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Abstract. In this paper, we present an analytical solution for the system of two-level semiconductor quantum
dot. In addition, we discuss the rates of the photon radiative and phonon radiationless transitions from
the excited state (α12, α21), the rate of processes of pure dephasing (γ ), the detuning parameter (�) and
the Rabi frequency (�), on the atomic occupation probabilities (ρ11(t) and ρ22(t)), the atomic population
inversion (ρz(t)), the purity (PA(t)), the von Neumann entropy (S(t)) and the information entropies
(H(σx ), H(σy) and H(σz)). We clearly observe the emergence of long-lived quantum coherence phenomenon
in all the curves for some special cases of α12, α21, γ , � and �. Besides, the decay phenomenon is
quite evident in the purity curves, which can be simply controlled by changing the values of α12, α21
and γ.
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1. Introduction

The materials, broadly speaking, were divided into three
main categories: the conductors [1] that allow electrons
to flow through them, the insulators [2] that do not
allow the flow of electrons and semiconductors [3–7]
that allow the flow of electrons only under certain con-
ditions. Perhaps the best explanation for the difference
between them is the difference in their band gaps [8–10].
Defined as a range of energy in matter, the band gap does
not contain any electrons within. Conductors [1,11],
such as metals including iron, copper, silver, gold and
aluminum, have no band gaps. So, electrons can move
freely through them, and thus the electric current can be
easily connected. Insulators [2,12,13], such as oil, glass,
rubber and ceramics, have large band gaps that restrain
the flow of electrons. In contrast [3–7], semiconductors
contain small band gaps, and so the flow of electrons and
electronic holes can be controlled by adding impurities
to the material. The properties of semiconductors [14–
16] depend on their degree of purity. Semiconductors
are divided into pure elements, such as silicon or germa-
nium, and non-pure elements, such as gallium arsenide

compounds or cadmium selenide [17–20]. Non-pure
elements are generated by adding small amounts of
impurities to pure semiconductors, through a process
called doping, which leads to significant changes in
the properties of the elements [14–16]. Some proper-
ties of the semiconductor materials were discovered
during the mid-19th century and the early decades of
the 20th century [21–23]. In 1874, the first practical
application of semiconductors in electronics was dis-
covered by Braun [24], when he created a diode, which
is a semiconductor device with two terminals allow-
ing the flow of current in one direction only. At the
beginning of the 20th century, G W Pickard created the
first commercially available semiconductor, branded as
the ‘cat’s-whisker detector’, a primitive semiconductor
diode, used in early radio receivers [21–23]. Semicon-
ductors were then used only as two-terminal devices,
such as rectifiers and photodiodes [21–23]. In 1947,
developments in quantum physics led to the develop-
ment of the transistor [18,25,26]. In 1958, Sterling
developed integrated circuits [27]. The main objective of
this work was to condense more components in a much
smaller space to achieve higher speed and lesser cost.
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The development of this work subsequently allowed us
to build calculators, flight control systems ipads and
most of the modern technological devices.

Our study focusses on semiconductor quantum dots
[28–33], which are very small semiconductor particles
[3–7,14–18,25,26,34–36]. Their size is measured by
nanometre, and so their optical and electronic prop-
erties [37–40] are different from those of the larger
LED molecules. In 1981, Russian physicist Alexey I
Ekimov discovered quantum dots. He discovered that
they are small nanoparticles whose diameter ranged
from 2 nm (nanometers) to 10 nm, and that the colour
of these particles varies by their size [28–33]. Quan-
tum dots are sometimes referred to as artificial atoms.
This expression confirms that a quantum dot is a sin-
gle object with bound, discrete electronic states, that
is, very similar to atoms or molecules that occur natu-
rally [41–43]. Quantum dots can also be classified into
different types based on their composition and struc-
ture. Many types of quantum dots emit light for specific
frequencies, if light or electricity is directed to them.
These frequencies can be precisely tuned, by changing
the size of the dots, which has led to the emergence
of many applications [28,44–58], including quantum
computing, medical imaging, solar cells, LED lamps,
diode lasers and transistors [18,25,26]. Besides, the
highly tunable properties of quantum dots make them
crucially vital in a wide variety of research and com-
mercial applications in biochemistry, biometric sensing
[36], Langmuir–Blodgett thin films [59–61] and spin-
coating [62].

