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Effect of axisymmetric forebody shapes on the helical global modes
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Abstract. The effects of different axisymmetric forebody shapes have been studied on the non-axisymmetric
(helical) global modes of the boundary layer developed on a circular cylinder. Sharp cone, ellipsoid and paraboloid
shapes have been considered with the fineness ratio (FR) of 2.5, 5.0 and 7.5. The base flow is in line with the
cylinder’s axis at the inflow boundary, and hence the base flow is axisymmetric. The boundary layer has developed
from the tip of the forebody where a highly favourable pressure gradient exists, and it depends on the sharp edge
of the forebody’s geometric shape. However, the pressure gradient then remains constant on the cylindrical surface
of the main body. Thus, the boundary layer developed on the forebody and main body (cylinder) is non-parallel,
non-similar and axisymmetric. The governing equations for the stability analysis of the small disturbances have been
derived in the cylindrical polar coordinates. The spectral collocation method with Chebyshev polynomials has been
used to discretise the stability equations. An eigenvalue problem has been formulated from the discretised stability
equations along with the appropriate boundary conditions. The numerical solution of the eigenvalue problem was
done using Arnoldi’s iterative algorithm. The global temporal modes have been computed for helical modes N = 1,
2, 3, 4 and 5 for Reynolds number Re = 2000, 4000 and 10000. The spatial and temporal structures of the least
stable global modes have been studied for different Reynolds numbers and helical modes. The global modes with
ellipsoid were found the least stable while that of the sharp cone were found the most stable.
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1. Introduction

When viscous fluid flows over a sharp axisymmetric
body, a boundary layer develops in the flow direction
from the body’s tip (leading edge) and grows continu-
ously along the direction of the stream. The boundary
layer is always laminar near the leading edge due to the
very small thickness of the boundary layer. The bound-
ary layer thickness gradually increases in the streamwise
direction, and thus Reynolds number also. At a particu-
lar streamwise location, the Reynolds number exceeds
the critical values, and flow becomes unstable, lead-
ing to the growth of small disturbances and transition
of laminar flow to turbulence. Under the effect of the
strongly favourable pressure gradient in the flow direc-
tion, the flow becomes accelerating, and boundary layer
growth reduces, which reduces the Reynolds number
and helps keep the boundary layer laminar. However,

the boundary layer thickness is strongly affected by the
Reynolds number rather than pressure gradients. Some-
times, even with a favourable pressure gradient at a
high Reynolds number, a transition occurs. The fore-
body attached to the main body (cylinder) generates a
favourable pressure gradient, which remains unchanged
on the cylindrical surface. Thus, the stability analysis
helps delay the boundary layer’s transition and max-
imise the laminar regime of the boundary layer, which
finally reduces the drag forces acting on the axisymmet-
ric propulsive bodies [1].

Vinod and Govindarajan [2] studied the relation
between instabilities and birth of the turbulent spot using
numerical solution of eigenvalue problem and found that
standard results for Tollmien–Schlichting (T-S) route is
followed at low noise level and a by-pass route is fol-
lowed at higher noise level. In both the routes, the birth
of the turbulent spot depends on the pattern of secondary
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instabilities. Casarella et al [3] found that a sharper body
generates a more favourable pressure gradient and a
blunt body generates less favourable gradients. Parsons
and Goodson [1] studied and concluded that the inten-
tion of the delaying transition is to maximise the laminar
regime in the boundary layer and thus to reduce the vis-
cous drag on the axisymmetric-type propulsive bodies
like submarines, torpedoes, missiles and rockets. Aero-
dynamic stability is essential for guided aerodynamic
vehicles like missiles to control their trajectories for the
targets. It has been found that natural axisymmetric lam-
inar bodies have a minimum drag and allows a long run
of laminar flow. It is expected to have a minimum drag
for energy efficiency in the design of vehicles like fuse-
lages, missiles, torpedoes and submarines. Recently,
James et al [4] and Holmes et al [5] found that when the
pressure gradient is favourable on the smooth surface of
the airplane, long run of the laminar boundary layer can
be achieved which reduces a significant amount of drag.
Carmichael [6] has conducted experiments on NACA-
66 airfoil about its longitudinal axis with a low fineness
ratio (FR). They found that low FR and appropriate
shape generate a robust favourable pressure gradient on
the axisymmetric body, which helps to keep the bound-
ary layer in the laminar regime over a more substantial
length of the body. Many researchers studied the char-
acteristics of the base flow field around the shape of
the body of revolutions with full applications in aero-
dynamics and marine hydrodynamics. They found that
sharp-edged bodies with hyperbolic and parabolic nose
experience less drag than spherical and elliptical shapes.

