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Abstract. Ion-acoustic solitary waves (IASWs) in plasma consisting of ions, positrons and superthermal electrons
in two distinct temperatures have been studied. The reductive perturbation method (RPM) has been employed to
derive the Korteweg–de Vries and modified KdV equation. Numerical and analytical studies show that compressive
and rarefactive solitons exist for the selected parametric range depending on the spectral indexes, κ (κh,κc) and
their respective densities (ν, μ). It is found that spectral indexes (κh,κc) and their relative densities have significant
impact on the basic properties, i.e., amplitude and width as well as on the nature of IASWs. Variations of amplitude
and width for the compressive and rarefactive solitary waves have been analysed graphically with different plasma
parameters like spectral indexes of cold and hot electrons (kc, kh), their respective densities, ionic temperature
ratio, positron temperature ratio as well as with the temperature ratio of the two-electron species. The amplitude
of the compressive (rarefactive) solitary waves increases (decreases) on increasing kh . However, the amplitude
of the compressive (rarefactive) solitary waves decreases (increases) on increasing kc. The investigations of such
solitary waves may be helpful for the critical understanding of space where superthermal electrons with two different
temperatures exist along with positrons and ions (e.g. Saturn’s magnetosphere, pulsar magnetosphere).

Keywords. Solitary wave; reductive perturbation method; Korteweg–de Vries equation; positron and superthermal
electron.
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1. Introduction

Ion-acoustic solitary waves (IASWs) have been investi-
gated extensively due to their presence in various astro-
physical plasmas, e.g., Earth’s auroral region, plasma
sheet, Saturn’s magnetosphere, pulsar magnetosphere,
solar wind [1–4] etc. as well as in laboratory experi-
ments by electron beam [5]. Investigations of IASWs
provide a deep understanding of the underlying nonlin-
ear phenomena in plasmas.

The fluid theories for small-amplitude as well as
large-amplitude ion-acoustic solitons show that the ion-
acoustic rarefactive solitons (IARSs) in a two-electron
temperature (TET) plasma exists only for certain den-
sity and temperature ratios of the hot and cold electron
species [6–18]. This is in broad agreement with the
experimental results [19]. However, experimental study

of the IARSs show that there are discrepancies between
theoretical predictions and experimental observations
[19]. Sayal and Sharma [20] have studied IARSs in a
TET plasma considering kinetic effects of electrons and
using the fluid equations for cold ions. The properties of
dust ion-acoustic Gardner double layers in dusty plasma
with two TET have been studied by Masud et al [21].

Superthermal (fast and accelerated) particles having
high-energy tail in the distribution function are found in
various astrophysical and space environments such as
Earth’s auroral region, plasma sheet, Saturn’s magneto-
sphere, pulsar magnetosphere, solar wind and interstel-
lar medium [22–25]. A large number of measurements
in space and astrophysical plasma environments of Sat-
urn’s magnetosphere from voyager PLS observations
[26,27] and Cassini plasma spectrometer observations
[28,29] have shown that the observed waves may be

http://crossmark.crossref.org/dialog/?doi=10.1007/s12043-020-1943-8&domain=pdf


80 Page 2 of 12 Pramana – J. Phys. (2020) 94:80

suitably explained by two-kappa distribution for elec-
trons where the hot component of the superthrmal elec-
trons has much lower density than the cold component.
Many researchers [27–31] have observed superthermal
electrons including hot and cold species having κ dis-
tributions κh and κc in Saturn’s magnetosphere.

The behaviour of superthermal electrons observed in
astrophysical environment deviates from Maxwellian
distribution and found to obey κ distribution. The κ

