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Abstract. We generate exact solutions to the Einstein–Maxwell field equations by analysing the embedding
condition. We obtain a relationship between gravitational potentials that helps to solve the embedding condition
and integrate the field equations. Our choice of the measure of anisotropy and electric field are physically realistic.
Our model contains several previously known solutions as special cases. These include the investigations of interior
Schwarzchild metric, Finch and Skea, Hansraj and Maharaj, Feroze and Siddiqui, and Manjonjo, Maharaj and
Moopanar. We also describe the structure and properties of the relativistic star by including graphical representations.
Our analysis shows that the body is stable, all energy conditions are satisfied, the regularity condition is not violated,
forces under equilibrium condition are balanced, all matter variables are well behaved and the matching conditions
are satisfied at the boundary of the relativistic star.
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1. Introduction

The final stage in the evolution of stars is the forma-
tion of compact stellar bodies including neutron stars,
white dwarfs and black holes [1,2]. Evolution of com-
pact objects in astrophysics reveals that mass, matter
composition and radius cannot be evaluated by direct
observation, because light cannot pass through these
objects. This brings the concept of general relativity into
practice because it predicts many important aspects of
compact objects like mass, red-shift, radius and accel-
erated expansion of Universe with connection to dark
energy [3,4]. The study of four dimensions contained in
Einstein’s theory describes the idea that gravitation is an
effect of the curvature of space–time which can be used
to study intrinsic and extrinsic geometries of surfaces
[5]. In the literature, the demonstration of dimensions of
a space in unifying the force of gravitation was extended
from the theories of Newton, Einstein’s special and gen-
eral relativity of space–time [6]. In the 1970s and 1980s,
the concept of building a quantum field theory of gravity
began to take part in gravity theories with the emer-
gence of supergravity and superstring theories. Both of

these ideas are based on the implementation of super-
symmetry and reflects a renewal of Kaluza and Klein’s
concepts of higher-dimensional spaces [7]. Embedding
four dimensions to higher pseudo-Euclidean dimen-
sional space is one among several approaches in general
relativity which helps to investigate the internal structure
and properties of compact stellar bodies. For detailed
description on the embedding approach, see Bhar et al
[8,9], Das et al [10], Maurya and Maharaj [11], Murad
[12], and Pandya and Thomas [13].

In generalising the features of relativistic stars,
researchers extended Einstein field equations enabling
the Einstein–Maxwell systems by including charge.
The charge component in relativistic stars has impact
on values of mass, luminosities and surface red-shifts.
The Einstein–Maxwell equations can also be applied
with equations of state, conformal Killing vectors and
the Gauss–Bonnet approach in describing the structure
and properties of charged compact stellar bodies. A
comprehensive analysis of compact stars with electro-
magnetic field is presented in the works by Komathi-
raj and Sharma [14,15], Ivanov [16], Komathiraj and
Maharaj [17], Maharaj and Komathiraj [18], Maharaj
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and Thirukkanesh [19], Feroze and Siddiqui [20] and
Sunzu et al [21,22]. Embedding in five-dimensional flat
space–time has been successfully used in various exten-
sive studies in modelling charged stellar objects [23,24].
The embedding approach gives an additional differential
equation called the Karmakar condition [25,26]. Kar-
makar [27] established the necessary requirement for a
space–time in general relativity to be of class I with a
spherically symmetric metric. Since then, several stud-
ies have been done to describe the embedding method
in generating new exact solutions which are useful
in describing compact objects like neutron stars, pul-
sars and black holes which contain strong gravitational
fields. The space–times that allow the embedding of
four-dimensional to five-dimensional space are referred
to be as class one. Note that the exterior and interior
solutions of Schwarzschild [28] are of class two and
class one respectively. Investigations by Singh and Pant
[29], Singh et al [30], Gedela et al [31], and Maurya and
Maharaj [32] developed families of physically accept-
able conditions in spherical models that describe the
interior regions of the stars.