Theofilis [7], Alizard and Robinet [8] and Akervik
et al [9] have studied temporal and spatial instabilities
of the flat-plate boundary layer, and global modes have
been found stable in all these cases. Thus, the stability
analysis helps in delaying the transition of the bound-
ary layer and maximising the laminar regime of the
boundary layer, which finally reduces the drag forces
acting on the axisymmetric propulsive bodies [1]. In
the local stability analysis of Rao [10], Tutty and Price
[11] and Vinod and Govindarajan [2] of the axisymmet-
ric boundary layer on a circular cylinder, they assumed
that the boundary layer develops directly on the sur-
face of the cylinder only. However, the main body of
the submarines, torpedoes and missiles are equipped
with specific geometry at the leading edge. This spe-
cific portion of the body is known as the forebody. In the
present study, the authors have considered sharp cone,
paraboloid and ellipsoid with FR = 2.5, 5.0 and 7.5 to
study their effect on global stability characteristics. The
intensity of the favourable pressure gradient depends
on the sharpness or bluntness of the fore-body shape.
Sharp cone and paraboloid are sharper than ellipsoid,
and smaller FR gives more sharpness to the forebody.
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Figure 1. Schematic diagram of different axisymmetric
forebody shapes (eaf section as shown in figure 2) with FR =
5.0. FR is the length to diameter ratio (L/D) of different fore-
body shapes.

Figure 2. Schematic diagram of axisymmetric boundary
layer on a circular cylinder with axisymmetric forebody. The
axisymmetric domain bcde is used for the global instability
analysis. Domain aeb is included in the base flow computa-
tion.

The geometry of the three forebody shapes with FR
= 5.0 is shown in figure 1.

The global stability analysis of the axisymmetric
boundary layer on a circular cylinder was performed
by Bhoraniya and Narayanan [12,13]. They found that
increased semi-cone angle increases the intensity of the
favourable pressure gradient and stabilises the bound-
ary layer. Bhoraniya and Narayanan [14] also studied
the comparison of the axisymmetric boundary layer’s
global modes on a circular cylinder with the hemispher-
ical cap with a blunt cylinder. Bhoraniya and Narayanan
[15] studied the effect of different forebody shapes on
the axisymmetric modes with different FR. They found
global modes the least stable for ellipsoid geometry and
the most stable for sharp cone for a given Reynolds num-
ber and FR. Similarly, for a smaller FR, global modes
are found the most stable, and for a larger FR, global
modes are the least stable.

In boundary layer flows, a pure convectively unstable
open system is involved, and some form of steady peri-
odic forcing is present such as free stream turbulence
coupling with disturbance waves at the solid trailing
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edge. Gaster [19], Michalke [20], Tam [21] and many
others have studied such downstream evolution of the
linear disturbances in a long time limit using spatial
stability theory. Chomaz et al [22,23], Pierrehumbert
[24], Koch [25] in their investigations found that the
existence of a region of local absolute instability was a
necessary but not a sufficient condition. Monkewitz et
al [26] showed a sequence of transition in the cylinder
wake with increased Reynolds number; first, the tran-
sition from stability to convective instability, then from
convective to local absolute instability and finally the
bifurcation to a self-sustained global mode only after a
sufficiently large portion of the flow has become abso-
lutely unstable.