distribution was introduced by Vasyliunas for describ-
ing astrophysical plasmas. Hellberg et al [32] suggested
that the spectral index κ should be greater than 3/2 for
superthermal electrons and reduces to Maxwellian dis-
tribution as the value of spectral index approaches ∞.
Boubakour et al [33] have studied the effect of superther-
mal electrons and positrons on IASWs in an unmag-
netised plasma. El-Tantawy and Moslem [34] studied
the large-amplitude ion-acoustic waves in unmagne-
tised plasma with superthermal electrons and positrons.
They have studied the characteristics of solitary and
shock waves with different plasma parameters such as
spectral indexes of superthermal electrons, positrons,
ionic temperature ratio and with dust as well as positron
concentration. El-Tantawy et al [35] have studied the
small-amplitude ion-acoustic structures in dusty plas-
mas with superthermal electrons. Using reductive per-
turbation method (RPM), they have derived m-KdV
equation. They have studied the effect of superthermal
electrons and positrons on the characteristics (ampli-
tude and width) of nonlinear structures. El-Labany et
al [36] have reported that only large-amplitude com-
pressive IASWs exist in cold negative ion plasma with
superthermal electrons having κ distribution. Panwar
et al [37] have studied the oblique propagation of ion-
acoustic cnoidal waves in two-temperature superthermal
electrons in magnetised plasma. El-shamy [38] studied
the oblique propagation of IASWs in magnetised plasma
with superthermal electron and positron using the ZK
equation. He found that the characteristics of the soli-
tary waves (e.g. amplitude and width) increase with the
increase in the spectral index k. Alam et al [39], in their
study of the dust-IASWs in unmagnetised plasma with
two-temperature superthermal electron (TTSE) using
the RPM, derived KdV, m-KdV and Gardner soliton
equations. They found that amplitude of the soliton
decreases with an increase in spectral index. Saha et
al [40] studied the effect of superthermal electrons and
positrons on ion-acoustic waves in magnetised plasma
using RPM. In their analysis, they found that when
spectral index increases, the amplitude of the periodic
wave (solitary wave) increases (decreases) and its width
increases (decreases). Saini et al [41] derived the ZK
equation by employing RPM method to study the effect
of hot and cold superthermal electrons on IASWs in

a magnetised plasma. Bains et al [42] examined the
low-frequency ion-acoustic shock waves in magnetised
plasma consisting of cold ions and superthermally dis-
tributed hot and cold electrons. It is found that the
change in temperature ratio and their respective den-
sities play important roles in the properties of solitary
waves. The above discussion shows that plasma with
TTSEs has been studied by several researchers so far and
superthermal parameters drastically affect the nature
and properties of the solitons. Therefore, it becomes
interesting to study the small-amplitude ion-acoustic
solitons in plasma consisting of warm adiabatic ions, hot
positrons and TTSEs. Chatterjee et al [43] have studied
the dust ion-acoustic waves in superthermal electron,
using the reductive perturbation technique.

The aim of the present paper is to study the proper-
ties of small-amplitude IASWs in plasmas with TTSEs
following κ distribution. The effects of spectral indexes
along with their respective densities on the properties
and nature have been investigated numerically. The
paper is organised as follows: in §1, a brief intro-
duction of the superthermal electrons along with their
experimental observations and the past studies includ-
ing their results is given. In §2, using the basic set of
hydrodynamic equations governing plasma system and
employing RPM, KdV and m-KdV equation have been
derived with appropriate boundary conditions. In §3,
the exact solutions of the KdV equation has been deter-
mined. The m-KdV equation has been derived in §4.
Section 5 is devoted to discussion and findings. In §6,
conclusions of our investigations have been provided
along with potential applications.

2. Basic equations

We consider unmagnetised plasma consisting of warm
adiabatic ions, hot positrons and superthermal electrons
with two-temperature distribution. The governing equa-
tions for IASWs in the above described plasma are as
follows:

∂t N + ∂x (NV ) = 0 (1)

∂t V + V ∂xV = − ∂xφ − 2σ∂x N (2)

∂2
xφ = nh + nc − αn p − (1 − α)N . (3)

The superthermal electrons having two distinct temper-
atures following κ distribution and positrons may be
given by

nc = ν

(
1 − φ

kc − 3/2

)−(kc−1/2)

(4)

nh = μ

(
1 − σ1φ

kh − 3/2

)−(kh−1/2)

(5)
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n p = e−γφ =
(

1 − γφ + γ 2φ2

2
− γ 3φ3

6
+ · · ·

)
. (6)

Substituting eqs (4)–(6) in (3), we find

∂2
xφ = [1 + α1φ + α2φ

2] − αn p − (1 − α)N , (7)

where

μ = nc0

ne0
, ν = nh0

ne0
, α = n p0

ne0
,

α1 = (1 − μ)(2kc − 1)

(2kc − 3)
+ σ1μ(2kh − 1)

(2kh − 3)
,

α2 = (1 − μ)
(
4k2

c − 1
)

2(2kc − 3)2 + σ 2
1 μ

(
4k2

h − 1
)

2(2kh − 3)2

and kc,h is the k-distribution corresponding to cold and
hot species of electrons.