Anisotropic models with charged fluid distributions
describe the behaviour of relativistic stars. Anisotropy
implies that the radial pressure is different from the
tangential pressure for interiors of stellar bodies with
very high densities of about 1015 g·cm−3 [33–36]. The
isotropic pressure decreases with the increase of radial
distance and has the highest value at the centre of the
relativistic star. Higher-dimensional spaces introduced
by the embedding provide models with either isotropic
and anisotropic pressures or charge and uncharged mod-
els. Randall and Sundrum [37] developed the notion of
the brane-world scenario, which established a strong
interest in higher-dimensional manifolds and modi-
fied gravity theories. Higher-order gravity theories are
important in generating models for astrophysical objects
and the brane-world scenario provides a natural exis-
tence of anisotropic pressure within the stellar fluids
[38]. The solutions to the Einstein–Maxwell field equa-
tions in general relativity have a number of different
applications.

In the earlier studies for class I space–times, the
gravitational potentials were chosen in generating exact
models. In this model, we consider only the integrabil-
ity condition that arised from the Karmarkar condition
without any limitations on the gravitational potentials.
We consider only the existence of the Karmarkar condi-
tion. In this study, we transform the Karmarkar condition
and the Einstein–Maxwell system using the Durga-
pal and Bannerji [39] transformation. The technique of
transforming Einstein–Maxwell field equations to new
forms have been applied in the models of Komathiraj
and Sharma [15], Manjonjo et al [40] and Thirukkanesh

and Maharaj [41]. With some analytical calculations to
the transformed equations, the gravitational potentials
y(x) and z(x) are expressed in terms of the electric
field and the measure of anisotropy. This enables us
to choose suitable forms for the anisotropic factor and
electric charge to generate new models that generalise
particular solutions from the previous studies.

The outline of this paper is summarised as follows:
In §1, we give the introduction on the study of gen-
eral relativity and embedding. Section 2 describes the
Einstein–Maxwell field equations and charged relativis-
tic model. In §3, we present the Einstein–Maxwell field
equations via the embedding approach for a spherically
symmetric metric. In this section, we also apply the
transformation by Durgapal and Bannerji [39] to the
field equations. In this section, we present the sufficient
and necessary conditions for a class-I space–time. In
§4, we present exact solutions. Charge and measure of
anisotropy are specified from physical grounds so as
to generate the required model. Some particular known
solutions are presented in §5 that are regained from the
previous section. In §6, we describe physical validity
conditions for the solutions. We present the discussion
and analysis of the physical results in §7.

2. Einstein–Maxwell field equations

The behaviour of electric and gravitational fields in
class-I space–time is considered in four-dimensional
space with coordinates (xi ) = (t, r, θ, φ). The standard
line element described with Schwarzschild coordinates
is defined by

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θ dφ2),

(1)

where ν(r) and λ(r) represent gravitational potentials.
Reissner and Nordstrom described the exterior line ele-
ment for a spherical symmetric metric with charge as

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2

+
(

1 − 2M

r
+ Q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2), (2)

where M represents the mass of a relativistic star and Q
stands for electric charge. The Einstein–Maxwell field
equations for the distribution of anisotropic fluids are
given as

τ ij + Ei
j = Ri

j − 1

2
Rgij . (3)
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The energy–momentum tensor and Ricci tensor are rep-
resented by τ ij and Ri

j respectively. R and Ei
j stand

for the scalar curvature and the electromagnetic field
respectively. The energy–momentum tensor and elec-
tromagnetic field for anisotropic distribution of matter
in (3) are represented by the expressions

τ ij = (ρ + pt )υ
iυ j − ptδ

i
j + (pr − pt )χ

iχ j , (4)

Ei
j = FimFjm − 1

4
δij F

mnFmn. (5)

In (4), ρ stands for energy density, pr stands for radial
pressure, pt stands for tangential pressure, υ i stands for
the four-velocity vector and χ i stands for a unit space-
like vector in the radial direction. For uncharged material
Ei

j = 0.
The Einstein–Maxwell field equations is determined

from eqs (1), (3), (4) and (5) to obtain the following
equations:

ρ(r) + 1

2
E2 = 1 − e−λ

r2 + e−λλ′

r
, (6a)

pr (r) − 1

2
E2 = ν′e−λ

r
− 1 − e−λ

r2 , (6b)

pt (r) + 1

2
E2 = e−λ

4

(
2ν′′ + ν′2 − ν′λ′

+2ν′

r
− 2λ′

r

)
, (6c)

eλ/2

r2 (r2E)′ = σ, (6d)

� = pt − pr

= e−λ

(
ν′′

2
− ν′λ′

4
+ ν′2

4

−ν′ + λ′

2r
+ eλ − 1

r2 − E2
)

. (6e)

In the system of field equations (6), primes represent
derivatives with respect to r , � stands for anisotropy
and σ stands for proper charge density. At the centre
of the stellar object, � = 0. That is, pt = pr with
isotropic pressure. In this model, we take into account
that the speed of light is unity (8πG = c = 1).

