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Instability dynamics in gyrogravitating astroclouds with cosmic
ray moderation in non-ideal MHD fabric
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Abstract. The evolutionary instability dynamics, which is naturally excitable in an astrophysical complex
gyrogravitating partially ionised molecular cloud in a magnetic field, is herein semianalytically investigated. It
is rooted in a non-ideal classical non-relativistic magnetohydrodynamic (MHD) mean-fluidic model fabric. The
effects of fluid kinematic viscosity, cosmic rays and tidal force field are concurrently included. Application of a
standard normal mode analysis reduces the astrocloud into a unique generalised linear quartic dispersion relation
having atypical variable coefficients. A numerical illustrative analysis shows that the instability is noticeably damped
(grown) in the viscous (inviscid) domains. The magnetic field and rotation have stabilising influences against the
non-local self-gravity. In contrast, the cosmic ray pressure and tidal interaction destabilise the cloud along its
self-gravity. We see that the ambipolar diffusion is the only non-ideal MHD factor with significant stimulus on the
magneto-acoustic waves. The non-trivial results explored here match with the prior predictions both as special cases
and stimulating corollaries relevant in the bounded astrostructure creation dynamics.

Keywords. Stability; non-ideal magnetohydrodynamics; self-gravity; cosmic rays; tidal force; astrostructure
formation.
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1. Introduction

The evolutionary dynamics of the expanded collective
instability excitations in star-forming complex molec-
ular clouds has attracted immense attraction among
researchers in recent years. This is due to the not-
well-understood active roles played by such waves and
instabilities in various kinetic processes of the complex
fluid material transports leading to superdense phases
responsible for the initiation of gravitationally bounded
non-homologous structure formation in varied astro-
cosmo-plasmic circumstances [1–5]. An example in this
milieu may be the formation of massive stars in the
Orion molecular cloud – exhibiting a rich plethora of the
excited active waves, collective oscillations and cooper-
ative instabilities – mainly at the cloud surface boundary
[6].

For exploring the complex dynamical processes preva-
lent in structuring the astroclouds tentatively, an ideal
magnetohydrodynamic (MHD) mean-fluidic approach
has extensively been applied for the stability analy-
ses in the recent astrocosmic scenarios [7–10]. In this

direction, it has been established in the past that a
self-gravitating, partially ionised and magnetised cloud
becomes gravitationally unstable on the grounds that
the non-local self-gravity overcomes the conjoint action
of the magneto-thermal pressure support on the spatial
scales of the evolutionary cloud [11–14]. The presence
of the wide-range MHD spectral waves and collec-
tive fluctuations provide stabilising stimuluses against
the canonical self-gravitating cloud collapse triggering
the formation mechanism of diverse non-homologous
astrostructures in reality [11,15].

It has been reported in another work (ideal, isother-
mal MHD) that, the critical Jeans length, λJB, and the
critical Jeans mass, MJB, increase drastically in the pres-
ence of a magnetic field relative to the field-free normal
counterparts as

λJB = 10λJ (1 + MA)1/2 and MJB = MJ (1 + MA)1/2 ,

where λJ is the usual Jeans length, MJB = vA/cs is the
Alfvenic Mach number and MJ is the usual critical Jeans
mass [13]. Apart from the above, it has also been shown
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that similar cloud collapse in the real astronomical sit-
uations gets triggered at the cost of slow waves [12].
It has been highlighted therein that, the non-local self-
gravity could act as an alternate source for sustaining
fluid turbulence needed for the antigravity pressure sup-
port, if the energy supply from giant structure formation
is almost negligible, and so forth [12,16]. Parallely, the
main distinction between the traditional magnetically
driven and gravitationally driven ambipolar diffusions
in normal star-forming clouds has also been reported
[16]. It has been demonstrated that the former acts as
a cloud stabiliser and the latter as a cloud destabiliser
against the collapse [17]. It is restricted on the grounds
that the growth rate of the latter (gravitational diffusion)
cannot exceed the free in-falling rate of the cloud matter
against the former (magnetic diffusion).

We cannot ignore the fact that, in the case of
magnetised partially ionised self-gravitating plasmas,
concentration-induced diffusive drifts originate from
the diversified collisional effects leading to momentum
transports among the diversified constitutive species.
It results in a significant number of unavoidable non-
ideal effects in the involved MHD description. These
non-idealities still remain to be well explored and well
understood in the real domains of astronomical rele-
vancy. In such a situation, the plasma inertia as well
as the non-ideality effects are simultaneously impor-
tant as far as the bulk fluid behaviour is concerned. In
the mean-fluidic fabric, several researchers have stud-
ied the non-ideal MHD wave excitation, propagation
and instability dynamics in different situations [18–22].
Based on such reports, it is noted that the coupling of
the magnetic field lines with the constitutive neutral
species is given by a specific parameter, known as the
Hall parameter β j = ωcj/υ j , which is the ratio between
the cyclotron frequency and the collision frequency of
the constituents (plasma–plasma plus plasma–neutral).
Such coupling phenomena are described with the help
of the electromagnetic induction equation in a modi-
fied form involving ambipolar diffusion and Hall drift
in addition to the usual Ohmic diffusion [19–22].