In the above equations N , n p, nc and nh denote
the normalised density of ions, positron, cold and hot
electrons, respectively. V is the normalised fluid veloc-
ity of the ions and φ is the electric potential. γ =
Tp/Te, σ = Ti/Te and σ1 = Tc/Th are the ratio
of positron and electron temperature, the ratio of ion
and electron temperature and the ratio of cold and hot
electron temperature respectively. The space coordinate
speed (x) has been normalised in terms of Debye length
speed λD = (ε0Te/n0e2)1/2 and time coordinates by the
inverse of ion plasma frequency.

To derive the KdV equation from the basic set of equa-
tions, viz. eqs (1)–(7), we use RPM, by introducing the
following stretched coordinates (ξ) and (τ ) as

ξ = ε1/2(x − St) (8a)

and

τ = ε3/2t, (8b)

where ε is a small parameter and S is the phase velocity
of the wave, to be determined later.

Now we expand the dependent variables in the fol-
lowing form:⎡
⎣ N
V
φ

⎤
⎦ =

⎡
⎣1

0
0

⎤
⎦ + ε

⎡
⎣ N (1)

V (1)

φ(1)

⎤
⎦ + ε2

⎡
⎣ N (2)

V (2)

φ(2)

⎤
⎦

+ε3

⎡
⎣ N (3)

V (3)

φ(3)

⎤
⎦ + · · · . (9)

On substituting (8) and (9) into eqs (1)–(7), we obtain
the lowest order, i.e., O(ε) as

−S∂ξ N
(1) + ∂ξV

(1) = 0 (10)

−S∂ξV
(1) = −∂ξφ

(1) − 2σ∂ξ N
(1) (11)

α1φ
(1) + αγφ(1) − (1 − α)N (1) = 0. (12)

Solving eqs (10)–(12), we find the following first-order
solutions:

N (1) = 1(
S2 − 2σ

)φ(1) (13)

V (1) = S(
S2 − 2σ

)φ(1). (14)

On using eqs (13) and (14) in Poisson equation (12) to
the lowest-order, i.e., O(ε), we get the following linear
relation for ion-acoustic solitons:

S2 = 2σ + (1 − α)

(α1 + αγ )
. (15)

We obtain the next higher-order from eqs (1) and (7) as

−S∂ξ N
(2) + ∂τ N

(1) + ∂ξ (V
(2) + N (1)V (1)) = 0 (16)

−S∂ξV
(2) + ∂τV

(1) + V (1)∂ξV
(1)

= −∂ξφ
(2) − 2σ∂ξ N

(2) (17)

∂2
ξ φ(1) = (α1 + αγ )φ(2) +

(
α2 − αγ 2

2

)
φ(1)2

−(1 − α)
1

(1 − αεZ )
N (2). (18)

Using eqs (16) and (17), we obtain the following solu-
tion:

∂ξ N
(2) = 1

(S2 − 2σ)

[
2S

(S2 − 2σ)
∂τφ

(1)

+ 3S2

(S2 − 2σ)2 φ(1)∂ξφ
(1) + ∂ξφ

(2)

]
(19)

Differentiating eq. (18) with respect to ξ

∂3
ξ φ(1) = (α1 + αγ )∂ξφ

(2) +
(

α2 − αγ 2

2

)
∂ξφ

(1)2

−(1 − α)
1

(1 − αξz)
∂ξ N

(2) (20)

and using eq. (19) in (20)

∂3
ξ φ(1) +

(
3(1 − α)S2

(
S2 − 2σ

)3 − 2

(
α2 − αγ 2

2

))
φ(1)∂ξφ

(1)

+ 2S(1 − α)(
S2 − 2σ

)2 ∂τφ
(1) = 0 (21)

Solving eq. (21), we obtain the following KdV equation:

∂τφ
(1) + PQφ(1)∂ξφ

(1) + 1

2
P∂3

ξ φ(1) = 0 (22)

P =
(
S2 − 2σ 2

)2

S(1 − α)
(23)
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and

Q = 1

2

(
3S2(1 − α)(
S2 − 2σ

)3 − 2

(
α2 − αγ 2

2

))
. (24)

3. Solution of the KdV equation

For the steady-state solution of the KdV equation (22),
we consider

η = ξ − uτ, (25)

where u is a constant velocity.