Because of the above-mentioned importance of this
field, our study is solving the master equation for
the density matrix ρ(t) of the two-level semiconduc-
tor quantum dot, as an example of an artificial atom.
Although this problem has been almost covered in
physics from the theoretical and experimental perspec-
tives [63–66], the research in this vital area still lacks
the mathematical treatment. Hence, after reviewing the
previous studies, we think that our mathematical solu-
tion in this paper would represent a whole new endeavor
that may provide different explanatory points of view to
the equations of semiconductors systems. The impor-
tance of this mathematical study is also emphasised by
several phenomena which have been revealed through
the processing of the system, including the phenomenon
of long-lived quantum coherence and the decay phe-
nomenon. These phenomena, as we shall see later, make
us control the behaviour of the system by changing the
parameters over time. This can help greatly in the labora-
tory experiments and in many applications of this field.

Accordingly, as an application to solve this system,
we calculate the atomic inversion, the purity and the
entropies. The atomic inversion is one of the most

important quantities, and is defined as ‘the difference
between the probabilities of finding the atoms in their
excited states and in their ground states’ [67,68]. While
the purity is an indicator of the degree of influence of the
field on the atom, and the range of its value is between
0 and (1 − 1/d), 0 refers to a completely pure state,
and (1 − 1/d) refers to a completely mixed state (here,
d is the dimension of the density matrix) [67]. On the
other hand, the entropy is a measure that determines the
amount of information missing from the system. It is
also a measure of the degree of chaos in the system,
as a result of the effect of the field or the surrounding
environment on this system [69–72].

This paper is organised as follows: in §2 we describe
the Hamiltonian of the system in question, two-level
semiconductor quantum dot, and we obtain the explicit
analytical solution of this model. In §3, we discuss
the atomic occupation probabilities (ρ11(t) and ρ22(t)),
the atomic population inversion (ρz(t)) and the time
evolution of the purity (PA(t)), by changing the rates
of the photon radiative and phonon radiationless tran-
sitions from the excited state (α12, α21), the rate of
the processes of pure dephasing (γ ), the detuning
parameter (�) and the Rabi frequency (�). In §4, we
discuss the time evolution of the von Neumann entropy
(S(t)) and the information entropies (H(σz), H(σy) and
H(σx )). Finally, conclusions are given at the end of the
paper.

2. The model

We discuss a two-level semiconductor quantum dot as
an example of an artificial atom with the energy split-
ting ω0 between the ground (|−〉) and the excited (|+)〉,
states. The semiconductor quantum dot is affected by
a coherent laser field with frequency (ωL ). The mas-
ter equation for the density matrix (ρ(t)) of the system
under study is as follows [73–75]:

i
∂ρ(t)

∂t
= [H, ρ(t)] + i
ρ(t), (1)

where

H = �σz + �

2
(σ+ + σ−), (2)

Planck’s constant � = 1 is the Hamiltonian of the system
in the rotating wave approximation [76–79] and


ρ(t) = α21

2
F[σ−]ρ(t) + α12

2
F[σ+]ρ(t)

+γ

2
F[σz]ρ(t), (3)

is the relaxation superoperator. σ+, σ− and σz are the
Pauli spin operators which describe the states of the
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two-level semiconductor quantum dot. These satisfy the
following commutation relationships:

[σ+, σ−] = 2σz, [σz, σ±] = ±σ±. (4)

Here �, the Rabi frequency, is an indicator of the
strength of the interaction of our system with the laser
field, � = ω0 − ωL is the detuning parameter, α12 and
α21 are the rates of the photon radiative and phonon
radiationless transitions FROM the excited state, |+〉,
to the ground state, |−〉 and vice versa and γ is the rate
of the processes of pure dephasing.