3. Field equations via embedding

It is well established in general relativity that the line ele-
ment (1) can be embedded into five-dimensional space
giving the Kamarkar condition. Eisenhart [42] proposed
the use of the symmetric tensor bμβ in the Karmarkar
condition to describe the structure and properties of
stellar bodies. The Riemannian space that utilises the

symmetric tensor bμβ is given by

Rμναβ = ε(bμαbνβ − bμβbνα), (7)

0 = bμν;α − bμα;ν, (8)

with ε = +1 or −1 and semicolons represent covariant
derivatives. The non-zero components of the symmetric
tensor bμα generate non-zero values of the Riemannian
curvature corresponding to (1). These non-zero compo-
nents of the Riemann curvature are given as

R1414 = −eν

(
ν′′

2
+ ν′2

4
− λ′ν′

4

)
, (9a)

R2323 = −eλ r2 sin2θ (eλ − 1), (9b)

R1212 = 1

2
r λ′, (9c)

R3434 = −1

2
sin2θ ν′eν−λ. (9d)

The Karmarkar condition is developed by incorpo-
rating the non-zero components b11, b22, b33 and
b14 with b33 = b22 sin2θ and the non-zero components
of the Riemann curvature tensor (9) to get the equation

R1414 = R1212R3434 + R1224R1334

R2323
, (10)

where R2323 �= 0 [30,43].
Substituting (9) into (10), we obtain a differential

equation that is highly non-linear and is given as

λ′eλ

eλ − 1
= 2ν′′

ν′ + ν′. (11)

Solving differential equation (11) gives a useful equa-
tion that relates the metric functions ν(r) and λ(r) by

e
ν
2 = C + H

∫ √
(eλ(r) − 1)dr , (12)

where C and H are constants of integration. In order
to develop a charged exact model in the embedding
approach, the gravitational potential λ(r) and electro-
magnetic field are restricted on physical grounds. In our
model, we apply an alternative approach by introducing
new variables as described in Durgapal and Bannerji
[39]. This provides some useful findings in describing
the behaviour of a relativistic star. We have the freedom
to choose the anisotropic factor and electromagnetic
field in generating the new model.

In implementing new coordinates in (6), an equiv-
alent form of the Einstein–Maxwell field equations is
obtained. This is done by utilising the transformation

x = r2, (13a)

z(x) = e−λ(r), (13b)

y(x) = eν(r). (13c)
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Equations (13) transform system (6) into

ρ(x) + 1

2
E2 = 1 − z

x
− 2 ż, (14a)

pr (x) − 1

2
E2 = 2 z

ẏ

y
− 1 − z

x
, (14b)

pt (x) + 1

2
E2 = 2x z

ÿ

y
+ (2 z + x ż)

ẏ

y

−x z
ẏ2

y2 + ż, (14c)

σ 2(x) = z

4πx
(x Ė + E)2, (14d)

� = pt − pr

= z

(
2x

ÿ

y
− x

ẏ2

y2

)
− 1 − z

x

+ż

(
1 + x

ẏ

y

)
− E2, (14e)

where the dots in (14) represent derivatives with respect
to x .

4. Exact solutions

System (14) has eight unknown variables z, y, pr , �,

pt , ρ, E and σ . To solve these equations, eq. (12)
resulted from the Karmarkar condition (11) is expressed
in terms of the variables y and z to obtain the gravita-
tional potential

y(x) =
(
C + 1

2
H

∫ √
1 − z

xz
dx

)2

. (15)

We can find a simple case when the integration constant
H = 0. Then, eq. (15) reduces to

y(x) = C2. (16)

Substituting (16) into (14e), we obtain a simple linear
differential equation in z given by

� = ż − z

x
+ 1

x
− E2. (17)

Integrating (17) gives

z(x) = x
∫

� + E2

x
dx + mx + 1, (18)

where m is a real constant.
Now, it is possible to write the matter variables in eq.