Substituting eq. (25) in (22) and integrating with
respect to η, we obtain

1

2

(
dζ φ

)2 + V (φ) = 0, (26)

where φ is used in place of φ(1) for convenience and
V (φ) is the Sagdeev potential (SP), which is given by

V (φ) = 2

P

(
1

6
PQφ3 − 1

2
uφ2

)
. (27)

In the derivation of eq. (27), we have used the follow-
ing boundary conditions: As ζ → ±∞, φ, dζ φ and
d2
ζ φ → 0. However, for the soliton solution, V (φ)

should be negative between φ = 0 and φ = φm , where

Figure 1. The variation of V (φ) for the rarefactive soliton when kh = 6.685 (black solid line), 6.687 (red dashed line) and
6.689 (blue dotted line) when α = 0.1, kc = 2, σ = 0.1, γ = 0.7, σ1 = 0.1, ν = 0.01 and constant velocity (u) = 0.01.

Figure 2. The variation of V (φ) for the compressive soliton when kh = 6.90 (black solid line), 6.91 (red dashed line) and
6.92 (blue dotted line) when α = 0.1, kc = 3, σ = 0.1, γ = 0.1, σ1 = 0.1, ν = 0.01 and constant velocity (u) = 0.01.
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Figure 3. The variation of V (φ) for the rarefactive soliton when kc = 2.0 (black solid line), 2.001 (red dashed line) and 2.002
(blue dotted line) when α = 0.1, kh = 6.685, σ = 0.1, γ = 0.1, σ1 = 0.1, ν = 0.01 and constant velocity (u) = 0.01.

Figure 4. The variation of V (φ) for the compressive soliton when kc = 3.0 (black solid line), 3.01 (red dashed line) and 3.02
(blue dotted line) when α = 0.1, kh = 6.9, σ = 0.1, γ = 0.1, σ1 = 0.1, ν = 0.01 and constant velocity (u) = 0.01.

φm is some maximum or minimum value of potential for
the compressive and rarefactive solitons, respectively.
The following boundary conditions on the SP should be
satisfied:

V (φ) = 0 at φ = 0 and φ = φm, (28a)

V ′(φ) = 0 at φ = 0, (28b)

V ′(φ) > 0 at φ = φm for compressive soliton, (28c)

V ′(φ) < 0 at φ = φm for rarefactive soliton. (28d)

The soliton solution of eq. (26) is given by

φ = φmsech2[W−1(ξ − uτ)
]
, (29)

where the amplitude (φm) and width (W ) are given by

φm = 3u

PQ
(30)

and

W =
√

2P

u
. (31)

4. Derivation of the m-KdV equation

In the case of two-electron temperature distribution, the
nonlinear coefficient in the KdV equation may vanish
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Figure 5. The variation of V (φ) for the rarefactive soliton when γ = 0.1 (black solid line), 0.101 (red dashed line) and 0.102
(blue dotted line) when α = 0.1, kh = 6.685, σ = 0.1, ν = 0.01, σ1 = 0.1, kc = 2 and constant velocity (u) = 0.01.

Figure 6. The variation of V (φ) for the compressive soliton when γ = 0.1 (black solid line), 0.101 (red dashed line) and
0.102 (blue dotted line) when α = 0.1, kh = 6.9, σ = 0.1, ν = 0.1, σ1 = 0.1, kc = 3 and constant velocity (u) = 0.01.

for certain density and temperature ratios of the two-
electron species defined as critical density and critical
temperature. In the vicinity of this critical regime, the
higher-order nonlinearity should be taken into account
to obtain the m-KdV equation. To derive the m-KdV
equation, we take the stretching of coordinates (ξ) and
(τ ) in the following form:
ξ = ε(x − St) (32a)

and
τ = ε3t. (32b)

On substituting expansion (32) into eqs (1)–(5) and
(7), using eq. (9) and equating terms with the same power
of ε, we obtain a set of equations for each order in ε. The

set of equations for the lowest order, i.e., O(ε2), for eqs
(1)–(7), and O(ε) for eq. (7) comes out to be the same
as in the case of the KdV equation. Hence, once again
we get the same first-order relations and the dispersion
relation.

The next higher-order equations give the following
m-KdV equation:

∂τφ
(1) + PRφ(1)2

∂ξφ
(1) + 1

2
P∂3

ξ φ(1) = 0, (33)

where

P =
(
S2 − 2σ 2

)2

S(1 − α)
(34)
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Figure 7. The variation of V (φ) for the rarefactive soliton when α = 0.1 (black solid line), 0.1003 (red dashed line) and
0.01006 (blue dotted line) when ν = 0.01, kh = 6.685, σ = 0.1, γ = 0.1, σ1 = 0.1, kc = 2 and constant velocity (u) = 0.01.