As for F[σ±,z], we can define the function F of any
operator U as follows:

F[U ]ρ(t) = 2Uρ(t)U† −U †Uρ(t) − ρ(t)U †U. (5)

After long calculations, we can write the master equa-
tion (1) as follows:

∂ρ11

∂t
= i

�

2
(ρ12 − ρ21) − α21ρ11 + α12ρ22,

∂ρ22

∂t
= −i

�

2
(ρ12 − ρ21) + α21ρ11 − α12ρ22,

∂ρ12

∂t
= −

(
i� + α21

2
+ α12

2
+ γ

4

)
ρ12

+i
�

2
(ρ11 − ρ22),

∂ρ21

∂t
=

(
i� − α21

2
− α12

2
− γ

4

)
ρ21

−i
�

2
(ρ11 − ρ22), (6)

where ρ11 and ρ22 are the diagonal elements (the atomic
occupation probabilities), while ρ12 and ρ21 are the
off-diagonal elements (coherences) of the two-level
semiconductor quantum dot. We can rewrite the system
of equations (6) by using the components of the density
operator ρ(t), ρx (t), ρy(t) and ρz(t), as follows:

∂ρx (t)

∂t
= −Sρx(t) − �ρy(t),

∂ρy(t)

∂t
= �ρx (t) − Sρy(t) + �ρz(t),

∂ρz(t)

∂t
= −�ρy(t) − Qρz(t), (7)

where

ρx (t) = ρ12(t) + ρ21(t),

ρy(t) = −i(ρ21(t) − ρ12(t)),

ρz(t) = ρ22(t) − ρ11(t) (8)

and

S = α12 + γ

4
,

Q = 2α12, α12 = α21. (9)

We initially take the atom in the following superposi-
tion state:

|�(0)〉 = sin

(
θ

2

)
exp(−iϕ) |1〉 + cos

(
θ

2

)
|2〉 , (10)

where |1〉 (|2〉) is the ground (excited) state of the atom.
Here ϕ ∈ [0, 2π ] is the relative phase between the
ground and the excited states and θ ∈ [0, π ] denotes
the initial coherence of the two levels.

However, the system initially is defined as follows
[80]:

ρ(0) = |�(0)〉 〈�(0)| , (11)

where

〈�(0)| = the complex conjugate of |�(0)〉
= (|�(0)〉)†. (12)

Hence, we get the following equations:

ρ11(0) = 〈1| ρ(0) |1〉 = sin2
(

θ

2

)
,

ρ22(0) = 〈2| ρ(0) |2〉 = cos2
(

θ

2

)
,

ρ12(0) = 〈1| ρ(0) |2〉 = 1

2
sin(θ) exp(−iϕ),

ρ21(0) = 〈2| ρ(0) |1〉 = 1

2
sin(θ) exp(iϕ). (13)

But

ρx (0) = ρ12(0) + ρ21(0),

ρy(0) = −i(ρ21(0) − ρ12(0)),

ρz(0) = ρ22(0) − ρ11(0). (14)

This means that the initial conditions of this system
are⎛
⎝

ρx (0)

ρy(0)

ρz(0)

⎞
⎠ =

⎛
⎝

sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎠ . (15)

We can solve the system of equations (7) by Laplace
transformation and obtain the following solutions:

ρx (t) =
3∑

i=1

X exp(tλi )

(λi − λ j )(λi − λk)
, i �= j �= k,

j, k = 1, 2, 3,

ρy(t) =
3∑

i=1

Y exp(tλi )

(λi − λ j )(λi − λk)
, i �= j �= k,

j, k = 1, 2, 3,

ρz(t) =
3∑

i=1

Z exp(tλi )

(λi − λ j )(λi − λk)
,
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i �= j �= k, j, k = 1, 2, 3, (16)

where

X = ρx (0){λ2
i + (S + Q)λi + SQ + �2}

+ρy(0)�(λi + Q) + ρz(0)��,

Y = −ρx (0)�(λi + Q) + ρy(0)