(14) in terms of the electric field E2 and measure of
anisotropy � as

ρ= − 3

(∫
�+E2

x
+m

)
− 2� − 5

2
E2, (19a)

pr =
⎛
⎜⎝2H

⎛
⎝x

∫
� + E2

x
dx + mx + 1

⎞
⎠

1/2
⎞
⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

√
1−

(
x

∫
�+E2

x dx+mx+1
)

x1/2

(
C+1

2 H
∫ √

1−
(
x

∫ 8 π �
x dx+mx+1

)

x
(
x

∫
�+E2

x dx+mx+1
) dx

)

⎞
⎟⎟⎟⎟⎟⎠

+
∫

� + E2

x
dx + m + 1

2
E2, (19b)

σ 2=

(
x

∫
�+E2

x dx+mx+1

)

4πx
(xE

′+E)2, (19c)

pt = pr + � − E2. (19d)

To fully describe the model’s gravitational behaviour
in terms of stability, equilibrium and regularity condi-
tions, one should specify the anisotropic factor and the
electric field. In various research works, system (19) has
been extensively studied with some particular restric-
tions in anisotropic factor and electric field. This is seen
in models generated by Komathiraj and Sharma [33] and
Manjonjo et al [44].

In this study, the following forms of anisotropic fac-
tor and electromagnetic field are introduced on physical
grounds to generate a realistic model associated with
system (19):

� = (a + bmx)x

( j + cx)n+2s , (20)

E2 = k(d + h)x

( j + cx)n+2s , (21)

where a, b, c, d, h, j, m, n and s are real constants.
We choose these forms to generate realistic astrophysi-
cal models that generalise particular solutions derived in
previous studies. The choices satisfy the required prop-
erties for physical models. We observe that � = 0 and
E = 0 at the centre of the stellar object, that is, at
x = 0. These behaviours are necessary for physical
realistic stellar models.

Some particular choices of charge and anisotropy used
by various researchers are derived from our general
choices (20) and (21) for some parameter settings. These
are obtained in the following cases:

Case I: Plugging a = b = 0 and n = 0, c = j = s =
k = h = d = 1 into eqs (20) and (21) respectively,
we regain the forms of pressure anisotropy and electro-
magnetic field that were used by Manjonjo et al [40] in
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generating Einstein–Maxwell field equations with con-
formal flat space–time with

� = 0,

E2 = 2x

(1 + x)2 .

Case II: When a = β, b = n = 0, c = a, j = s = 1,

and c = a, n = 0, s = j = k = 1, h = −β, d =
α are substituted into eqs (20) and (21) respectively,
we regain the forms of anisotropic and electromagnetic
fields that were used by Maharaj et al [45] and expressed
as

� = (α − β)x

(1 + ax)2 ,

E2 = βx

(1 + ax)2 .

Case III: Plugging d = n = 0, c = j = s = k =
1, h = α into eq. (21), we obtain the form of electro-
magnetic field used by Maharaj and Komathiraj [18] in
generating Einstein–Maxwell field equations with

E2 = αx

(1 + x)2 .

Case IV: If j = s = 1, n = 0, k = aα, c = d = b,
h = −a in eq. (21), we regain similar form of electro-
magnetic field used by Thirukkanesh and Maharaj [46]
as

E2 = αa(b − a)x

(1 + bx)2 .

Case V: If n = 0, s = h = j = d = 1, k = E, c = b,
in eq. (21), we obtain the form of electromagnetic field
specified by Mafa Takisa and Maharaj [47] in generating
the Einstein–Maxwell field equations model with

E2 = 2 E x

(1 + bx)2 .

Case VI: For h = n = 0, s = j = d = 1, k = c = b,
in eq. (21) we obtained similar form of electromagnetic
field used by Thirukkanesh and Maharaj [41] in generat-
ing the well-behaved Einstein–Maxwell field equations
model with

E2 = αbx

(1 + bx)2 .

We see from all these cases that � = 0 and E = 0 at the
stellar centre. This shows that our choice of anisotropy
and electric field can generate stellar models with phys-
ical significance. This is seen from the plots in figures
1–16.

Substituting (20) and (21) into (18) and on integration,
the gravitational potential z becomes

z(x)

= 1 − x ( j + cx)1−n−2s (ac (−2 + n + 2s) + B)

c2(−2 + n + 2s)(−1 + n + 2s)
,

(22)

where

B = bm j + c (d(−2 + n + 2s) + h(−2

+n + 2s)bm (−1 + n + 2s) x
)
.

