurate solutions for very few spatial and
temporal divisions. Average CPU time is given here in
all the tables which is very less.
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Here, we have plotted two-dimensional figures for the
NSFD solutions of the GADR equation (1) by varying
α, ϑ , η, θ and t . From figures 1–6, we can see that
the NSFD solutions completely lie on respective exact
ones. We have also plotted figures 7 and 8 for the errors
in the NSFD solutions at different number of spatial and
temporal divisions. From figure 7, we can depict that as
we increase the spatial divisions, the error graph tends
towards the straight line, and three-dimensional figures
for the GADR equation (1). Figures 9 and 10 depict
the three-dimensional simulation of NSFD solutions for
η > 0 and η < 0, respectively.

6. Conclusions

In this paper, two EFD schemes are proposed for the
GADR equation (1). The derived EFD schemes are very
complicated, and hence it is difficult to compute solu-
tions from them. Thus, we propose different explicit
NSFD schemes for different θs and successfully used
them to obtain the numerical solutions. The proposed
NSFD schemes satisfy first four properties given by
Mickens in [3, pp. 20–22] which enable them suffer less
instabilities which we have verified by the examples.
Our NSFD schemes preserve the positivity and bound-
edness property for all θ ∈ N and their local truncation
errors are calculated. Through numerical simulations, it
is verified that the proposed NSFD schemes give highly
accurate solutions for various values of α, ϑ , η, θ , N ,
t and δt. The proposed NSFD schemes are very sim-
ple, explicit, consume less computational time and gives
high accuracy at very few spatial and temporal divi-
sions. The proposed NSFD methods can also be applied
to other types of BCs, e.g., Robin or Neumann BCs.
Along with this, these results can also be extended to

the GADR equation with variable coefficients in space
or time.
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