×{λ2
i + (S + Q)λi + SQ} + ρz(0)�(S + λi ),

Z = ρx (0)�� + ρy(0)�(S + λi )

+ρz(0){λ2
i + 2Sλi + (S2 + �2)} (17)

and

λ1 = 1

6

{
− 2(2S + Q) − 24/3A

(
√
C + B)1/3

+22/3(
√
C + B)1/3

}
,

λ2 = 1

6

{
− 2(2S + Q) + 24/3A(i

√
3 + 1)

(
√
C + B)1/3

+22/3(i
√

3 − 1)(
√
C + B)1/3

}
,

λ3 = λ̃2 (the complex conjugate of λ2), (18)

where

A = 3(�2 + �2) − (S − Q)2,

B = (S − Q)(2S2 − 4SQ + 2Q2 + 18�2 − 9�2),

C = (S − Q)2{2[(S − Q)2 + 9�2] − 9�2}2

−4{(S − Q)2 − 3(�2 + �2)}3. (19)

As applications to the solution of our system, we
discuss the atomic occupation probabilities (ρ11(t) and
ρ22(t)), the atomic inversion (ρz(t)), the purity (PA(t)),
the von Neumann entropy (S(t)) and the information
entropies (H(σx ), H(σy) and H(σz)), of the semicon-
ductor quantum dot. In addition, we study the dephasing
rate in the zeroth approximation [81] in max{α12, α21,

γ }/�, at the end of the discussion.

3. Results and discussion

3.1 The atomic population inversion and the purity

Based on the analytical solution of a two-level semicon-
ductor system in the previous section, we investigate the
evolution in time of ρ11(t), ρ22(t) and ρz(t), which is
given by [67,68]

PA(t) = TrA(ρ2
A(t)) (20)

= ρ2
11 + 2 |ρ12|2 + ρ2

22, (21)

where ρA, the density matrix of the atom and ρi j , i, j =
1, 2, the solution obtained from eqs (6), are the ele-
ments of the matrix ρA, because of the afore-solved
system of eqs (6) were actually handling the system
of the semiconductor quantum dot only that has already
been affected by a coherent laser field with the frequency
ωL .

In the numerical results, we consider the initial coher-
ence of the two levels θ = 0 and the relative phase
between the excited and ground states ϕ = 0 (this
means that initially the semiconductor system will be
in the excited state, ρ22(0) = 1, ρ11(0) = ρ12(0) =
ρ21(0) = 0). In figures 1–6, we can observe clearly
the emergence of the phenomenon of long-lived quan-
tum coherence [82–85]. This phenomenon means that
the curve after a certain period of time and at a cer-
tain value becomes fixed, wherein the influence of the
parameters fades away. In other words, the curve after
some fluctuation becomes fixed, without any influence
of time. In figure 1, we investigate the effects of α12,

α21 and γ on ρ11(t), ρ22(t), ρz(t) and PA(t), when
� = 10 and � = 10. At α12 = α21 = γ = 0.1,