We observe from (22) that z = 1 at the centre of the
sphere (x = 0). This shows that our gravitational poten-
tials are regular at the centre. The class-I space–time
provides an equation that relates the gravitational poten-
tials. If we have the gravitational potentials z(x), then
we can easily obtain the second gravitational y(x) by
using eq. (15).

It is now possible to generate the general Einstein–
Maxwell field models using system (14) with the
following metric functions and matter variables:

eν = C2, (23a)

eλ(x) = 1

1 − x( j+cx)1−n−2s(ac(−2+n+2s)+B)
D

, (23b)

ρ(x) =
(

( j + cx)1−n−2s

2D

) ((
6bm j2 + 6cj

× (d(−2 + n + 2s) + h(−2 + n + 2s)

+bm(n + 2s)x
) − 2ac(−2 + n + 2s)

× (−3 j + c(−5 + 2n + 4s)x) − c2x (d

× (−2 + n + 2s)(−10 + 4n + 8s + k

× (−1 + n + 2s)) + h(−2 + n + 2s)

× (−10 + 4n + 8s + k(−1 + n + 2s))

+2bm
(
7 + 2n2 − 18s + 8s2

+n (−9 + 8s)) x)) , (23c)

pr (x) = ( j + cx)−n−2s

2

(
2 ( j + cx)

D

× (
ac(−2 + n + 2s) + bm j

+c(2d(−2 + n + 2s)2h + (−2 + n

+2s) + (d + h) x + bm(−1 + n

+2s)x)

)
, (23d)

pt (x) = ( j + cx)−n−2s

2

(
− (d + h) x + 2

D

× (−bm j2 + ac(−2 + n + 2s)(− j

+c(−2 + n + 2s)x) − cj (2d(−2

+n + 2s) + 2h(−2 + n + 2s)
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+bm(n + 2s)x) + c2x (2d(−2 + n

+2s)2bm + (3 + n2 + 4n(−1 + s)

−8s + 4s2x)
)) )

, (23e)

σ 2(x) = (d + h)2k2x2

4π
( j + cx)−2(1+n+2s)

×(−2 j + c(−2 + n + 2s)x)2

×
(

1 − H (ac (−2 + n + 2s) + B)

D

)
, (23f)

where

B = bm j + c (d(−2 + n + 2s) + h(−2

+n + 2s)bm (−1 + n + 2s) x
)
,

D = c2 (−2 + n + 2s) (−1 + n + 2s),

H = x ( j + cx)1−n−2s .

The structure and properties at the interior of the stellar
bodies from system (23) are found to be free from sin-
gularity and well behaved. Other specific models to the
Einstein–Maxwell field equations (14) can be deduced
for different choices of the gravitational potentials, mea-
sure of anisotropy and the electromagnetic field on
physical grounds by utilising the Karmarkar condi-
tion. This adds value to the research of dimensionality
of space–time to higher pseudo-Euclidean dimensional
space [2,12,23,25]. Moreover, we have presented the
physical analysis and acceptable behaviour of the model
through graphical representation.

5. Known physical models

Particular choices for � and E2 studied previously are
given in the previous section. In addition, we can regain
known models, which satisfy the physical requirements,
with simple forms for the potential z(x) in (22). From
the solution for z(x) represented in (22), we regain some
charged or uncharged models found in previous research
works. This is done by considering the gravitational
potential z(x) in (22) for certain parameter settings. For
some particular choices of a, b, c, d, h, j, m, n and
s, we obtain the following models:

Model I: When s = 1, a = 0, b = 2, c = 1, j =
1, n = 1, h = 1

2 , d = 0 in eq. (22), we regain the famil-
iar anisotropic models generated by Finch and Skea [48],
Hansraj and Maharaj [49] and Manjonjo et al [44] with

z(x) = 1

1 + x
.

Model II: If s = 0, n = 0, c = 0, b = 1, m = 1, d =
1 in eq. (22), we obtain the Schwarzchild metric [28]

Figure 1. Potential eν vs. radial interval r .

given by

z(x) = 1 + x .

Model III: Plugging s = 1, n = 1, a = 0, b =
2c3, h = 1

2 ,m = 1, j = 1 in eq. (22), we obtain the
potential used by Feroze and Siddiqui [20] given by

z(x) = 1

1 + cx
.

