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Abstract. In the present proposal, the familiar method of the parameter expansion is combined with the multiple
scales to study the stability behaviour of the Riemann–Liouville fractional derivative applied to the cubic delayed
Duffing oscillator. The analysis of the modified multiple scale perturbation leads to a system of nonlinear differential-
algebraic equations governing the solvability conditions. The nonlinear differential equation was reduced to the
linear differential equation with the help of the algebraic one. The stability attitude of the periodic motion is
determined by the steady-state analysis. Such a periodic motion is needed to better understand the dynamics of the
fractional cubic delayed Duffing oscillator.
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1. Introduction

Fractional calculus was introduced in Newton’s time,
and it has become a very hot topic in various fields, espe-
cially in mathematics and engineering, where classic
mechanics was of no use to describe any phenomenon
on the porous size scale. The term ‘fractional calculus’
refers to integration and differentiation to an arbitrary
order. A complex analytic version of the fractional
differentiation/integration has been discussed by Sri-
vastava and Owa [1]. It is well known that the fractional
derivatives/integrals have been defined in a variety of
ways as [2,3] given by Riemann, Liouville, Grüunwald,
Weyl and others. There are too many definitions on
fractional derivative and new ones arise every day [4–
7]. Among all the fractional derivatives, He’s fractional
derivative [8,9] and the local fractional derivative [10]
are mathematically correct, has physical foundation and
practically relevant. Kolwankar and Gangal [11,12] have
proposed local fractional derivative operators through
the renormalisation of Riemann–Liouville definition.
Local fractional calculus has been implemented for
solving non-differentiable equations in various physi-
cal events [13–16].

The effectiveness of the fractional-order derivative
on the conduct of the nonlinear dynamical system

is very motivating and it is handled by numerous
researchers. Fractional derivatives appear in different
field such as biology, fluid mechanics and viscoelas-
ticity [17–20]. The homotopy analysis approach was
successfully applied to determine the approximate solu-
tion of the Van der Pol equation with the fractional
order. The fractional derivative is related to the Caputo
sense [21]. The vibrations of the Duffing oscillator
having quadratic and cubic nonlinearities have been
discussed by Dal [22]. The motion described by the
equation contains the fractional-order term. The analysis
depends on the multiple time-scales method. The calcu-
lation of the fractional-order derivative has employed
different analytical and numerical techniques includ-
ing averaging method [23,24]. Arikoglu and Ozkol
used the differential-transform technique for obtain-
ing the solution of fractional differential equations
[25].

The celebrated Duffing equation is a nonlinear dif-
ferential equation, with its applications in numerous
physical, engineering and biological problems [26–29].
The subharmonic resonance of the fractional Duff-
ing oscillator was discussed by applying the averaging
method [30]. The solution and the amplitude–frequency
equation were obtained approximately. The existing
condition of subharmonic resonance in the approximate
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solution was derived, and its stability condition was
obtained.

Differential equations containing delayed terms have
many applications such as in manufacturing processes,
biology, chemical kinetics, economics, control systems,
and other areas. At present, some researches had been
done in fractional-order and time-delay systems. For
example, Deng et al [31] calculated the stability of
n-dimensional time-delayed systems for the linear frac-
tional differential equation. Shi and Wang [32] gave the
stability condition of a delayed system with the frac-
tional order. Babakhani et al [33] investigated the pres-
ence of solutions near the equilibrium in fractional-order
delayed differential equations and the Hopf bifurcations.
Wahi and Chatterjee [34] used the method of averaging
for conservative oscillators which may be strongly non-
linear, under small perturbations including delayed and
fractional derivative terms.