Open flows such as mixing layers, jet, separation bub-
bles and boundary layers develop extended domain in
which fluid particles are continuously advected down-
stream and behave either as a noise amplifier or as
oscillators, both of which have strong non-linearities
[27]. The widely separated scale does not characterise
the length scale for basic flow and disturbances in
a fully global context. Then, the flow dynamics are
viewed as the interaction of the all-global modes in
the physical domain in the streamwise direction. The
noise amplifier behaviour of the boundary layer empha-
sises strongly on the peculiar non-orthogonality of linear
global modes. The linear evolution operator governing
the global modes exhibits a peculiar non-normality due
to the basic advection. It is now well established that, as
a result of non-normality, the perturbation energy may
experience a transient growth for a small period of time,
even for decaying eigenmodes.

Authors have already studied the effect of three dif-
ferent forebody shapes, sharp cone, paraboloid and
ellipsoid, on the axisymmetric global modes [15] and the
present work is the extension of the previous work. The
main objective of the present paper is to study the effect
of different forebody shapes on the non-axisymmetric
(helical) global modes of the axisymmetric boundary
layer. The global modes have been analysed for these
three forebody shapes for different Reynolds numbers,
azimuthal wave number and FR. The governing equa-
tions of the perturbations are linearised and modal
stability analysis has been performed for the axisym-
metric boundary layer.

2. Problem formulation

A circular cylinder of finite length and body radius of a
has been considered in the uniform stream of incom-
pressible fluid. Sharp cone, paraboloid and ellipsoid
forebody shapes have been considered with FR = 2.5,
5.0 and 7.5. The boundary layer developed on such a

cylinder is two-dimensional and the favourable pressure
gradient developed in the streamwise direction depends
on the geometric shape and FR value of the forebody.
The Reynolds number (Re) is computed based on the
body radius of the cylinder.

Re = U∞a

ν
, (1)

where a is the body radius of the cylinder, U∞ is the
free-stream velocity and ν is the kinematic viscosity.

The governing stability equations have been derived
in the cylindrical coordinates (r, θ, z) from the Navier–
Stokes equations of the base flow. The base flow is
axisymmetric and disturbances are three-dimensional.
The instantaneous flow quantities are split into the base
and perturbed flow quantities.

U = U + u, V = V + v,

W = 0 + w, P = P + p, (2)

where u, v and w are the velocity perturbations in the
axial, radial and azimuthal directions respectively and p
is the pressure perturbations. U and V are base velocity
components in the axial and radial directions andP is the
basic pressure. U , V , W are the instantaneous velocity
components in the axial, radial and azimuthal directions
and P is the instantaneous pressure. The normal mode
form of the disturbances were considered and they are
varying in the two non-homogeneous directions, axial
and radial, respectively.

q(x, r, θ, t) = q̂(x, r)e[i(Nθ−ωt)], (3)

whereq = [u, v, w, p],Q = [U, V, P],Q = [U , V , P],
where q, Q, Q, N and ω are perturbations, base
flow quantities, instantaneous flow quantities, azimuthal
wave number and complex circular frequency respec-
tively. The governing stability equations for the global
stability analysis are as follows:
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where

�2 = ∂2
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r

∂
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r2

∂2

∂θ2 = 0. (8)

2.1 Boundary conditions

On the cylinder wall, due to viscous effect and non-
porous wall, the tangential, radial and azimuthal distur-
bance velocity components are zero.

u(x, a) = 0, v(x, a) = 0, w(x, a) = 0. (9)

The velocity and pressure disturbances are expected to
reduce gradually in the radial direction away from the
solid wall of the cylinder and approaches zero at dis-
tances far away from the wall.

u(x, ∞) = 0, v(x, ∞) = 0,

p(x, ∞) = 0, w(x, ∞) = 0. (10)

As already explained in [15], global stability solution
needs boundary conditions along the streamwise direc-
tion at the inflow and outflow boundaries. Homogeneous
Dirichlet boundary conditions (eq. (11)) at the inflow
boundary and linear extrapolation-type boundary con-
ditions (eq. (14)) at the outflow boundary are applied
on the velocity disturbances for numerically solving the
eigenvalue problem [7–9,16–18].