6. Physical conditions

In this section, we present a detailed physical analy-
sis of the model generated in this work. In relativistic
astrophysics, stellar models need to satisfy physical
requirements. For physical acceptability, we need to
find out if the exact solution satisfies important condi-
tions including regularity, stability, equilibrium and the
energy conditions. These physical conditions are neces-
sary when generating stellar models with astrophysical
significance.

6.1 Regularity

The model is finite, continuous and regular. It is free
from physical and geometric singularities with non-zero
values of metric functions eν |x=0 and eλ|x=0 = 1. This
is shown in figures 1 and 2. The radial pressure, tan-
gential pressure and energy density are also finite and
they are decreasing monotonically away from centre.
This behaviour is shared in the work by Moopanar and
Maharaj [50], Murad [51], and Murad and Fatema [52].
The graphical representation of these matter variables
are given in figures 3–5.
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Figure 2. Potential eλ vs. radial interval r .

Figure 3. Energy density ρ vs. radial interval r .

Figure 4. Radial pressure pr vs. radial interval r .

Figure 5. Tangential pressure pt vs. radial interval r.

Figure 6. Energy conditions ρ − pr and ρ − pt vs. radial
interval r.

Figure 7. Energy conditions ρ −2pt − pr vs. radial interval
r.
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Figure 8. Energy conditions ρ − 3pr and ρ − 3pt vs. radial
interval r .

Figure 9. Forces vs. radial interval r.

Figure 10. Proper charge density σ vs. radial interval r.

Figure 11. Stability index � vs. radial interval r .

Figure 12. Speed of sound dpr/dρ vs. radial interval r.

6.2 Energy conditions

Our class of exact solution for anisotropic compact stars
satisfies all energy conditions. These conditions include
null energy condition (NEC), weak energy condition
(WEC), strong energy condition (SEC) and dominant
energy condition (DEC) which are described by the fol-
lowing inequalities:

NEC : ρ ≥ 0,

WEC : ρ − pt ≥ 0, ρ − pr ≥ 0,

SEC : ρ − 2pt − pr ≥ 0,

ρ − 3pr ≥ 0, ρ − 3pt ≥ 0,

DEC : ρ − |pt | ≥ 0, ρ − |pr | ≥ 0.

The plots given in figures 3, 6–8 show that our model
satisfies all these inequalities throughout the stellar inte-
rior.
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6.3 Equilibrium conditions

In order to examine the equilibrium condition for the
charged stellar model in (23), the Tolman–Oppenheimer–
Volkoff developed by Tolman [53] is used. This is given
as

− MG(ρ + pr )

r2 e(λ−ν)/2 − dpr
dr

+ σ E2eλ/2 = 0, (24)

where MG(r) is the effective gravitational mass given
by

MG(r) = 1

2
r2ν′e(ν−λ)/2. (25)

Substituting (25) into (24) gives

− ν′

2
(ρ + pr ) − dpr

dr
+ σ E2eλ/2 = 0. (26)

From (26), we obtain gravitational, hydrostatic and elec-
tric forces that are defined by

Fg = −ν′

2
(ρ(r) + pr (r)), (27a)

Fh = −dpr (r)

dr
, (27b)

Fe = σ E2eλ/2. (27c)

The equilibrium condition is satisfied if the sum of the
forces in (27) are zero so that

Fe + Fg + Fh = 0. (28)

On transforming MG(r), Fe, Fg, Fh , we obtain the
following equivalent forms:

mg(x) = x3/2y1/2z1/2 ẏ

y
,

Fg = mg(x)
(ρ + pr (x))

x
y1/2z1/2,

Fh = −dpr (x)

dx
,

Fe = σ E2eλ/2

= z E2(x Ė2 + E2)

3.544 x1/2 .

The explicit forms of these forces for this solution are
then given by

Fg = Mg(x)
(ρ + pr (x))

x
y1/2z1/2,

Fh = −( j + cx)1−n−2s

2
(−4hj + d(−4 + k) j

+hk j − 4chx + chkx − chknx

−2ch ksx + cd (−4 − k (−1 + n + 2s)) x

−2bmcx2 − 2a ( j + cx)
)
, (29a)

Fe = − 1

2
√

π
(d + h)2 x

3
2 ( j + cx)−1−2n−4s

×k2 (−2 j + c (−2 + n + 2s) x)

(
1 − H

D
× (ac(−2 + n + 2s) + bm j + c (d(−2

+n + 2s) + h(−2 + n + 2s)bm(−1

+n + 2s)x))

)
, (29b)

where

D = c2 (−2 + n + 2s) (−1 + n + 2s),

H = x ( j + cx)1−n−2s .