The Hall-induced MHD instability in normal magne-
tised fluids is indeed non-dissipative in nature playing
an active role in the redistributive cascading processes
of magnetic energy from large-to-small scales [23]. The
structure-forming molecular cloud cores become gravi-
tationally unstable in the presence of the Hall catalytic
action leading thereby to the formation of stellar disks.
In contrast, if the Ohmic, ambipolar and Hall diffusions
are simultaneously included in a differentially rotat-
ing disk system (with weak ionisation ∼10−4−10−8),
new unstable modes may be excited [16–18]. As a
direct consequence, the ambipolar diffusion and dif-
ferential disk rotation couple together to amplify the

intrinsic magnetic field in the disk [24,25]. The self-
gravitational fragmentation of the clouds into stars is
enhanced because of the reduction in cloud magnetic
energy due to weak neutral plasma coupling in the pres-
ence of ambipolar diffusion [26]. In fact, the ambipolar
diffusion is more prominent in rarer clouds. It is due
to the fact that the ambipolar dissipation time scale
(∼105 yr) is much lower than the Ohmic dissipation
one (∼1015 yr). So, the plasma particles can drift along
the field lines due to the action of the electromagnetic
Maxwell stress [27].

Apart from the above, the fluid kinematic viscosity
is another key parameter affecting such dynamics [28].
This damping agency helps in the relaxation process
of the microscopic molecular motions in the fluid, and
thus, usually acts as a fluid-cloud stabiliser against the
non-local self-gravity. In parallel, another unavoidable
factor to be considered in the star formation processes
is the tidal force field effect [29–32]. The tidally gen-
erated waves participate in the overall redistribution of
the transport properties, such as the angular momen-
tum, mass, energy, and so on. In the case of a rotating
fluid body, the dissipation of the waves is dependent
on the tidal frequency, which increases with the size of
the body, and vice versa [30]. As the tidal force is an
external gravitational source arising from neighbouring
objects [29–32], it helps in the growth of instability in a
self-gravitating system, which, indeed, counteracts the
effects of magnetic field, thereby, leading to halt the
fragmentation. In other words, it is seen that [31], the
action of a typical disruptive tidal field provides stabil-
ity against the gravitational collapse. It results in the
enhancement of the effective Jeans scale length (super-
Jeans) relative to the usual Jeans case (critical-Jeans).
Even a compressible tidal field can make such per-
turbations easily grow even when the cloud mass is
sub-critical (sub-Jeans) relative to the usual picture [31].

The compressive tidal force is one of the responsi-
ble factors for the formation and evolution of stellar
structures in the presence of a magnetic buoyancy force
[32]. It may be pertinent to add here that the Corio-
lis force, which is another addition to stellar catalytic
agencies, is an inertial force, acting as a rotational cor-
rection over the Newtonian fluid equation in a uniformly
rotating frame of reference [10,14,30,33]. Such Cori-
olis rotations of astroclouds change the properties of
tidally generated waves substantially [33]. It seems that
astrofluid stability analyses depicting the structure for-
mation are inadequate in the absence of the Coriolis
rotation effects.

The energetic cosmic rays (∼1 eV cm−3) arise from
supernova, hypernova remnants and other extrater-
restrial sources [29–34]. The interaction between the
extremely high energetic cosmic rays (∼MeV–TeV) and
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the constitutive cold particles (∼eV) of the ISM intro-
duces the excitation of two-stream types of instability,
or even beam-plasma microinstability, firehose instabil-
ity, dynamo instability and so forth, where the particle
velocities are locally different in different realistic astro-
space situations [35–45]. Such instability patterns could
even saturate in the nonlinear regime to form solitary
pulses, double layers, oscillitons, and other coherent
eigenmode structures [43]. The amplification of the
cosmic magnetic field via the dynamo instability is note-
worthy [1,34,35]. A self-consistent kinetic model has
been developed to address the role of the cosmic rays on
the marginal stability of the kinetic Alfven waves amid
the interstellar (galactic) charged-neutral collisions [40].
It has recently been shown that the charge density and
mass density fluctuations are coupled together to excite
the gravitational instabilities towards the structure for-
mation dynamics [38–45].

It can now clearly be seen here that a full portrayal
simultaneously describing the real astronomic non-ideal
MHD effects and cosmo-tidal phenomenological fac-
tors in rotating viscous star-forming clouds has rarely
been addressed in the past. In other words, the exist-
ing reports have ignored a majority of the important
astrofluidic factors for the sake of simplification, such
as the tidal force field, cosmic ray pressure effects,
Coriolis force, viscosity, etc. This is the main motiva-
tion and novelty of the proposed study aiming at the
real cloud stability dynamics. In particular, we include
synchronously, for the first time, the complex cou-
pling dynamics between the non-ideal MHD factors
and gyro-cosmo-tidal effects. A normal mode analy-
sis results in a linear quartic dispersion relation with
atypical variable dispersion coefficients. A numerical
platform, which is based on a standard root finder [46],
is sensibly built to identify and see the stabilising and
destabilising agencies. It is established principally that
the ambipolar diffusion is the only non-ideal MHD
effect influencing the excitation and propagation of
the magneto-acoustic waves. The reliability aspects of
our non-trivial outcomes found herein are compared,
correlated and validated with the diverse prior spe-
cial cases and corollaries in varied realistic astronomic
circumstances.