u(xin, r) = 0, v(xin, r) = 0, w(xin, r) = 0 (11)

un−2[xn − xn−1] − un−1[xn − xn−2]
+un[xn−1 − xn−2] = 0 (12)

vn−2[xn − xn−1] − vn−1[xn − xn−2]
+vn[xn−1 − xn−2] = 0 (13)

wn−2[xn − xn−1] − wn−1[xn − xn−2]
+wn[xn−1 − xn−2] = 0. (14)

At the wall, physically no boundary condition exists
for the pressure. In the incompressible flow insta-
bility computations, pressure compatibility conditions
have been applied successfully [7,28–30]. Consider-
ing no-slip conditions at the cylinder wall, the pressure
compatibility conditions for the cylindrical coordinates
reduces as

∂p
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= 1

Re

[
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The linearised pressure Poisson’s equation (LPPE) has
been implemented instead of pressure compatibility
conditions to avoid the non-physical solution of the two-
and three-dimensional eigenvalue problems [31]. Bho-
raniya and Narayanan [14] have shown that the spectra

obtained using compatibility conditions and LPPE have
an excellent agreement with the appropriate use of
sponge region near the outflow boundary [14].

2.2 Discretisation of stability equations and solution

A spectral collocation with Chebyshev polynomials has
been used to discretise the primitive form of the gov-
erning stability equations. In the present form of the
stability equations, first and second derivatives of the
disturbance velocities u, v and w are involved. Because
of the global nature of the discretisation scheme, the
accuracy of the spectral collocation is superior to all
other discretisation methods. However, due to the global
nature, it includes all the collocation points within the
domain for computation at any grid point and thus it is
a full matrix method. Thus, a demanding computational
facility is required for the numerical solution of global
stability problems. The first and second derivatives of
the disturbance quantities are less sensitive to discreti-
sation error, and one can expect a better accuracy at the
moderate spatial resolution.

xc = cos

(
π i

n

)
for i = 0, 1, 2, 3, . . . , n (17)

xreal = (1 − xc)Lx/2 + xmin (18)

rc = cos

(
π j

m

)
for j = 0, 1, 2, 3, . . . ,m. (19)

In the near wall region, stretching of the collocation
points has been implemented to improve spatial reso-
lution. Equation (20) given by [32] has been used to
capture the physics of disturbances.

rreal = ri Lr (1 − rc)

Lr + rc(Lr − 2ri )
+ a. (20)

A general eigenvalue problem has been formulated as
follows:
⎡
⎢⎣
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[A][φ] = iω[B][φ], (21)

where A and B are square matrices of size 4× n ×m, iω
is an eigenvalue and φ is a vector of unknown amplitude
of disturbance flow quantities u, v, w and p.
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2.3 Base flow solution

The velocity profile of the boundary layer developed
on the considered axisymmetric bodies was obtained by
numerical solution of the steady N-S equation for the
axisymmetric domain. The inflow velocity component is
parallel to the axis of the cylinder and therefore base flow
is axisymmetric. The finite volume code ANSYS Fluent
was used with second-order accurate scheme. The grid
convergence test was performed to check the accuracy
of the computed base flow. The effect of forebody shape
and FR on the base flow profile is already analysed in the
previous work of the authors [15]. It has been found that
forebody shape and FR significantly modify the base
flow and affect transverse curvature, shape factor and
non-parallel effects. It affects transverse curvature near
the leading edge of the boundary layer. This effect grad-
ually reduces in the streamwise direction towards the
downstream. Readers are requested to refer [15] for a
detailed discussion on the base-flow solution, the effect
of different shapes and FR on the base-flow velocity pro-
file. Thus, the modified base flow significantly affects
the stability of the boundary layer.