The behaviour of these forces is illustrated in figure 9.

6.4 Stability through adiabatic index

It is possible to analyse the stability of relativistic stars
for the generated solutions. This is done by using the
adiabatic index (�), which is required to be � > 4

3 .
Singh et al [30] and Matondo et al [54] described that
the adiabatic index is given by the condition

� =
(

ρ + pr
pr

dpr
dρ

)
. (30)

We note from figure 11 that the adiabatic index is greater
than the required lower limit.

6.5 Mass–radius relation

In class-I space–time, the mass to radius relation for a
charged compact star is given by

m(x) = k

2

∫ x

0
(ρ(y) + E2)y1/2dy

=
⎛
⎜⎝12.56 x3/2 ( j + cx)−n−2s

(
1 + cx

j

)n+2s

105c2 (−2 + n + 2s) (−1 + n + 2s)

⎞
⎟⎠

× (−35
(
c2(d + h)k

(
2 + n2 − 6s + 4s2

+n (−3 + 4s)) + 3c(a + 2(d + h))(2 + n

+2s) j + 3bm j2(1 − 10.843x) + 3cx (7 (ac

×(10 − 9n + 2n + 2n2 − 18s + 8ns + 8s2)
+bc

(
2 + n2 − 6s + 4s2 + n + (−3 + 4s)

)
+c(−2 + n + 2s)(2d(−5 + 2n + 4s))

+h(−11 + 5n + 10s) − 3bm(n + 2s)

×j (1−12.9088x+5bmc
(
7+2n2−18s+8s2

+n(−9 + 8s)(1 − 14.0562x)))))) . (31)
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Figure 13. Mass vs. radial interval r.

Figure 14. Compactness μ vs. radial interval r.

The model shows that the mass function obtained
above is acceptable. The nature of variation of the above
expression for mass can be easily observed in figure 13.

6.6 Matching condition

To develop the anisotropic models for class-I space–time
in general relativity, it is important to note that at the
boundary r = R of the relativistic star, the interior and
exterior line elements are matched smoothly. Matching
also gives the mass–radius relation at the surface of the
relativistic star. For matching, we equate eqs (1) and (2)
as

eλ =
(

1 − 2m

r
+ Q2

r2

)−1

, (32a)

eν =
(

1 − 2m

r
+ Q2

r2

)
. (32b)

In addition, the radial pressure must vanish at the bound-
ary. This is clearly seen from figure 4. Using eqs (16),
(21), (22) and (31) the matching in (32) becomes

0 =
⎛
⎜⎝25.12 x3/2 ( j + cx)−n−2s

(
1 + cx

j

)n+2s

105R

⎞
⎟⎠

× (−35
(
c2(d + h)k

(
2 + n2 − 6s + 4s2

+n (−3 + 4s)) + 3c(a + 2(d + h))(2 + n

+2s) j + 3bm j2(1 − 10.843x) + 3cx (7 (ac

× (
10 − 9n + 2n + 2n2 − 18s + 8ns + 8s2)

+bc
(
2 + n2 − 6s + 4s2 + n + (−3 + 4s)

)
+c(−2 + n + 2s)(2d(−5 + 2n + 4s))

+h (−11 + 5n + 10s) − 3bm(n + 2s)

× j (1 − 12.9088x + 5bmc
(
7 + 2n2 − 18s + 8s2

+n(−9 + 8s)(1 − 14.0562x))))))

×(ac(−2 + n + 2s) + B) + x( j + cx)(1−n−2s)

+R2 k(d + h)x

( j + cx)n+2s (33a)

0 =
⎛
⎜⎝25.12 x3/2 ( j + cx)−n−2s

(
1 + cx

j

)n+2s

105Rc2 (−2 + n + 2s) (−1 + n + 2s)