Due to the rapid development of nonlinear science,
different methods were used to solve nonlinear prob-
lems. Perturbation techniques are well instituted and
utilised for over a century to find approximate analytical
solutions for mathematical models. Differential equa-
tions, difference equations, integrodifferential equations
and algebraic equations and integrals can be solved
approximately using these perturbation techniques [35–
39]. Recently, El-Dib [40] proposed a new perturbation
method to handle strongly nonlinear systems. The
method combines multiple scales and the homotopy
perturbation method. The new method is applied to
free vibrations of a linear damped oscillator, undamped,
and damped Duffing oscillator. This new method can
effectively solve numerous harmonic forced non-linear
vibrations [40–44]. Ren et al [45] utilised some effective
modifications of this method to improve it, making the
method accessible to loose classes of nonlinear prob-
lems.

Due to the complexities of fractional calculus, most
of the fractional-order differential equations do not have
the exact solutions, and as an alternative, the approx-
imate methods are extensively used for solving these
types of equations. Some of the recent methods for
approximate solutions of fractional-order differential
equations are the Adomian decomposition method, the
homotopy perturbation method, the variational iteration
method, homotopy analysis method, etc. In this paper,
the parameter expansion approach is adsorbed in the
multiple scales method to make the results more accu-
rate. One of the most significant features of the multiple
time-scale methods is to yield the amplitude of the wave
solution as a function of time, unlike the frequency
expansion method where the amplitude is assumed to
be constant in time. Due to this combination of the two
methods, the amplitude is controlled by a differential

equation associated with the algebraic frequency
equation. The procedure will be applied to the fractional
nonlinear delayed Duffing oscillator.

2. The mathematical problem

The nonlinear oscillator has the following fractional-
damping delayed effect:

ÿ(t) + ω2
0y(t) + Qy3(t) = ηDα y3(t − τ), (1)

with the initial conditions: y(0) = A, ẏ(0) = 0, where
the coefficients η, Q and ω2

0 are real constants.
One of the greatest frequently utilised tools in the the-

ory of fractional calculus is prepared by the Riemann–
Liouville operators [2]. The Riemann–Liouville frac-
tional derivative can provide the physical interpretation
of the initial conditions needed for the initial value
problems involving fractional differential equations.
Moreover, this operator has the advantages of quick con-
vergence, better stability and best accuracy.

The Riemann–Liouville time-fractional derivative of
the function f of order 0 ≤ α < 1 [2] is defined by

Dα
a f (t) = 1

�(1 − α)

d

dt

∫ t

a

f (γ )

(t − γ )α
dγ ; 0 < α < 1.

(2)

Observe the fact that the Riemann–Liouville fractional
derivative of f (t) = eist , t ∈ R, a → −∞ [2,46] is

I α−∞eist = (is)−αeist

and

Dα−∞eist = (is)αeist , α ∈ R.

2.1 The modified multiple scale method

In the proposal adopted here, the modification is made
by adsorbing the parameter expansion technique with
the multiple-scale technology. This modification will
improve the analysis to solve the given problem.
According to the homotopy method, the following equa-
tion can be established:

ÿ(t; ρ)+ω2
0y(t; ρ)+ρ

(
Qy3(t; ρ)−ηDα y3(t−τ ; ρ)

)
= 0; ρ ∈ [0, 1]. (3)

Consider the fast and the slow time scales which are
defined as

T0 = t, T1 = ρt, T2 = ρ2t, ..., Tn = ρnt.

The time derivatives and fractional derivative are
expanded as the multiple scale method [35,40]
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d

dt
= D0 + ρD1 + ρ2D2 + · · · (4)

d2

dt2 = D2
0 + 2ρD0D1 + ρ2(D2

1 + 2D0D2
) + · · ·

dα

dtα
= (

D0 + ρD1 + ρ2D2 + · · ·)α
. (5)

Applying Taylor expansion, we have

Dα = Dα
0 + ραDα−1

0 D1 + 1
2αρ2((α − 1)Dα−2

0 D2
1

+2D2D
α−1
0 ) + · · · , (6)

where Dn = ∂/∂Tn .
The expansion of the dependent variable y(t; ρ) and

the variable y(t − τ ; ρ) are

y(t; ρ) =
∑
n

ρn yn(T0, T1, T2) (7)

and

y(t − τ ; ρ) =
∑
n

ρnYn(T0 − τ, T1 − ρτ, T2 − ρ2τ).