α12 = α21 = γ = 0.5 and α12 = α21 = γ = 0.9, both
the curves of ρ11(t) and ρz(t) start from their minimum
values at ρ11(t) = 0, ρz(t) = −1, while the curves of
ρ22(t) start with their maximum value at ρ22(t) = 1. In
the beginning, we note that the three curves of ρ11(t),
ρ22(t) and ρz(t) have many oscillations of great inten-
sity and amplitude. However, after a certain period of
time, we find that the intensity, the amplitude and the
number of oscillations become significantly less. So the
curves take the shape of a fixed straight line, and we
find that the increase in α12, α21 and γ causes a faster
decrease in the number of oscillations and their inten-
sity and amplitude, thereby, turning the curves quickly
to straight lines after a short period of time. As for the
purity curves, PA(t), they start from their maximum
value at PA(t) = 1, then suddenly decrease clearly to
show an evident decay. By increasing α12, α21 and γ ,
this decay is greater and faster, until the curves become
fixed at PA(t) = 0.5, where the curve is in completely
mixed state. We also notice an apparent phenomenon
of long-lived quantum coherence. In figure 3, we inves-
tigate the effects of � on ρ11(t), ρ22(t), ρz(t), PA(t),
when � = 10 and α12 = α21 = γ = 0.3. At � = 5, 15
and 25, the curves of ρ11(t) and ρz(t) start from their
minimum values, then increase significantly until they
reach their maximum values, while the curves of ρ22(t)
start from their maximum value, then, after a certain
period of time, decrease significantly until they reach
their minimum values. By increasing �, all the curves,
ρ11(t), ρ22(t) and ρz(t), are in the fixed states, where the
amplitudes of the curves are gradually reduced signif-
icantly, and this transforms the curves to fixed straight
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Figure 1. The effects of α12, α21 and γ on ρ11(t), ρ22(t), ρz(t) and PA(t) when θ = 0, ϕ = 0, � = 10 and � = 10, where
blue dotted, black and red curves correspond, respectively, to γ = η = 0.1, 0.5 and 0.9.

lines (long-lived quantum coherence). With regard to the
purity curve PA(t), they start from their maximum value
at PA(t) = 1, then, suddenly and quickly, the curves
decrease to a decaying state. Note that the effect of � on
PA(t) are small, as all the curves of the purity are close

to each other. They become fixed at PA(t) = 0.5 (the
completely mixed state, long-lived quantum coherence).
In figure 5, we investigate the effects of � on ρ11(t),
ρ22(t), ρz(t) and PA(t), when � = 10 and α12 = α21 =
γ = 0.3. At � = 5, 15 and 25, it can be noticed that,
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Figure 2. The effects of α12, α21, γ on S(t), and H(σx ), H(σy) and H(σz), of the semiconductor quantum dot, when θ = 0,
ϕ = 0, � = 10 and � = 10, where blue dotted, black and red curves correspond, respectively, to γ = η = 0.1, 0.5 and 0.9.

with the increase in�, the maximum values of the curves
ρ11(t) and ρz(t) increase, while the minimum values
of the curves ρz(t) are greatly reduced first, then these
minimum values continue to decrease but slightly. With
the passing of time and increasing �, the oscillation
amplitudes of all the curves, ρ11(t) and ρ22(t), ρz(t),

decrease until they finally stabilise at ρ11(t) = 0.4,

ρ11(t) = 0.5 and ρz(t) = 0. In this case, it can also
be observed that the effect of � on PA(t) are small.
Finally, the curves from the beginning are in a state of
decay, until they settle in the completely mixed state
(PA(t) = 0.5).
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Figure 3. The effects of � on ρ11(t) and ρ22(t), ρz(t), PA(t), when θ = 0, ϕ = 0, � = 10 and γ = η = 0.3 , where blue
dotted, black and red curves correspond, respectively, to � = 5, 15 and 25.

3.2 The information entropies and the von Neumann
entropy

There are different definitions of the entropy, for
instance, the information entropy (the Shannon entropy)
[86], the Rényi entropy [87], Hartley entropy [88], etc.

We used the information entropy because it has unique
properties which make it very useful and vital in many
applications, such as statistical thermodynamics, and
for constructing error-correcting codes [89], which are
crucial for transmissions to and from space vehicles
and many other communications systems. In accordance
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Figure 4. The effects of � on S(t) and H(σx ), H(σy) and H(σz) of the semiconductor quantum dot, when � = 10 and
α12 = α21 = γ = 0.3 where the blue dotted, black and red curves correspond, respectively, to � = 5, 15 and 25.

with the mathematical calculations in §2, this subsection
presents the time evolution of the information entropies,
H(σx ), H(σy) and H(σz), of the atomic operators σx ,
σy and σz, which are defined as follows [71,72,90]:

H(σγ ) = −
n∑

k=1

Pk(σγ ) ln Pk(σγ ), γ = x, y, z, (22)

where the probability distribution for n possible
outcomes of measurements for an arbitrary quantum
state of the operator σγ is

Pk(σγ ) = 〈�γ k |ρ(t)|�γ k〉 (23)

and |�γ k〉 is the eigenvector of the operator σγ :

σγ |�γ k〉 = νγ k |�γ k〉,
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Figure 5. The effects of � on ρ11(t), ρ22(t), ρz(t) and PA(t) when θ = 0, ϕ = 0, � = 10 and γ = η = 0.3 , where the
blue dotted, black and red curves correspond, respectively, to � = 5, 15 and 25.