⎞
⎟⎠

× (−35
(
c2(d + h)k

(
2 + n2 − 6s + 4s2

+n(−3 + 4s)) + 3c(a + 2(d + h))(2 + n

+2s) j + 3bm j2(1 − 10.843x) + 3cx (7 (ac

× (
10 − 9n + 2n + 2n2 − 18s + 8ns + 8s2)

+bc
(
2 + n2 − 6s + 4s2 + n + (−3 + 4s)

)
+c(−2 + n + 2s)(2d(−5 + 2n + 4s))

+h(−11 + 5n + 10s) − 3bm(n + 2s)

× j (1− 12.9088x + 5bmc
(
7 + 2n2 − 18s + 8s2

+n(−9 + 8s)(1 − 14.0562x)))))) − 1

− (
C2 + R2) k(d + h)x

( j + cx)n+2s (33b)

0 = pr (r = R). (33c)

System (33) represents the matching condition with
a, b, c, d, h, j, m, n and s being real constants. We
also find that the number of free parameters are sufficient
to satisfy condition given in system (33).

7. Discussion

In the present work, we have used transformations
first adopted by Durgapal and Bannerji [39] to trans-
form the Einstein–Maxwell equations. The embedding
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Figure 15. Charge E2 vs. radial interval r.

Figure 16. Measure of anisotropy � vs. radial interval r.

approach has been used to provide an equation relat-
ing the gravitational potentials z(x) and y(x). We have
chosen the anisotropic factor and electric field to gen-
erate the anisotropic charged solution. The generated
solution shows that the gravitational potentials eν and
eλ are free from geometrical singularities, finite and
well behaved. This is clearly seen in figures 1 and 2.
The radial pressure, tangential pressure and energy den-
sity are monotonically decreasing away from the centre
of the relativistic star. This is observed in figures 3–5.
In this study, we have generalised the models of inte-
rior Schwarzchild metrics [28], Manjonjo et al [40] and
Finch and Skea [48]. Moreover, the investigations by
Feroze and Siddiqui [20], and Hansraj and Maharaj [49]
are also derived from our model. System (23) represents
a new class of static spherically symmetric stellar mod-
els for charged stars.

We have analysed the model by investigating the
behaviour of the matter variables graphically. This was

done by using the Python programming language with
the particular choices of the real constants: s = 1, m =
2, h = 2.4, a = 2, b = 1, c = 3, d = −3, n =
1, j = 0.166, k = 2. It is clearly seen from figures
3–5 that the matter variables ρ, pr and pt are positive,
monotonically decreasing and finite everywhere in the
interior of the star. The weak energy condition, strong
energy condition, dominant energy condition and null
energy condition are simultaneously satisfied by our
solution as shown in figures 3, 6–8. We also observe
that the sum of the forces (electric force, hydrostatic
force and gravitational force) introduced from the TOV
equation is zero. This indicates that the model is in an
equilibrium state as shown in figure 9. In figure 10, the
profile of the proper charge density is non-singular at
the origin and it is also monotonically increasing.

We have also analysed the stability of the model by
using the variation of the adiabatic index. The behaviour
of the adiabatic index is shown in figure 11. This value
is greater than the required lower limit, � > 4

3 . We
observe in figure 12 that the speed of sound is monoton-
ically decreasing and less than the speed of light [55].
From figures 13 and 14, it is observed that the mass and
compactness of the model are monotonically increasing
from the centre to the surface. The electromagnetic field
in eq. (21) guarantees that charged spheres also have the
property of physically reasonable uncharged models as
addressed in studies by Maharaj and Leach [56], and
John and Maharaj [57]. It is important to note that there
are anisotropic models in which the charge may initially
increase near the centre and decrease away from the cen-
tre. In this case, figure 15 displays the magnitude of the
charge showing that the charge profile monotonically
increases and then decreases. This structure of electric
field is acceptable and can be observed in the models
by Maharaj et al [45,58]. The measure of anisotropy as
shown in figure 16 obeys the properties of the stellar
model which is shared by Maharaj et al [58] and Sunzu
et al [59].

Our analysis shows that embedding of class-I space–
time can be utilised to generate Einstein–Maxwell
exact solutions. This research work gives a broader
understanding on the study of compact objects. For
further investigations, one can make other choices of
gravitational potentials, measure of anisotropy and elec-
tromagnetic field to develop new models. Our approach
has the advantage of regaining a number of physical
models found in the past as illustrated in §5.
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