3. Code validation

The global nature of the problem is reduced to an
equivalent of local stability problems for the prelimi-
nary comparison of the stability results. The streamwise
domain length of one wavelength (Lx = 2π/α) is con-
sidered for the least stable helical mode, N = 1. The
base-flow velocity profile considered is the same at all
the streamwise locations to remove non-parallel effects.
i.e. V = 0 and (∂U/∂x) = 0. In the wall-normal direc-
tion, the boundary conditions are the same as that of
local stability analysis [7]. In the streamwise direction
at the inlet and the outlet, Robin and periodic conditions
are applied to impose wave-like behaviour of the dis-
turbances [17]. The Robin conditions with the constant
streamwise wave number (α) prescribed at the inlet and
the outlet are derived from φ(r, t) = φ̂(r)e[(i(Nθ−ωt)].

∂2u

∂x2 = −α2u,
∂2v

∂x2 = −α2v,
∂2w

∂x2 = −α2w (22)

u(x, r) = u(x + Lx , r), v(x, r) = v(x + Lx , r)

w(x, r) = w(x + Lx , r). (23)

The boundary conditions shown in eq. (22) are applied
to the disturbance velocity components in the stream-
wise direction at the inflow boundary. The second
derivatives of velocity disturbances are considered to
avoid complex quantities in the boundary conditions,

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

C
r

C
i

 

 

Local stability
Global stability

Figure 3. Comparison of the eigenspectrum of global sta-
bility analysis with the local stability analysis of Tutty and
Price [11] for the helical mode (N = 1) and Reynolds num-
ber Re = 1060. Here Re = 1060 is the critical Reynolds
number for local stability analysis based on the body radius
of the cylinder.

and hence fast computations can take place. The bound-
ary conditions in the radial direction at the cylinder wall
and far-field are the same as that of the local stabil-
ity analysis. The critical Reynolds number, streamwise
wave number and streamwise location are 1060, 0.125
and 543 respectively for the helical mode, N = 1 [11].
The Reynolds number is computed based on the body
radius of the cylinder. The streamwise domain length of
one wavelength is equal to Lx = 0.786. The streamwise
domain size is very small, and hence the convergence
of computations took place with 41 and 101 colloca-
tion points in the streamwise and wall-normal direction.
The comparison of the eigenspectra and eigenfunctions
are shown in figures 3 and 4. The eigenspectra of the
local and global approaches are in good agreement. The
eigenfunctions presented for the least stable eigenmodes
for u, v andw velocity disturbances are also in full agree-
ment with each other. The streamwise wave number (α)
is also computed from the disturbance amplitudes u, v
and w, and it is equal to 0.125. Thus, the approach used
for the numerical solution of two-dimensional eigen-
value problem is validated against the available classical
results in the open literature.

4. Results and discussions

The global modes of the axisymmetric boundary layer
have been computed for three different Reynolds num-
ber Re = 2000, 5000 and 10000, helical modes N = 1,
2, 3, 4 and 5, forebody shapes sharp cone, ellipsoid and
paraboloid and FR = 2.5, 5.0 and 7.5. The computa-
tional domain sizes of the axial and radial directions are
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Figure 4. Comparisons of the real parts of (a) streamwise u,
(b) wall normal v and (c) azimuthalw eigenfunctions for local
and global stability analysis for the helical mode (N = 1) for
Re = 1060 based on the body radius of the cylinder.

considered as 150a and 5a, respectively. The Reynolds
number is computed based on the cylinder radius. The
number of collocation points considered in the axial and
radial directions are 241 and 61, respectively. To prevent
spurious reflection of the waves at the outflow boundary,
heavy sponging is applied near the outflow boundary. A
hyperbolic tangent function has been used to model a
sponge region near the downstream in the flow direc-
tion. It has been checked that sponging is not affecting
the results of the numerical solution of the eigenvalue
problem.