Figure 8. The variation of V (φ) for the compressive soliton when α = 0.1 (black solid line), 0.1001 (red dashed line) and
0.1002 (blue dotted line) at ν = 0.01, kh = 6.9, σ = 0.1, γ = 0.1, σ1 = 0.1, kc = 3 and constant velocity (u) = 0.01.

and

R =
(

αγ 3

6
− (1 − α)

2
(
S2 − 2σ

)5

{
3S5

−3(2σ − 1)S3 + 2S4 − 4σ S2
})

. (35)

For the steady-state solution of the m-KdV equation
(33), we consider the same transformation as used in the
KdV soliton case, i.e., eq. (25), and we get

1

2

(
dζ φ

)2 + V (φ) = 0, (36)

where V (φ) is the SP, which is given by

V (φ) = 1

P

(
1

12
PRφ4 − 1

2
uφ2

)
. (37)

The solution of eq. (36) is given by

φ = φmsech
[
W−1(ξ − uτ)

]
, (38)

where the amplitude (φm) and width (W ) are given by

φm = ±
[

6u

PR

]1/2

(39)
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Figure 9. The variation of V (φ) for the rarefactive soliton when σ = 0.1 (black solid line), 0.1001 (red dashed line) and
0.1003 (blue dotted line) when ν = 0.01, kh = 6.685, α = 0.1, γ = 0.1, σ1 = 0.1, kc = 2 and constant velocity (u) = 0.01.

Figure 10. The variation of V (φ) for the compressive soliton when σ = 0.1 (black solid line), 0.101 (red dashed line) and
0.102 (blue dotted line) when ν = 0.01, kh = 6.9, α = 0.1, γ = 0.1, σ1 = 0.1, kc = 3 and constant velocity (u) = 0.01.

and

W =
√

P

2u
. (40)

5. Result and discussion

To investigate region of existence of the solitons, their
nature, amplitude and width in the plasmas with two
species of superthermal electrons, we have numerically

analysed and plotted the valuation of V (φ) with poten-
tial (φ) for different sets of plasma parameters.

Figures 1–10, 11–12 and 13–15 are drawn using eq.
(27), (29) and (31) respectively. In figure 1, the variation
of V (φ) with φ is plotted for rarefactive soliton for dif-
ferent values of kh with fixed values of other parameters.
It is seen that as kh increases, the amplitude of the soli-
ton decreases. In figure 2, the variation of V (φ) with φ

for the compressive soliton is shown for different values
of kh when kc = 3 and γ = 0.1 (other prameters are the
same as in figure 1). It is observed that as kh increases,
the amplitude of the soliton increases. In figure 3, the
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Figure 11. The variation of φ with η when kh = 6.64 (black solid line), 6.65 (red dashed line), 6.66 (blue dotted line), 6.67
(yellow solid line), 6.68 (green dashed line) and 6.69 (cyan dotted line) when ν = 0.01, σ = 0.1, α = 0.1, γ = 0.1, u = 0.01,
σ1 = 0.1 and kc = 2.

Figure 12. The variation of φ with η when kc = 1.8 (black solid line), 1.9 (red dashed line), 2.0 (blue dotted line), 2.1 (yellow
solid line), 2.2 (green dashed line) and 2.3 (cyan dotted line) when ν = 0.01, σ = 0.1, α = 0.1, γ = 0.1, u = 0.01, σ1 = 0.1
and kh = 6.689.

variation of V (φ) with φ for the rarefactive soliton is
shown for different values of kc when kh = 6.685 and
γ = 0.1 (other parameters are the same as in figure 1). It
is seen that as kc increases, the amplitude of the soliton
increases. In figure 4, the variation of V (φ) with φ for
the compressive soliton is shown for different values of
kc when kh = 6.9 and γ = 0.1 (other parameters are
the same as in figure 1). It is seen that as kc increases,
the amplitude of the soliton decreases.

In figure 5, the variation of V (φ) with φ for the
rarefactive soliton is shown for different values of γ

when kc = 2 and kh = 6.685 (other parameters are

the same as in figure 1). It is seen that as γ increases,
the amplitude of the soliton decreases. In figure 6, the
variation of V (φ) with φ for the compressive soliton
is shown for different values of γ when kc = 3 and
kh = 6.9 (other parameters are the same as in figure 1).
It is seen that as γ increases, the amplitude of the soliton
increases. In figure 7, the variation of V (φ) with φ for
the rarefactive soliton is shown for different values of
α when γ = 0.1 and kh = 6.685 (other prameters are
the same as in figure 1). It is seen that as α increases,
the amplitude of the soliton decreases. In figure 8, the
variation of V (φ) with φ for the compressive soliton
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Figure 13. 3D curve between kc, σ and width (w) when ν = 0.01, α = 0.1, γ = 0.1, σ1 = 0.1, u = 0.01 and kh = 7.