(8)

Applying Taylor expansion, we obtain

Yn(T0 − τ, T1 − ρτ, T2 − ρ2τ)

= [
1 − ρτD1 + 1

2ρ2τ
(
τD2

1 − 2D2
) + · · ·]

×Yn(T0 − τ, T1, T2). (9)

Substituting (4)–(9) into (3), and using the frequency
expansion

ω2 = ω2
0 + ρω1 + ρ2ω2 + · · · , (10)

we get the equations in the zero order, the first order and
the second order in the form

D2
0 y0 + ω2y0 = 0; y0(0, T1, T2) = A(T1, T2),

D0y0(0, T1, T2) = 0, (11)

D2
0 y1 + ω2y1 = ω1y0 − 2D1D0y0

+ηDα
0 Y

3
0 − Qy3

0;
y1(0, T1, T2) = 0,

D0y1(0, T1, T2) + D1y0(0, T1, T2) = 0, (12)

D2
0 y2 + ω2y2 = ω2y0 + ω1y1 − 2D1D0y1

−(
D2

1 + 2D0D2
)
y0

−3Qy2
0 y1 + 3ηDα

0 Y
2
0 Y1

+η(αDα−1
0 − τDα

0 )D1Y
3
0 ;

y2(0, T1, T2) = 0,

D0y2(0, T1, T2) + D1y1(0, T1, T2)

+D2y0(0, T1, T2) = 0, (13)

The solution of eq. (11) is

y0(T0, T1, T2) = A(T1, T2) cos ωT0. (14)

Accordingly, we have

Y0(T0 − τ, T1, T2) = A(T1, T2) cos ω(T0 − τ). (15)

Inserting (14) and (15) into (12), removing the secular
terms of the non-resonance case, yields

D1A + a1(ω)A3 = 0, (16)

ω1 = b1(ω)A2. (17)

The two solvability conditions (16) and (17) represent a
differential-algebraic system having two unknowns, the
amplitude function A(T1, T2) and the correction in the
frequency ω1, where the coefficients a1 and b1 are

a1(ω) = 3
8ηωα−1 sin

(
ωτ − 1

2πα
)
, (18)

b1(ω) = 3
4 Q − 3

4ηωα cos
(
ωτ − 1

2πα
)
. (19)

The solution of eq. (12) is derived as

y1(T0, T1, T2)

= − 1

ω
D1A sin ωT0 − Q

16ω2 A
3 sin 2ωT0 sin ωT0

+3α

16
A3ηωα−2[sin

(
2ωT0 − (3ωτ − 1

2πα)
)

+ sin(3ωτ − 1
2πα)

]
sin ωT0. (20)

Consequently, the function y1(T0 − τ, T1, T2) is given
by

Y1(T0 − τ, T1, T2)

= − 1

ω
D1A sin ω(T0 − τ)

− Q

16ω2 A
3 sin 2ω(T0 − τ) sin ω(T0 − τ)

+3α

16
A3ηωα−2[sin

(
2ωT0 − (5ωτ − 1

2πα)
)

+ sin(3ωτ − 1
2πα)

]
sin ω(T0 − τ). (21)

Substituting (14)–(17), (20) and (21) into (13) and
eliminate the source of the secular terms, after some
trigonometric simplification, we have

D2A + a2(ω)A5 = 0, (22)

ω2 = b2(ω)A4, (23)

where the coefficients a2 and b2 are given below:

a2(ω) = 3

128
ω2α−3η2

{
9[−ωτ cos(2ωτ − πα) + ωτ

−α sin(2ωτ − πα)] − 3α

2
sin(4ωτ − πα)

}

+ 3

256
ωα−3Qη

[
3α sin(3ωτ − 1

2πα)

+ sin(ωτ − 1
2πα)

]
, (24)
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b2(ω) = 3η2ω2α−2

128

[
3(6α+1)(−1+cos(2ωτ −πα))