γ = x, y, z, k = 1, 2, ..., n, (24)

where νγ k is the eigenvalue of the atomic operator σγ .
As the operators σγ (γ = x, y, z) satisfy the

commutation relations (4), then some kind of relation-
ships is expected between their corresponding entropies

H(σγ ) defined by eq. (22) and this will be explained
now.

Using quantum entropy theory [91], an optimal
entropic uncertainty relation was recently studied for
sets of M + 1 complementary observables with
non-degenerate eigenvalues in an even M-dimensional
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Hilbert space, and it has been concluded that it takes the
following formula:

M+1∑
γ=1

H(σγ )≥M

2
ln

(
M

2

)
+

(
1 + M

2

)
ln

(
1+M

2

)
.

(25)

In the case of a two-level atom, M = 2, from eq. (25),
we can observe that the information entropies of the
operators σx , σy and σz satisfy the following inequality:

H(σx ) + H(σy) ≥ 2 ln(2) − H(σz). (26)

Also, inequality (26) may be written as
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δH(σx )δH(σy) ≥ 4

|δH(σz)| , (27)

where δH(σα) = exp[H(σα)].
Inequality (26) will be clarified later through figures

and discussion. Also we study the time evolution of the
von Neumann entropy, S(t), which is defined as [90]

S(t) = −Tr(ρ̂(t) ln ρ̂(t))

= −(δ1 ln δ1 + δ2 ln δ2), (28)

where

δ1,2 = 1

2

{
1 ±

√
1 − 4(ρ11ρ22 − |ρ12|2

}

= 1

2
±

√
〈σx 〉2 + 〈σy〉2 + 〈σz〉2. (29)

In the numerical results, we also consider the rela-
tive phase between the excited and the ground states
ϕ = 0 and the initial coherence of the two levels θ = 0.
Here, we can clearly see also the emergence of the phe-
nomenon of long-lived quantum coherence in all the
curves, which obviously manifest in the curves of the
von Neumann entropy. In figure 2, we investigate the
effects of α12, α21 and γ on S(t), and H(σx ), H(σy)

and H(σz), of the semiconductor quantum dot, when
� = 10 and � = 10. At α12 = α21 = γ = 0.1,

α12 = α21 = γ = 0.5 and α12 = α21 = γ = 0.9, the
curves of H(σx ) and H(σy) start from their maximum
value at H(σx ) = H(σy) = 0.7, while the curves of
H(σz) start with its minimum value at H(σz) = 0. In the
beginning, the curves of H(σx ), H(σy) and H(σz) go in
fluctuated ups and downs, the intensity and amplitudes
of these oscillations are large and clear. After a certain
period of time, we note that the intensity, amplitudes and
the number of oscillations decrease significantly, until
the curves become a straight line. It draws clearly the
phenomenon of long-lived quantum coherence. We note
that by increasing α12, α21 and γ , the curves become
fixed faster than before. As for the von Neumann entropy
curves, S(t), they start from their minimum value at
S(t) = 0, then suddenly increase plainly. The increase
of the maximum values of von Neumann entropy curves
become greater and faster, by increasing α12, α21 and γ .
Then the curves become fixed at their maximum value at
S(t) = 0.7. These curves remain fixed even over time,
and also remain fixed even if α12, α21 and γ increase,
depicting a long-lived quantum coherence. In figure 4,
we investigate the effects of � on S(t) and H(σx ),

H(σy) and H(σz), of the semiconductor quantum dot,
when � = 10 and α12 = α21 = γ = 0.3. At � = 5,