Figure 14. 3D curve between kh , σ and w when ν = 0.01, α = 0.1, γ = 0.1, σ1 = 0.1, u = 0.01 and kc = 2.

Figure 15. 3D curve between α, σ and w when ν = 0.01, kc = 2, γ = 0.1, σ1 = 0.1, u = 0.01 and kh = 6.689.
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Table 1. The amplitude (eq. (39)) and width (eq. (40)) of m-KdV soliton when σ = 0.1,
α = 0.1, ν = 0.01, kc = 6, γ = 0.1, σ1 = 0.1 and u = 0.01 for different values of kh .

kh Amplitude |φm | Width (w)

1.5 0.0616 0.0181
1.501 0.0669 0.0188
1.502 0.0723 0.0194
1.503 0.0799 0.0201

Table 2. The amplitude and width of m-KdV soliton for different values of σ when kc =
kh = 1.5. The other parameters are the same as in table 1.

σ Amplitude |φm | Width (w)

0.01 0.0074 0.0035
0.02 0.0192 0.0059
0.03 0.0289 0.0079
0.04 0.0490 0.0097

is shown for different values of α when kc = 3 and
kh = 6.9 (other parameters are the same as in figure 1).
It is seen that as α increases, the amplitude of the soli-
ton increases. In figure 9, the variation of V (φ) with φ

for the rarefactive soliton is shown for different values
of σ when kc = 2, γ = 0.1 and kh = 6.685 (other
parameters are the same as in figure 1). It is seen that
as σ increases, the amplitude of the soliton increases.
In figure 10, the variation of V (φ) with φ for the com-
pressive soliton is shown for different values of σ when
kc = 2 (other parameters are the same as in figure 1). It
is seen that as σ increases, the amplitude of the soliton
decreases.

In figures 11 and 12 the variation of φ with η (eq.
(29)) for different values kh and kc when γ = 0.1 are
plotted and other parameters are the same as in figure 1.
In figure 13, the 3D curve shows that as σ increases,
the width of the soliton increases and as kc increases,
the width of the soliton increases and after a certain
value, there is no change in the width of the plasma.
In figure 14, the 3D curve shows that as σ increases,
the width of the soliton increases and as kh increases,
the width of the soliton increases and after a certain
value, there is no change in the width of the plasma. In
figure 15, the 3D curve shows that as α increases, the
width of the soliton decreases and as σ increases, the
width of the soliton increases.

In tables 1 and 2, we have presented the variation
in amplitude and width of the m-KdV soliton with the
spectral index (kh) and ionic temperature ratio (σ ). It
can be seen from tables 1 and 2 that on increasing the
values of kh and σ , the amplitude as well as the width
of the m-KdV soliton increase.

6. Conclusions

IASWs have been investigated in the presence of
κ-distributed hot and cold electrons, positrons and ions.
Employing the RPM, the KdV and m-KdV equations
have been derived for the ion-acoustic waves. We have
focussed our investigation on the effect of α, γ, σ , kh
and kc on the characteristics of solitons in unmagne-
tised plasma. For a selected set of plasma parameters, it
is found that on increasing the value of α, γ and kh the
amplitude of the rarefactive (compressive) solitary wave
decreases (increases). However, the amplitude increases
(decreases) with an increase in σ and kc as can be seen
in figures 1–10. Width of the solitary wave increases as
values of σ, kh and kc increase for a given set of param-
eters as shown in figures 13 to 15. It is predicted that
for the selected set of parameters, on increasing α the
width of the solitary wave decreases as shown in fig-
ure 15. In the case of m-KdV soliton, it is found that for
the selected set of plasma parameters, the amplitude and
width of the solitary wave increase with an increase in σ

and kh . The results of the present investigation may be
helpful to understand the nonlinear ion-acoustic soliton
in space plasma environments as well as in laboratory
plasma, where superthermal electrons with two differ-
ent temperatures exist along with positrons and ions (e.g.
Saturn’s magnetosphere, pulsar magnetosphere) etc.).
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