−18ωτ sin(2ωτ − πα)

−1
2 3α(3 cos(4ωτ − πα) − cos 2ωτ)

]

+3Qηωα−2

128

(
3α cos(3ωτ − 1

2πα)

+ cos(ωτ − 1
2πα)

) − 3Q2

128ω2 . (25)

The uniform solution of eq. (13) is formulated as

y2(T0, T1, T2) = − 1

ω
D2A sin ωT0 − 1

512ω4 Q
2A5(sin 4ωT0 + sin 2ωT0) sin ωT0 + 1

256
ωα−4QηA5 sin2 ωT0

×
[

3α+1 cos(ωT0+3ωτ − 1
2πα)+2×3α cos(ωT0−3ωτ + 1

2πα)+2 × 5α cos(ωT0−5ωτ + 1
2πα)

+3α(3ωT0−3ωτ + 1
2πα)+5α cos(3ωT0−5ωτ + 1

2πα)+30 cos(ωT0+ωτ − 1
2πα)−33(ωT0−ωτ + 1

2πα)

]

+ 3α

128
ω2α−4η2A5 sin2 ωT0

⎧⎪⎨
⎪⎩

−5α cos(ωT0 − 8ωτ + πα) + 1
2 × 5α cos(3ωT0 − 8ωτ + πα)

+3(α − 5) cos(ωT0 − 2ωτ) + (33
2 − 3α

)
cos(ωT0 − 4ωτ + πα)

−9ωτ sin(ωT0 − 4ωτ + πα) + 9ωτ sin(ωT0 − 2ωτ) − 1
2 × 3α+1 cos ωT0

⎫⎪⎬
⎪⎭.

(26)

If the two iterations are enough, we substitute (14),
(20) and (26) into (7) and setting ρ → 1, yields

y(t) = A cos ωt − 1

ω

dA

dt
sin ωt − Q

16ω2 A
3 sin 2ωT0 sin ωT0 + 3α

16
A3ηωα−2[sin

(
2ωT0 − (3ωτ − 1

2πα)
)

+ sin(3ωτ − 1
2πα)

]
sin ωT0 − 1

512ω4 Q
2A5(sin 4ωT0 + sin 2ωT0) sin ωT0 + 1

256
ωα−4QηA5 sin2 ωT0

×
[

3α+1 cos(ωT0+3ωτ − 1
2πα)+2×3α cos(ωT0−3ωτ + 1

2πα)+2 × 5α cos(ωT0−5ωτ + 1
2πα)

+3α(3ωT0−3ωτ + 1
2πα)+5α cos(3ωT0−5ωτ + 1

2πα)+30 cos(ωT0+ωτ − 1
2πα)−33(ωT0−ωτ + 1

2πα)

]

+ 3α

128
ω2α−4η2A5 sin2 ωT0

×

⎧⎪⎨
⎪⎩

−5α cos(ωT0−8ωτ +πα)+ 1
2 × 5α cos(3ωT0−8ωτ +πα)+3(α−5) cos(ωT0−2ωτ)

+(33
2 −3α

)
cos(ωT0−4ωτ +πα)−9ωτ sin(ωT0−4ωτ +πα)+9ωτ sin(ωT0−2ωτ)

−1
2 × 3α+1 cos ωT0

⎫⎪⎬
⎪⎭. (27)

In formulating the above approximate solution, the
amplification of the derivative (ρD1+ρ2D2)A(T1, T2)

becomes dA/dt .