2. Non-ideal MHD model analysis

The main goal of our local analysis lies in the deep
analysis of the self-gravitating non-ideal MHD fluctu-
ations in the fabric of a single classical non-relativistic
mean-fluid approach on the relevant astrophysical fluid
scales of space and time. It is well-known that cosmic

rays comprise 10−9 of the interstellar kinetic parti-
cles in such situations. However, their energy density
(∼1 eV cm−3) is that of the constituent thermal particles
[34,35]. The interaction of the energetic cosmic particles
ionises the interstellar gaseous medium (ionisation rate
∼10−16−10−17 s−1). The cosmic rays, magnetic field
and interstellar thermal constituents maintain a pres-
sure equilibrium almost with no thermal energy gradient
[34–36]. The main ionising source of the ISM sensibly
is the local ionising source, such as stars, supernovae,
etc. It ignores the dynamics of intergalactic medium
(space between galaxies ionised by the energetic cosmic
ray particles). So, in our case, the interstellar ionisation
source is the most effective one.

The basic governing equations structuring the con-
sidered fluid consist of the equation of continuity for
fluid net mass conservation, momentum equation for net
force density conservation, electromagnetic induction
equation in a modified (with non-ideality effects) form
for magnetic field dynamics. The system closure finally
comes from the self-gravitational Poisson equation for
the potential distribution sourced in the local material
density fields in the low-frequency approximation [9].
Thus, the equation of continuity for the non-ideal MHD
with all the usual notations in an inertial frame of refer-
ence is given as

∂tρ + �∇ · (ρ �v) = 0, (1)

whereρ = ρe+ρi+ρn andv = (ρeve + ρivi + ρnvn)
/
ρ

are the mean-fluid material density and mean-fluid
velocity contributed by all the constitutive species,
respectively. The subscripts e, i and n signify the con-
stitutive electrons, ions and neutrals, respectively. Thus,
the generalised complex fluid is projected as a single
mean-fluid subjected to all the possible dynamical key
factors relevant to the astrophysical scales of space and
time. A few remarks on the above are given as follows.

As mentioned, we study a partially ionised self-
gravitating dense interstellar dark cold cloud having
a number density of ∼1 cm−3. In this density scale
range, the ionisation, recombination or heat conduction
are not so significant on the astrophysical fluid scales
of space and time. That is why we ignore the radia-
tive effects, such as temperature fluctuations, radiative
loss–gain processes and other photochemical actions in
the evolutionary or growth dynamics of the constituent
particles. Accordingly, the force density or momentum
balance equation that includes concurrently the gravity,
magnetic field and viscosity in the customary notations
[17–20,40] can be cast as

ρ dt �v = −�∇ (PTh + PCR)+(4π)−1 [( �∇ × ⇀

B) × ⇀

B]
−ρ �∇ψ + ρ �Ttidal + 2ρ ( �ωr × �v) + ηv∇2�v, (2)
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where dt = (∂t + �v · �∇) denotes the material deriva-
tive, or Lagrangian temporal derivative, or substantial
derivative. B is the magnetic induction vector (field
strength), ψ is the long-range self-gravitational poten-
tial contributed by the material density field associ-
ated with the heavier fluid constitutive elements in
a non-local form, Ttidal is the tidal force field orig-
inated collectively from the distant gravitating astro-
objects, ωr is the uniform Coriolis rotational frequency
and ηv denotes the kinematic viscosity coefficient of
the astronomic mean-fluidic matter under investiga-
tion.

It may be pertinent to add that the physical sig-
nificance of each of the terms appearing above is a
generic one. As such, (1) indicates the fluid net influx–
outflux balancing. The net force density balance (also,
energy transport equation on its moment integration)
is represented by (2). The term in the LHS in (2) is
well-known to typify the inertial nature of the fluid
parcel under consideration. The first term in the RHS
represents the combined force–density effects stem-
ming from the fluid thermal pressure, PTh, and the
cosmic ray pressure, PCR. The second term in the RHS
represents the Lorentz force arising jointly from the
magnetic tension force, ( �B · �∇)B/4π , and the mag-
netic pressure force, �∇(B2

)
/8π . The third term gives

the non-local cloud-centric self-gravitational force. The
fourth term arises from the tidal force field action.
Similarly, the fifth term originates from the uniform
Coriolis inertial force. Lastly, the sixth term gives the
dissipative effects sourced by the fluid kinematic vis-
cosity.

Now, the electromagnetic induction equation, which
is due to Faraday and Ohm in a generalised form,
describing the spatiotemporal dynamics of the resultant
evolutionary magnetic field lines in the non-ideal MHD
framework [21] in the cloud can be given as

∂t �B = �∇ × (�v × �B) − �∇
×
[

η ( �∇ × �B) + ηH( �∇ × �B) × B̂
+ηA( �∇ × �B)⊥

]
. (3)

The term in the LHS in (3) portrays the temporal accu-
mulation term giving the net field spatial evolution out
of all the non-ideal effects present in the RHS depict-
ing the non-steady processes. The first term in the RHS
gives the advection of the magnetic field lines with the
plasma flowing with velocity v. The second term depicts
the magnetic field line diffusion through the flowing
plasma as a summative effect of the Ohmic (due to the
particle collisions), Hall (due to the heteropolar sym-
metry breaking in the magnetic field) and ambipolar
magneto-diffusive processes (due to the particle concen-
tration gradients). The symbols, η, ηH and ηA denote

the Ohmic, Hall and ambipolar diffusion coefficients,
respectively.