4.1 Grid convergence study

It is essential to check that the number of collocation
points taken to model the flow domain in the axial and
radial directions are sufficient for the spatial resolution
and thus to get solution independent of the grid size.
The test has been performed for a paraboloid shape

with FR = 5.0, N = 1 and Re = 2000. A course
grid (Mesh #3) with n = 171 collocation points in the
axial and m = 47 in the radial directions were selected
successively refined by a factor of 1.142. Two least sta-
ble eigenmodes were computed for three different grid
sizes, as reported in table 1. A relative error between
two consecutive eigenvalues for the real and imaginary
parts was computed, and the largest one is reported in
table 1. The grid size #1 has been adopted in all stability
results reported in this manuscript.

4.2 Effect of different forebody shapes on global
temporal modes

To study the effect of different axisymmetric forebody
shapes on the global modes, the 2D eigenvalue prob-
lem was solved for Re = 2000 and FR = 2.5 with
the streamwise domain size of 150. Figure 5a shows
the comparison of the discrete part of the eigenspectra
for N = 1, Re = 2000 and FR = 2.5 for different
forebody shapes. The comparison shows that the eigen-
modes with the ellipsoid forebody are the least stable
and with the sharp-cone are the most stable. However,
the imaginary part of the least stable global modes are
negative, and hence the flow is temporally stable. The
frequency distribution (ωr ) has almost similar pattern
for all three forebody shapes. The temporal growth rate
for other helical modes N = 2, 3, 4 and 5 is also
studied (not presented here), and a similar pattern has
been observed. A marginal difference in the temporal
growth was observed between the paraboloid and the
sharp cone in the case of axisymmetric mode (N = 0)
[15]. However, in the present study, significant differ-
ence in the temporal growth has been observed between
the paraboloid and the sharp cone for the helical mode
(N = 1).

4.3 Local convective stability analysis

A convective stability analysis (local stability) was also
performed to verify the trends of the global temporal
modes of the boundary layer. In the convective stabil-
ity analysis, streamwise wave number (α = αr + αi )
is complex and circular frequency (ω) is real. We con-
sidered a constant ωr for all the three forebody shapes
and computed αi at different streamwise locations to
compare the spatial growth rate of the disturbances. A
polynomial eigenvalue problem was formulated and was
solved using polyeig function of the MATLAB. A fre-
quency ωr = 0.15 was selected from the eigenspectra of
the global stability analysis (figure 5a) for Re = 2000,
N = 1 and FR = 2.5. The spatial growth rate αi was
computed at different streamwise locations. From figure
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Table 1. The grid convergence study for two least stable eigenmodes ω1 and ω2 for Re = 2000, helical mode N = 1,
parabolic forebody with FR = 2.5, and three different grid sizes. The grid refinement ratio of 1.142 is used to improve the
resolution in the axial and radial directions. The maximum absolute error (ε) is shown here.

Mesh Lx Lr n × m n m ω1 ω2 ε (%)

#1 150 5 13481 221 61 0.03757–0.01393i 0.04245–0.0140i 2.17
#2 150 5 10229 193 53 0.03713–0.01364i 0.04195–0.01346i 4.09
#3 150 5 8037 171 47 0.03685–0.01282i 0.04161–0.01293i –
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Figure 5. (a) Comparison of the eigenspectra for N = 1,
Re = 2000 and FR = 2.5, (b) comparison of the spatial
growth rate (αi ) at different streamwise locations for N = 1,
Re = 2000, FR = 2.5 and ωr = 0.15.

5b, we can see that the spatial growth rate in the stream-
wise direction and the global temporal growth follow
the same trend. The ellipsoid forebody is found spa-
tially least stable while sharp cone is found to be most
stable. However, the difference in the spatial growth rate
reduces among all the three shapes in the streamwise
direction towards the downstream. Thus, the effects of
forebody shapes on the temporal and spatial stability of
the boundary layer are similar (figure 6).

Figures 7a and 7b show spectra comparison for N = 2
and N = 4. It is found that increased azimuthal wave
number reduces the difference in the temporal growth
of eigenmodes for given forebody shapes.