15 and 25, the intensity and amplitudes of the oscilla-
tions of the curves H(σx), H(σy) and H(σz) are initially
large and clear. It is observed that, by increasing �, the
maximum values of H(σz) decrease and the minimum

values of H(σy) increase, while the maximum values of
H(σx ) hesitate between the increase and the decrease,
until all the curves, H(σx ), H(σy) and H(σz), become
fixed, without any effect of � and time. With respect
to the von Neumann entropy curves, S(t), they start
from their minimum value at S(t) = 0, then, suddenly
and quickly, the curves increase until they reach their
maximum value. At this maximum value, the curves are
stabilised, and there is no change in their behaviour,
no matter how long. The effect of the change of � is
very weak, as the curves are almost integrated with each
other (long-lived quantum coherence). In figure 6, we
investigate the effects of � on S(t), and H(σx ), H(σy)

and H(σz), of the semiconductor quantum dot, when
� = 10 and α12 = α21 = γ = 0.3. At � = 5,

15 and 25, the curves of H(σx ) and H(σy) (H(σz))
start from their maximum values (minimum value) until
they reach minimum values (maximum value). In the
beginning, with the increase of �, the number of oscil-
lations increases significantly, especially in the curves
of H(σy) and H(σz), but after a period of time, all the
curves reach the fixed state at their maximum value at
H(σx ) = H(σy) = H(σz) = 0.7. As for the curve of
the von Neumann entropy, S(t), we also note that the
effect of � on the von Neumann entropy is slight, and
that the curve initially increases rapidly for its maxi-
mum value, and then becomes fixed, drawing again a
long-lived quantum coherence.

By referring to figures 1–6 with a time scale from 0
to 30, we find that with the increase of α12, α21 and γ ,
the curves of ρ11(t) and ρ22(t) and ρz(t) reach the case
of long-lived quantum coherence at t = 30, while the
curves of PA(t), S(t) and H(σx ), H(σy), H(σz) reach
the case of long-lived quantum coherence at t = 14. We
also find that with the increase of � and �, the curves
of ρ11(t), ρ22(t) and ρz(t) reach the case of long-lived
quantum coherence at t = 10, while the curves of PA(t),
S(t), H(σx ), H(σy) and H(σz) reach the case of long-
lived quantum coherence at t = 5. We note that the
time of arrival to long-lived quantum coherence case
does not change with the increase of � and �. We also
note that the curves of PA(t), S(t), H(σx ), H(σy) and
H(σz) reach the case of long-lived quantum coherence
at the same time. This is a typically expected behaviour,
as all these curves measure to what degree the atom is
affected by the field. We observe that when the entropies
increase, the atom is increasingly affected by the field,
and the purity decreases at the same time. Thus, if the
entropies reach a state of stability at a high value, the
purity curve would reach stability at a low value.

In the zeroth approximation in max{α12, α21, γ }/�,
we can calculate the probability of finding the quantum
dot in the excited state at an arbitrary time ρ22(t) as
follows:
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Figure 7. The dephasing rate η of Rabi oscillations vs. the
normalised detuning from the resonance �/�, where the
black, red dotted and blue curves correspond, respectively,
to χ = 0.32, γ = 0 (χ > γ ), χ = 0.28, γ = 0.28 (χ = γ )
and χ = 0.16, γ = 0.8 (χ < γ ).

ρ22(t) = 〈2| ρ |2〉

= 1

2
(1 − {exp(−ηt) sin2(�) cos(ζ t) + cos(�)

× [cos(�) exp(−εt) − τ(1 − exp(−εt)]}),
(30)

where ζ = √
�2 + �2 is the generalised Rabi fre-

quency, sin(�) = �/ζ , cos(�) = �/ζ and τ =
(α12 − α21) cos(�)/ε.