For low density and relatively low degree of ionisa-
tion, the magnetic field lines are frozen into the plasma
fluid and drift together with the neutrals. We can take η,
ηH ∼ 0 , thereby, reducing (3) into a simpler inductive
form [18,21] as

∂t �B = �∇ × [(�v + �vB) × �B], (4)

where �vB = ηA[( �∇ × �B) × �B]/B2 denotes the drift
velocity of the field lines through the plasma due to
the ambipolar magneto-diffusive activity. It is based on
the fact that the electron-cyclotron and ion-cyclotron
frequencies are now estimated as: ωce = 1750 s−1 and
ωci = 3.2×10−2 s−1. In such parametric windows, our
estimation yields βe = 1.47×106 and βi = 3.2×10−2,
which develops the ambipolar diffusion in our partially
ionised cloud plasma model.

As a closure of the fluid model, we apply the gravi-
tational Poisson equation for the non-local long-range
self-gravitational potential distribution created by the
local density field [31] given as

∇2ψ = 4πG (ρ − ρ0) , (5)

where ρ0 denoting the global mean of the fluid mate-
rial density, accounts for the so-called ‘Jeans swindle’
[3,37]. We designate the Newtonian gravitational cou-
pling constant as G = 6.67 × 10−11 m3 kg−1 s−2. It
is perhaps needless to mention here that the swindle
invoked herein acts as an analytic simplification tool in
a judicious way with the help of which the zeroth-order
force field effects arising from equilibrium inhomo-
geneities and non-uniformities in such media may be
ignored and a ‘local normal mode analysis’ could be
carried out with no loss of generality associated with
the fundamental physical laws. We see that, it is not
the material density, rather the material density fluctu-
ations, which develop the gravitational potential in the
inhomogeneous astroplasmas.

2.1 Perturbation analysis

In order to analyse cloud stability locally, we apply a
standard technique of normal mode analysis over the
perturbed cloud about its magnetohydrostatic homo-
geneous (local) equilibrium. We consider the linear
perturbations ( f1) in all the relevant physical variables
( f ) in eqs (1)–(5) to undergo small-scale amplitude (lin-
ear) sinusoidal variation relative to the respective static
equilibrium values ( f0) in the framework of homology
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transformations [1–6] given as

f (x, z ; t) = f0 + f1 (x, z; t) e−i(ω t−kx x−kz z), (6)

f = [ρ v P B ψ] T , (7)

f0 = [ρ0 v0 P0 B0 ψ0] T , (8)

f1 = [ρ1 v1 P1 B1 ψ1] T , (9)

where ω is the radian frequency of the homolo-
gous fluctuations with the radian wave number and
�k (= kx x̂ + kz ẑ

)
is presumed to lie in the xz-plane at an

angle θ with the B-direction. It is evident that (8) rep-
resents plane-wave fluctuations on the ground that the
assumed radius of geometrical curvature of the cloud is
much larger than any other characteristic scale lengths of
the system. In a broader sense, the plane-wave treatment
here is justifiable due to a two-fold region: unbounded
cloud and no geometrical edge effect realisable in the
cloud.

Applying (6)–(9), the homologically transformed
algebraic form of (1)–(5) in the defined wave space
(ω, k) can respectively be derived and presented as

ωρ1 − ρ0 (kxv1x + kzv1z) = 0 (10)

ω2v1x − (1 + α) c2
s kx (kxv1x + kzv1z)

−2iωωryv1z + iωηeffk
2v1x = 0 (11)

ω v1y + B0x

4πρ0

(
kx B1y

)

−2i
(
ωryv1x − ωr xv1z

) = 0 (12)

ω2v1z − (1 + α) c2
s kz (kxv1x + kzv1z)

+ω B0x

4πρ0

[
kx B1z − kz B1x

]

−ω kzψ1 − i (kxv1x + kzv1z) Tz
+2iωωryv1x + iωηeffk

2v1z = 0 (13)

ω B1x = B0xkzv1z (14)

ω B1y = −B0xkxv1y (15)

ω B1z = −
(

ω kx − iηAkxk2
z

ω + iηAk2
x

)

B0xv1z (16)

k2
zψ1 = −ω2

J

ω

(
kxv1x + kzv1z

k2
z

)
. (17)

In the above equations, ηeff = ηv/ρ0 represents
the effective rescaled fluid kinematic viscosity coeffi-
cient, α = PCR0/PTh0 denotes the ratio between the

cosmic ray pressure and plasma thermal pressure, Tz
is the considered tidal force field in the z-direction,
ηA = (ρn/ρi ) v2

A/νni denotes the ambipolar diffusion
coefficient with neutral-ion collision frequency νni and
ωJ = √

4πGρ0 is the Jeans angular frequency. Clearly,
(11)–(13) represent the resolved components of (2) in
the three independent spatial directions of x , y and z,
respectively. Similarly, the components of (3) are shown
by (14)–(16), respectively. In our proposed analysis,
application of (12) and (15) is relaxed as per the non-
ideal MHD model configuration.