Figure 6 presents the comparison of the velocity dis-
turbance amplitudes (u, v and w) corresponding to the
least stable eigenmodes. The least stable eigenmodes
of all the three forebodies are having a frequency (ωr )
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Figure 6. Comparison of the spatial eigenmodes at stream-
wise location x = 75 for N = 1, Re = 2000 and FR = 2.5.
The frequency of all the least stable eigenmodes are nearer to
ω = 0.15.

almost equal to 0.15. The spatial growth of the distur-
bances is also found the largest for ellipsoid forebody
and the least for the sharp cone. The order of magni-
tude for the w disturbances are almost four times higher
than that of the u and v disturbances for all the three
forebody shapes. A similar trend has been found that of
temporal eigenmodes for the spatial eigenmodes of the
sharp cone and paraboloid geometries. The magnitude
of difference of u and v disturbances are too small in
comparison to the w disturbances.
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Figure 7. Spectra comparison for different forebody shapes
at Re = 2000 and FR = 2.5. (a) N = 2, (b) N = 4.
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Figure 8. Comparison of the eigenspectra for different FR
for the ellipsoid at N = 1 and Re = 2000.

4.4 Effect of fineness ratio on temporal global modes

The effect of fineness ratio on the temporal and spatial
eigenmodes are discussed in this section. FR = 2.5, 5.0
and 7.5 are considered for N = 1 and Re = 2000.
The size of the computational domain is the same for
all the three forebody geometries. Figure 8 shows the
comparison of the eigenspectra for ellipsoid forebody
at Re = 2000 and N = 1 for different FR values. It is
observed from figure 8 that the temporal growth (ωi ) is
the highest for FR = 7.5 and the least for FR = 2.5.
This indicates that increased FR increases the temporal
growth rate.

To study the effect of FR on the spatial eigenmodes,
the least stable eigenmodes are selected for each fore-
body with ωr = 0.153 and plotted at streamwise
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Figure 9. Comparison of the spatial eigenmodes at stream-
wise location x = 75 for the ellipsoid forebody at N = 1 and
Re = 2000.

location x = 75. The disturbance amplitudes of u, v,
and w, along with the total perturbation kinetic energy,
have been compared for different FR values. The order
of magnitude for the disturbance amplitude w is found
very large in comparison to u and v. Similarly, for dif-
ferent values of FR, only marginal difference has been
found in the magnitude of u and v while it is signifi-
cant for w. The comparison of the disturbance kinetic
energy for different FRs shows that the spatial growth
of the disturbances is larger for FR = 7.5 and smaller
for FR = 2.5. The temporal and spatial growth of dis-
turbances were also studied for the paraboloid and sharp
cone geometries, and similar results were found (figure
9).

4.5 Effect of azimuthal wave number (N) on the
temporal global modes

In this section, we studied the effect of azimuthal wave
numbers N = 1, 2, 3, 4 and 5 on the temporal and
spatial growth of disturbances. The global modes are
computed for Re = 2000, 5000 and 10000 for FR
= 2.5, 5.0 and 7.5. Figure 10 shows the comparison of
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Figure 10. Comparison of the eigenspectrum for the ellip-
soid forebody for FR = 2.5 at N = 1 and Re = 2000.

eigenspectra for paraboloid forebody at Re = 2000 and
FR = 2.5. It has been observed from figure 10 that the
temporal growth (ωi ) is the highest for N = 1 and least
for N = 5. Thus, the temporal growth reduces with
the increased azimuthal wave number N. To compare
the spatial growth rate of the disturbances, the eigen-
modes with ωr = 0.155 have been selected for different
azimuthal wave numbers. The spatial eigenmodes cor-
responding to these eigenmodes have been plotted at
streamwise location x = 75, as shown in figure 11.
It is found that increased azimuthal wave number has
increased the spatial growth of u and w disturbances
while reduced the spatial growth of v disturbances. The
order of magnitude is found to be the highest for w dis-
turbance amplitudes and lowest for v disturbances.