Also,

ε = χ + 1

2
(γ − χ) sin(�), (31)

η = 1

2
(χ) + 1

4
(χ − γ )

�2

ζ 2 , (32)

χ = α12 + α21. (33)

Rabi oscillations of the excited state of the quantum
dot occur with the frequency ζ and damp at the rate η

(eq. (32), figure 7). In figure 7, we investigate the effect
of normalised detuning from the resonance �/�, on
the dephasing rate η, at χ = 0.32, γ = 0 (χ > γ ),
χ = 0.28, γ = 0.28 (χ = γ ) and χ = 0.16, γ = 0.8
(χ < γ ). From eq. (32), we can observe the dependence
of the dephasing rate of Rabi oscillations on detuning
from the resonance �/�, which is determined by the
ratio between the total rates of photon radiative and
phonon radiationless transitions χ , and pure dephasing
γ . When χ > γ , as the detuning parameter increases,
the dephasing rate decreases. However, when χ < γ ,
the increase in the detuning parameter is followed by
an increase in the dephasing rate and when χ = γ, the
dephasing rate is completely independent of the detun-
ing parameter.

4. Conclusion

In this paper, we analytically solved the system of two-
level semiconductor quantum dot. We discussed the
effects of α12, α21, γ , � and � on ρ11(t) and ρ22(t),
ρz(t), PA(t), S(t), and H(σx ), H(σy) and H(σz). It was
observed that with the increase in α12, α21, the values of
γ , � and �, the number of oscillations and their inten-
sity were initially very large. However, after a period
of time, all curves, ρ11(t), ρ22(t), ρz(t), PA(t), S(t),
H(σx ), H(σy) and H(σz), became fixed. The curves
reached the fixed state rapidly by increasing α12, α21,
γ , � and �. On the other hand, we observed the decay
in the purity curve and the long-lived quantum coher-
ence phenomenon in all the curves, especially in the
purity curves and the von Neumann entropy curves.
Besides, the curves of the purity mirrored the von Neu-
mann entropy curves through a straight line parallel to
the axis of t. We can control the behaviour of the sys-
tem by changing the parameters. Thus, the results of the
study have revealed the time interval in which we can
predict the emergence of the long-lived quantum coher-
ence. Accordingly, we can identify the interval wherein
the effect of the field on the system remains fixed and
our information about the system can thereby be sta-
ble. Being vitally applied in precision measurement,
quantum networks [92–94] and atomic interferomet-
ric sensors, controlling or predicting the emergence of
long-lived quantum coherence can, consequently, help
us in various fields of applications. Our results can be
specifically applied to gallium arsenide (GaAs), as it is
the compound represented in our problem. Among the
advantageous properties of GaAs are its high saturated
electron speed and its low-field electron mobility which
are much greater than those of silicon [3–6]. In fact, the
carrier mobility of GaAs can be six times higher than
that of silicon. So most of the carrier devices in GaAs are
faster and less noisy than in silicon. That is why gallium
arsenide transistors can operate efficiently at frequencies
over 250 GHz. Besides, unlike the indirect band gap of
silicon, GaAs has a direct band gap which allows it to
absorb and emit light effectively. Moreover, due to their
wider energy band gaps, GaAs devices have efficient
resistance to both overheating and radiation damage
which make GaAs crucially vital for high power appli-
cations [3–7]. For instance, it is used in nuclear bombs
to preserve the stability of the crystal structure. Hence,
our results can even be more significant as it explores the
information entropy of a compound like GaAs which has
various high-power and sensitive applications. Highly
sensitive and precise as they are, being able to predict the
time interval in which our information about this system
(GaAs) becomes stable could increase the stability and
controllability of its vast applications, such as in optical
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applications, high-performance transistors [18,25,26],
medical imaging, quantum computing, solar cells, LED
lamps and diode lasers. To conclude, this paper links
the work on quantum dots with other research streams
in biology, medicine, industry, and others, which are
enjoying growing interest in research on nanotechnol-
ogy, thus uncovering new connections and applications
to explore. So, we recommend further mathematical
exploration, such as handling more complicated systems
and higher levels of atoms, which would uncover more
properties and phenomena of quantum dots.
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