2.2 Dispersion relation

As we are interested to investigate the magnetosonic
wave propagation dynamics (transverse to the direction
of the embedded magnetic field), we herewith ignore
the y-directional components of the fluid momentum
transfer and the y-directional contribution from the
electromagnetic induction effects. As a consequence,
the perturbation dynamics in our model takes place
in the xz-plane of the configuration space. We now
resolve the angular wave number k as kx = k cos θ and
kx = k sin θ , where θ is the angle subtended between
the direction of wave propagation and that of the mag-
netic field, B. An algebraic exercise of elimination and
decomposition over (10)–(17) subsequently results in
a linear generalised quartic dispersion relation with an
atypical set of multiparametric coefficients given as

ω4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0 (18)

a3 = i
(
ηeff + 2ηA cos2 θ

)
k2 (19)

a2 = ω2
J − ik sin θTz − ηeff

(
ηeff + 2ηA cos2 θ

)
k4

−ω2
A − (1 + α) ω2

s − 4ω2
ry (20)

a1 =
⎡

⎢
⎣

(
ηeff + 2ηA cos2 θ

) {
k sin θTz + iω2

J − i (1 + α) ω2
s

}

+ ηeffk2
{
k sin θTz − iω2

A − iηAηeffk4 cos2 θ
}

+ 2ωry cos θ
{
kTz + i

(
ω2

J /sin θ
)− 2ikηAωry cos θ

}

⎤

⎥
⎦ (21)

a0 =
⎡

⎢
⎣

(1 + α) ω2
sω

2
A cos2 θ + ηAηeffk4 cos2 θ

.
{
ik sin θTz + (1 + α) ω2

s − ω2
J

}

+2ηAωryk2 cos3 θ
(
ikTz − (ω2

J /sin θ)
)

⎤

⎥
⎦

(22)

where vA = B0/
√

4πρ0 is the Alfven (MHD) wave
phase speed with ωA = kvA as the Alfven radian fre-
quency and ωs = kcs as the magneto-acoustic radian
frequency.
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In order to explore the instability behaviours gov-
erned by the derived unique dispersion relation (18) in
a scale-free (scale-invariant) form, we employ a stan-
dard astronomical normalisation scheme [23]. As per
this organisation, � = ω/ωJ is the Jeans-normalised
(by ωJ) fluctuation frequency and K = k/kJ is the
Jeans-normalised (by kJ) fluctuation wave number. The
normalised form of (20) with a modified set of disper-
sion coefficients thus reads as

�4 + A3�3 + A2�2 + A1� + A0 = 0 (23)

A3 = i
(
ηeff + 2ηA cos2 θ

)
ω−1

J k2
J K

2 (24)

A2 = 1 −
⎡

⎣
i KkJ sin θTz + ω2

A + (1 + α) ω2
s + 4ω2

r y

+ηeff

(
ηeff + 2ηA cos2 θ

)
K 4k4

J

⎤

⎦

×ω−2
J (25)

A1 =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

(
ηeff + 2ηA cos2 θ

)
⎧
⎨

⎩

KkJ sin θTz + iω2
J

−i (1 + α) ω2
s

⎫
⎬

⎭

+ηeff K
2k2

J

⎧
⎨

⎩

KkJ sin θTz − iω2
A

−iηAηeff K
4k4

J cos2 θ

⎫
⎬

⎭

+2ωr y cos θ

⎧
⎨

⎩

KkJTz + i
(
ω2

J /sin θ
)

−2i KkJηAωr y cos θ

⎫
⎬

⎭

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

×ω−3
J (26)

A0 =

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

(1 + α) ω2
sω

2
A cos2 θ + ηAηeff K

4k4
J cos2 θ

.

⎧
⎪⎨

⎪⎩

i KkJ sin θTz

+ (1 + α) ω2
s − ω2

J

⎫
⎪⎬

⎪⎭

+2ηAωr y K 2k2
J cos3 θ

(
i KkJTz − (ω2

J /sin θ)
)

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

×ω−4
J . (27)

It is seen from (23) that this is a quartic equation. The
roots of the equation are

�1 = −b1 + [
b2

1 − 4 (b0 − c0 p) (1 − p)
]1/2

2 (1 − p)
,

�2 = −b1 − [
b2

1 − 4 (b0 − c0 p) (1 − p)
]1/2

2 (1 − p)
,

�3 = −b1 + [
b2

1 − 4 (b0 + c0 p) (1 − p)
]1/2

2 (1 + p)

and

�4 = −b1 − [
b2

1 − 4 (b0 + c0 p) (1 + p)
]1/2

2 (1 + p)
,

where

b1 =
[
−β +

√
β2 + α3

]1/3

+
[
−β −

√
β2 + α3

]1/3

+4

3

A2

A3
,

c1 =
√

A3b2
0

A3 − 2b1 − A0
,

p =
√

1 − 2
b1

A3
,

α = 12A1A3 + 8A2
2 − 48A0

9A2
3

,

β = 8A3
2 − 36A1A2A3 − 288A0A2 + 108A0A2

1A
2
3

27A3
3

.

It can now be clearly seen (from (23)–(27)) that the
fluctuation dynamics in the considered complex plasma
fluid is significantly affected by the various realistic
complications adopted afresh herein. Based on it, as
such, a few analytic special cases are in order as fol-
lows:

Case I: In the absence of ambipolar diffusion (i.e., ηA =
0), (18) governing the evolution of the instability reduces
to

ω4 + 2iηeffk
2ω3+

[
ω2

J −ikTz sin θ−η2
effk

4

−ω2
A − (1+α) ω2

s −4ω2
ry

]

ω2

+
⎡

⎣
ηeffk2

{
2kTz sin θ+i

(
ω2

J −ω2
A

)−i (1+α) ω2
s

}

+2ωry cos θ
{
kTz+

(
ω2

J /sin θ
)}

⎤

⎦ω

+ω2
sω

2
A (1 + α) cos2 θ = 0. (28)

Clearly, (28) describes the damped gravito-magneto-
acoustic wave modified by tidal force field and cosmic
ray pressure in a rotating idealised incompressible
cloud. The wave dispersion results match with the
previous predictions in similar astronomical contexts
[10,21,32].