4.6 Effect of Reynolds number (Re) on temporal
global modes

In this section, we studied the effect of Reynolds number
Re = 2000, 5000 and 10000 on the temporal and spatial
growth of disturbances. The global modes are computed
for different forebody shapes and azimuthal wave num-
bers. Figure 12 shows the comparison of eigenspectra
for three different Reynolds number for N = 1 and
FR = 2.5. The temporal growth increases with the
increase in Reynolds number. Figure 13 presents the
comparison of the disturbance amplitudes near ωr =
0.09 and it is found that there is an increase in magni-
tudes of u and w disturbance amplitudes and a reduction
in magnitude of v with an increase in Reynolds number.
The overall disturbance kinetic energy within the bound-
ary layer is higher for the higher Reynolds number. The
boundary layer is found globally stable for the range of
Reynolds number considered. The boundary layers are
found convectively unstable. Generally, without abso-
lute instability, there is no global instability. However,
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Figure 11. Comparison of the spatial eigenmodes for
Re = 2000, FR = 2.5, ωr = 0.155 and x = 75. (a) |u|,
(b) |v| and (c) |w|.
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Figure 12. Comparison of the eigenspectrum for the
paraboloid shape at N = 1 and FR = 2.5.

even with absolute instability, flow may be globally sta-
ble, at least flows which move slowly in the streamwise
direction [27].

5. Conclusions

Global instability computations are performed on the
axisymmetric boundary layer developed on a circular
cylinder with different axisymmetric forebody shapes
of FR = 2.5, 5.0 and 7.5. The forebody shapes of
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Figure 13. Comparison of the eigenfunctions for different
forebody shapes at N = 1 and FR = 2.5.

paraboloid, ellipsoid and sharp cone have been con-
sidered for the stability analysis. The helical global
modes with N = 1, 2, 3, 4 and 5 have been studied
for Re = 2000, 5000 and 10000.

The temporal growth of helical modes for the ellip-
soid forebody is found to be the least stable, and that of
the sharp cone is found to be the most stable for given
values of Re, N and FR. The difference in the temporal
growth rate has been reduced between the global modes
of different forebody shapes at higher Re. The spatial
amplification of the disturbances is found more substan-
tial in the azimuthal direction (w component) for given
values of Re, N and FR. The difference in the spatial
amplification is found marginal (very small) for differ-
ent forebody shapes in the axial and radial directions,
while it is found significant in the azimuthal direction.
The order of disturbance amplitude magnitudes in the
azimuthal direction is almost 4 to 5 times higher than that
of the axial and radial directions. The temporal growth
of the helical eigenmodes is found to be larger with
larger value of FR at a given Re and N, irrespective of
the shape of the forebody. However, it is not the case
for axisymmetric global modes. The spatial growth of

the disturbances corresponding to the least stable eigen-
modes is found larger for FR = 7.5 for all three forebody
shapes. Similarly, the spatial growth of disturbances is
found higher in the azimuthal direction for a given Re
and N.

The global helical modes are found least stable for
N = 1 and most stable for N = 5 for different fore-
body shapes at a given Re and FR. The temporal growth
of N = 1 is found higher than N = 2 at lower fre-
quency (ωr < 0.28) and lower at higher frequency
(ωr > 0.28). The temporal growth is positive for heli-
cal modes N = 1, 2 and 3, upto some values of ωr , and
then it is negative. However, for helical modes, N = 4
and N = 5, the damping effect is found on the temporal
growth with increased frequency. The gap between the
two frequency values also increases with the increase in
the azimuthal wave number (N). The spatial growth of
disturbance amplitudes for the least stable eigenmodes
is found highest in the radial and azimuthal directions for
N = 1 and the least in the axial direction. The increase
inRe increases the temporal growth of disturbances. The
gap between the two discrete frequency values reduces
with the increased Re. The spatial growth of the dis-
turbance amplitudes is found larger at larger Re. The
penetration of amplitudes is higher at lower Re due to
strong viscous effects. Thus, the global modes of the
boundary layer are found stable in the present study of
the boundary layer.
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