2.2 Construction of the amplitude and the frequency
equations

To construct the amplitude equation, the solvability con-
ditions (16) and (22), that are obtained in the first-order
and the second-order perturbations, need to be com-
bined into a one-amplitude equation. These equations
enable us to set the unknown function A in terms of
the slow time T1 and the slower time T2. Besides, the

stability behaviour depends mainly on the solutions of
these equations. For this purpose, integrate eq. (16) par-
tially with respect to the variable T1. Then integrate eq.
(22) partially with respect to the variable T2. In other
words, simply multiply eqs (16) and (22) by ρ and ρ2,
respectively. It follows that the partial differentiation
in these amplitude equations may be transformed into
dA/dt , by letting ρ → 1. Finally, one may establish the
following amplitude equation:

dA

dt
+ a1(ω)A3 + a2(ω)A5 = 0. (28)

The same procedure can be used to construct the fre-
quency equation from the other solvability conditions
(17) and (23) obtained from the first and the second-
order perturbations. Inserting into expansion (10) pro-
duces

ω2 = ω2
0 + b1A

2(t) + b2A
4(t). (29)

At this end, the expanded frequency ω2 is composed of
the amplitude function A which depends on the variable
t and is given by the nonlinear first-order equation (28).
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To relax this nonlinearity, one can remove A5 from eq.
(28) with the help of eq. (29) to yield

dA

dt
+ a2

b2
(ω2 − ω2

0)A +
(
a1 − a2

b1

b2

)
A3 = 0. (30)

Again, remove A3 from (30) with the help of (29) yields
the following non-homogeneous linear first-order dif-
ferential equation in A2:

dA2

dt
+ 2P(ω)A2 = 2K (ω), (31)

where the coefficients P(ω) and K (ω) are presented as

P(ω) = a2

b2
(ω2 − ω2

0) − b1

b2

(
a1b2 − a2b1

b2

)
, (32)

K (ω) = −
(
a1b2 − a2b1

b2

)(
ω2 − ω2

0

)
b2

. (33)

It is suitable to recall the unknown function A2(t) as
B(t) in eqs (31) and (29). Thus, we have

dB

dt
+ 2P(ω)B = 2K (ω), (34)

ω2 = ω2
0 + b1B(t) + b2B

2(t). (35)

The above equations represent a differential-algebraic
system in two unknowns B(t) and the frequency ω.
Equation (34) is a linear first-order equation which has
an integrating factor in the form of I = e2

∫
P(ω)dt .

Therefore, it is an exact solution which has the form

B(t) = e−2
∫
P(ω)dt

∫ t

0
2K (ω)e2

∫
P(ω)dγ dγ . (36)

It is difficult to evaluate the above integration until the
transcendental functions P(ω) and K (ω) are relaxed.

Assuming that the frequency ω is very close to ω0 so
that ω2 − ω2

0 = �, then the above integration will lead
to

B(t) = −�(a1b2 − a2b1)

a2b2� − b1(a1b2 − a2b1)
(1 − e−2P(ω)t ).

(37)

Clearly, the amplitude function A(t) will be bound when
P > 0, i.e.

b2a2� − b1(a1b2 − a2a1) > 0. (38)

The small value � can be formulated by inserting (37)
into (35), to yield

� = − 1

2a2
2b

2
2

[a2b1b2(a2b1 − a1b2)(1 + e−2Pt )

−(a1b2 − a2b1)
2(1 − e−2Pt )2]

± 1

2a2
2b

2
2

{[a2b1b2(a2b1 − a1b2)(1 + e−2Pt )

−(a2b1 − a1b2)
2(1 − e−2Pt )2]2

−4a2
2b

2
1b

2
2(a2b1 − a1b2)

2e−2Pt }1/2. (39)

This is a very complicated transcendental frequency
equation which depends on the damping term e−2Pt .

In other words, if the solution of the quadratic equa-
tion (35) is inserted into eq. (34) the result will not
depend on time. This refers to the steady-state solution.