Case II: If both the effective viscosity and ambipolar
diffusion are switched off (i.e., ηeff , ηA ∼ 0), (18) sim-
plifies to

ω4 +
[
ω2

J − ikTz sin θ − ω2
A − (1 + α) ω2

s − 4ω2
ry

]

×ω2 +
[

2ωry cos θ

{

kTz +
(

ω2
J

sin θ

)}]

ω

+ωs2
s ω2

A (1 + α) cos2 θ = 0 (29)

which gives the dispersive properties of a self-gravitating
cosmic plasma system in the presence of the conjoint
effects produced by the tidal force field and Corio-
lis rotation. Obviously, the instability properties with
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the non-local self-gravity here, especially in the pres-
ence of tidal force action, are in fair agreement with a
previously reported prediction without self-gravity and
without rotational effects [32]. It is worthwhile to tell
that, in the present context, our (29) describes wave
propagation dynamics in an ionised medium with a rela-
tively higher degree of ionisation. As a consequence, the
effects of non-ideal ambipolar diffusion are of less sig-
nificance in contrast with the quasi-magneto-hydrostatic
equilibrium and local ionisation equilibrium scenarios
as predicted by others [2,17].

Case III: In the absence of effective viscosity (i.e., ηeff ∼
0), (18) for the inviscid fluid fluctuations reduces to

ω4+[2iηA cos2 θ k2]ω3+
[

ω2
J −ik sin θTz−ω2

A

− (1+α) ω2
s −4ω2

ry

]

ω2

+
⎡

⎢
⎣

(
2ηA cos2 θ

) {
kTz+iω2

J −i (1+α) ω2
s

}

+2ωry cos θ

{
kTz + i

(
ω2

J /sin θ
)

−2ikηAωry cos θ

}
⎤

⎥
⎦ω

+2ηAωryK
2k2

J cos3 θ

(

ikTz − ω2
J

sin θ

)

+ (1 + α) ω2
sω

2
A cos2 θ = 0. (30)

It represents the dispersion relation for the non-ideal
MHD waves in cosmic, magnetised and rotating plasma
fluids in the presence of ambipolar diffusion. One of the
roots of (30) would depict the gyromagnetic Jeans insta-
bility in the non-ideal partially ionised inviscid MHD
fluid.

Case IV: In the absence of all the non-ideal effects (ideal
gravitating MHD), (18) algebraically reduces to

ω4 + (
ω 2

J − ω 2
A − ω 2

s

)
ω2 + ω 2

sω
2
Acos2θ = 0. (31)

This equation gives the dispersion relation for an ideal
magnetohydrodynamic wave in a gravitating fluid [12].

Case V: In the absence of self-gravity effects, (30)
becomes

ω4 − (
ω 2

A + ω 2
s

)
ω 2 + ω 2

sω
2
A cos2 θ = 0. (32)

Clearly, (32) agreeably describes the copious evolution-
ary dynamics of the normal magnetosonic waves and
instabilities in a non-gravitating ideal MHD [9]. It may
be speculated that, in all the special corollaries as indi-
cated in (28)–(32), the plasma fluid medium exhibits a
confirmatory plethora of excitation of collective waves
and instabilities dictated piecewise by the generalised
dispersion relation (as by (23)).

3. Results and discussions

The dynamics of instabilities existing in a complex par-
tially ionised incompressible astronomical cloud fluid
is analysed in the framework of a non-ideal mean-fluid
(MHD) approach. It includes realistic significant com-
plication factors, such as gyro-gravitation, tidal force
field effect sourced by distant gravitating objects, kine-
matic viscosity arising from microscopic molecular
agitations, cosmic ray pressure effects from extra-
terrestrial sources and the relevant non-ideality effects
(ambipolar diffusion). An explicit unique set of the
cloud structuring equations is methodologically con-
structed and interpreted in the single-fluidic fabric.
Assuming a magneto-hydrostatic homogeneous equi-
librium, we apply a normal mode analysis treating all
the relevant small-scale linear perturbations to evolve
as sinusoidal homology waves. An algebraic exercise
decouples the perturbed cloud equations into a unique
form of quartic dispersion relation having a special set
of multiparametric coefficients. The analytic reliability
of our proposed calculation scheme is bolstered with the
help of a number of special corollaries which confirmed
that our results are in good agreement with the vari-
ous earlier predictions reported in the literature. After
the analytic reliability checkup, the derived dispersion
relation is judiciously analysed in a numerical stand-
point [46]. It is constructed on the well-known method
of decomposition and factorisation numerically to show
the results (figures 1–4).

In figure 1, we depict the profiles of the normalised (a)
real frequency (�r ), (b) growth rate (�i ) and (c) loga-
rithmic growth per period (�i/�r ) with variation in the
Jeans-normalised space of angular wave number (K ) for
different values of the ratio (α = PCR/PTh) between the
cosmic ray pressure (PCR) and thermal pressure (PTh).
The corresponding spectral profiles for the same in the
inviscid (ηeff ≈ 0) condition to highlight the specific
viscosity effects relative to the former are depicted in the
inset panels (a∗), (b∗) and (c∗) respectively. The various
fine inputs on the numerics are judiciously adopted from
the literature [23,39] as n0 = 106 m−3, magnetic field
B = 10−8 T, ionisation fraction xp = 10−7, mass of
electronme = 9.1×10−31 kg, mass of ionmi = 30mp,
mass of proton mp = 1.67×10−27 kg and mass of neu-
tralmn = 2.33mp, T = 100 K, Tz ≈ 10 km s−1 kpc−1.
It is seen that the fluctuation frequency significantly
increases with the cosmic-to-thermal pressure ratio, and
vice versa. For a fixed α-value, the fluctuation fre-
quency steeply increases (dispersive wave nature) in the
K -space upto K = 1.7. Beyond that, the frequency
becomes well-stabilised (non-dispersive wave nature) at
the respective saturation levels (figure 1a). In contrast,
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Figure 1. Profile of the normalised (a) real frequency (�r ), (b) growth rate (�i ) and (c) logarithmic growth per period
(�i/�r ) in the Jeans-normalised space of angular wave number (K) for different values of the ratio (α) between the cosmic
ray pressure and thermal pressure. The corresponding spectral profiles for the same in the inviscid (ηeff ≈ 0) condition to
highlight viscosity effects relative to the former are depicted in the inset panels (a∗), (b∗) and (c∗), respectively. The fine
details on the numerics are presented in the text.

only the quasidispersive wave nature of the evolutionary
fluctuation dynamics is pronounced in the inviscid case
(figure 1a∗).

Correspondingly, the instability growth shows aug-
mentation with the α-value increment, and vice versa
(figure 1b). It allows us to conjecture that α plays a
destabilising role in the instability dynamics. It happens
because of coherent phase and amplitude coordination
between the cloud-centric cosmic and self-gravitational
forces against the counteracting randomising tidal pres-
sure effects. It is further evident that the growth maxima
(peaks) occur in the K -space only at K = 1.7. So,
only the waves near the Jeansian critical wave number
get significantly unstable. We further see that, beyond
K = 1.7, the perturbations get gradually damped out
at the asymptotic limit of K → ∞. In contrast, no
such damping features are speculated in the inviscid
situation (figure 1b∗). As a consequence, the damp-
ing mechanism of the perturbations beyond K = 1.7
(figure 1b), unlike those in the inviscid case (fig-
ure 1b∗), are justifiably attributable to the kinematic

viscosity arising because of the constitutive micro-
scopic particle kinetics. Moreover, a corroborating test
is presented to identify the instability as a slow one
(figure 1c). It is also reflected that the linear approxi-
mation in our homology perturbation characterisation
is well-validated (�i/�r < 1). The effect of kinematic
viscosity is realised only in the turning-out zone of the
�i/�r behaviour from a non-linear (figure 1c) into a
quasilinear one (figure 1c∗), without upsetting the lin-
ear validity limits.

In figure 2, we show similar characteristic features
as in figure 1, but for different situations dictated by
the magnetothermal pressure ratio

(
β∗ = B2/8π PTh =

1/β). It is found that the phase velocity of the mag-
netoacoustic wave instability is not affected noticeably
in the complex viscous fluid (figure 2a). In contrast,
the phase velocity of the instability decreases with
the β∗-increment, and vice versa (figure 2a∗). It hap-
pens because the magnetic field always tries to confine
the particle gyrokinetic dynamics. As a result, the
phase velocity of the associated waves decreases. It
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Figure 2. Same as figure 1, but for different values of magnetothermal pressure ratio (β∗). The fine details on the numerics
are in the text.

Figure 3. Same as figure 1, but for different values of the rotation frequency (ωr y).
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Figure 4. Same as figure 1, but for different values of the ratio (Tz/gself ) between the compressive tidal force field and
self-gravity.

is further seen that the instability growth decreases
with the β∗-increment, and vice versa (figure 2b).
As before, after K = 1.7, the cloud acquires a
propensity towards stability. In the inviscid case (fig-
ure 2b∗), there is no such damping tendency of the
instability. In both the β∗-dependent cases, we see
that the β∗-parameter introduces a stabilising influ-
ence on the perturbed cloud dynamics. The logarithmic
growth per period shows the instability characteristic
growth features (figures 2c, 2c∗) in the viscous and
inviscid circumstances as in figures 1c and 1c∗, respec-
tively.

The circumstantial conditions are dictated by the
Coriolis rotation

(
ωry

)
. It is noteworthy that the phase

velocity of the instability decreases upto a critical wave
number K = 3.4 in magnitude with the ωry-increment,
and vice versa (figure 3a). Beyond the K = 3.4 limit,
it is, however, interesting to see that the magneto-
acoustic waves travel with a unified saturated frequency
(�r ≈ 1.5), irrespective of the ωry-values. Thus, it is
speculated that, both the non-dispersive and disper-
sive waves get excited in the regions in the K -space
demarcated by K = 3.4. The dispersive features are,
however, found to disappear under non-viscous condi-
tions (figure 3a∗). The growth of the instability is found
to get reduced with the ωry-increment, and vice versa
(figure 3b). After the critical point K = 3.4, all the

growths merge together immaterial of the ωry-variation.
The amalgamation of the growth lines is found to be
absent in the inviscid cloud condition. In both the cases,
the Coriolis rotation acts as a stabilising agency to the
perturbed cloud dynamics. The respective logarithmic
growths per period are shown in figures 3c and 3c∗.
The mechanism behind such dynamical behaviours is
that the net inward pressure effect decreases with the
cloud rotation because of the enhancement in the cen-
trifugal cloud action. The cloud collapse propensity
decreases owing to the Coriolis-induced centrifugal
effects, thereby showing stabilising effect (decrement
in growth).