2.3 Steady-state response

The frequency–amplitude equation (35) is transcenden-
tal and very complicated. Furthermore, the integration
(36) cannot be, in general, obtained analytically. We
shall study the steady case, which is more serious and
significant in vibration engineering. Letting dB/dt = 0
into eq. (34), yields the steady-state solution Bs in the
form

Bs = Ks/Ps, (40)

where the suffix s denotes the steady-state response, and
Ks and Ps are given as

Ps = a2

b2
(b1 + b2Bs)Bs − (a1b2 − a2b1)

b1

b2
2

, (41)

Ks = − 1

b2
2

(a1b2 − a2b1)(b1 + b2Bs)Bs, (42)

where the following relation is used:

ω2
s = ω2

0 + b1Bs + b2B
2
s . (43)

The above relation is derived from (35) corresponding
to the steady-state response. Inserting (41) and (42) into
(40) gives

Bs = −a1

a2
. (44)

Substituting (44) into (41)–(43) yields

Ps(ωs) = 1

a2b2
2

(a2b1 − a1b2)
2, (45)

Ks(ωs) = −a1(a2b1 − a1b2)
2

a2
2b

2
2

, (46)

ω2
s = ω2

0 − a1b1

a2
+ a2

1b2

a2
2

. (47)
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Now, return to the integration of (36) we have

B(t) = a1(ωs)

a2(ωs)
(e−2P(ωs)t − 1). (48)

The steady-state frequency ωs is given by the tran-
scendental equation (47). Therefore, it is worthwhile to
obtain an approximate value for it. We shall apply the
homotopy perturbation technique to evaluate an approx-
imate value for ωs . For this, we bring the homotopy
parameter ε ∈ [0, 1] such that the algebraic homotopy
equation is established as

ω2
s = ω2

0 + ε

(
−a1b1

a2
+ a2

1b2

a2
2

)
. (49)

Accordingly, the frequency ωs can be perturbed as

ωs = ω0 + εωd , (50)

where ωd represents a small deviation from ω0. Utilising
(50), the homotopy equation (49) is presented in the
form

(ω0 + εωd)
2

= ω2
0 + ε

(
−b1(ω0 + εωd)

a1(ω0 + εωd)

a2(ω0 + εωd)

+b2(ω0+ εωd)
a2

1(ω0 + εωd)

a2
2(ω0 + εωd)

)
. (51)

Applying Taylor expansion and linearising in ε, yields

ωd = 1

2ω0

(
−b1(ω0)

a1(ω0)

a2(ω0)
+ b2(ω0)

a2
1(ω0)

a2
2(ω0)

)
. (52)

Substituting (52) into (50) and letting ε → 1, we obtain

ωs = ω0 − 1

2ω0

(
b1(ω0)

a1(ω0)

a2(ω0)
− b2(ω0)

a2
1(ω0)

a2
2(ω0)

)
.

(53)

The above approximate frequency is in the autonomous
case. It is seen from (48) that the function B(t) is a
damping function when P > 0, which requires that
a2 > 0, i.e.

η2ω0{18[−ω0τ cos(2ω0τ − πα) + ω0τ

−α sin(2ω0τ − πα)] − 3α sin(4ω0τ − πα)
}

+Qηω1−α
0

[
3α sin(3ω0τ − 1

2πα)

+ sin(ω0τ − 1
2πα)

]
> 0. (54)

3. Conclusion

In this article, we discussed the combined concept of
the multiple scales method with the frequency expan-
sion approach. This technique is applied to solve the
fractional of the nonlinearity delayed Duffing oscilla-
tor which is presented in the three time-scales domain.
In this approach, three perturbation levels are presented
which yield two groups of solvability conditions. Each
solvability condition consists of a nonlinear differential
equation of the amplitude associated with an algebraic
form for the frequency correction. These two groups
are converted into a single nonlinear differential equa-
tion in the amplitude function. Moreover, the collected
frequency expansion, which depends on the powers of
the amplitude function, is presented. This is a very
complicated system. The nonlinearity of the amplitude
equation was converted into a linear amplitude equation
with the help of the equation of nonlinear frequency. The
stability criteria have been discussed using the appli-
cation of the steady-state response. The steady-state
solution has employed the nonlinear frequency equation
which is solved using a homotopy perturbation tech-
nique. The attractive property of the modified multiple
scales method is that it is implemented directly in a
straightforward manner for discussing very complicated
problems.
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