Lastly, figure 4 illustrates similar spectral behaviours
as in figure 1, but for different configurations depicted
by the ratio of the tidal force field and self-gravity
(Tz/gself). We see that the real frequency and hence,
the phase velocity are not affected by the Tz/gself -
variation (figures 4a, 4a∗). Moreover, the combined
effect of the tidal interaction and cloud rotation gener-
ates oscillatory-like linear stable motions only beyond
K = 1.7 in the viscous medium (figures 1a–4a). It
is further investigated that the growth amplitude (fig-
ure 4b with viscosity and figure 4b∗ without viscosity)
increases with increase in the Tz/gself -value. Thus,
Tz/gself acts as a destabilising factor to the perturbed
cloud dynamics. The corresponding growth features
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per period for different situations, similar to the ear-
lier cases, are shown in figures 4c and 4c∗ in the viscous
and inviscid configurations, respectively. It implies that
the external gravitational source (the tidal force field)
helps in destabilising the self-gravitating magnetised
medium and strengthens the corresponding cloud col-
lapse induced by the magnetoactive instability.

In this work, the value of the field-wave angle is taken
as θ = π/4 to obtain the required growth rates numer-
ically. For other values, no significant growth profiles
depicting any sensible outcome on the canonical col-
lapse cosmodynamics are found to exist. It is noteworthy
that the theoretic formalism here is a single (mean) fluid
(MHD) model for the collective cloud instability anal-
ysis. As a result, the instability growth rates cannot be
depicted for the individual constituent species separately
in the collective mean-fluidic fabric. Thus, all the indi-
vidual constituent species of the partially ionised plasma
medium contribute collectively to the overall growth
dynamics of the mean-fluidic stability.

4. Conclusions

The complex instability dynamics excited in a realistic
gyrogravitating magnetised tidally affected viscous par-
tially ionised molecular cloud is analysed in the fabric of
the non-ideal MHD (mean-fluid) formalism. The influ-
ential dynamical factors of the real astral relevancy are
systematically included. We applied a standard homol-
ogy perturbation method (plane wave, no geometric
boundary effects and single common frequency) to
derive a generalised local dispersion relation. It has a
quartic vocality in the eigenmode frequency degree and
contains a unique set of variable coefficients. Its ana-
lytic explicit consistency is examined positively in the
panoptic light of a number of newly derived sensible spe-
cial cases and corollaries of the real astrocosmic worth
matching fairly with the prevailing archetypal reports in
[11,17].

A numerical illustrative platform is provided to iden-
tify and characterise the various stabilising (destabilis-
ing) factors. A graphical standpoint to test the validation
of the linear theory approximation is also reinforced
via the instability growths per cycle. It is specifically
shown that the magnetothermal pressure ratio (β∗) and
the Coriolis rotation

(
ωry

)
introduce stabilising effects

(growth reduction) in the cloud gyro-magneto-acoustic
mode dynamics. It is attributable to the fact that both the
outward effects

(
β∗, ωry

)
couple with the cloud inward

self-gravity resulting in lower instability growths. In
contrast, the cosmic-to-thermal pressure ratio (α) and
the tidal-to-gravitational field ratio (Tz/gself) trigger
destabilising influences to the cloud instability. It is

attributable to the fact that both the effects (α, Tz/gself)

co-act along with the non-local self-gravity resulting
in enhanced growth rates. A generalised conjecture is
herewith drawn that the normal mode (gyrogravito-
magneto-acoustic wave) is modified by the conjoint
action of both the ambipolar diffusion (growth enhancer)
and fluid viscosity (growth reducer). For ambipolar dif-
fusion to operate in star-forming nurseries, we require
at least two-fluid (ideal) MHD models: charged and
neutral components. The ambipolar diffusion-triggered
effects are sensationally speculated even in the single
mean-fluid MHD model (non-ideal) formalism against
the usual picture [11,12].

The proposed investigation could reproduce a num-
ber of earlier well-established analytic predictions. Its
marginal reliability checkup is progressively strength-
ened via numerical simulations and comparative analy-
ses. The analytical techniques employed herein, despite
some facts and faults on geometric issues, may exten-
sively be applied to see the stability of diversified
magneto-active fluids in the astrocosmic realms [9,34].
It is remarkable that the enhanced gravitational insta-
bility growths are directly correlated with the boosted
structure formation rate towards planetesimals, stelles-
imals and so forth [43]. Accordingly, our results pre-
sented here could be of vital significance broadly in
various instability-triggered initiation dynamics of the
bounded astrostructure formation [41–45], particularly,
in the HII (also, RCW 38) regions compositionally
dominated by the interstellar gaseous hydrogen in the
collective ionised form.
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