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Abstract. The main focus in this study is to study the flow of a viscous fluid through a curved stretched surface.
Soret and Dufour effects along with Joule heating are incorporated. Appropriate transformations yield the nonlinear
ordinary differential system. Convergent series solutions of velocity, temperature and concentration are constructed.
Graphical illustrations thoroughly demonstrate the features of the involved pertinent parameters. Skin friction
coefficient, Nusselt and Sherwood numbers are also obtained and discussed graphically. Current computations
reveal that the radial velocity experience decline with the increase of Hartman number. Further, fluid temperature
declines for higher Prandtl and Soret numbers.
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1. Introduction

The study of Newtonian fluids has received special
attention of the scientists and engineers due to abundant
applications of these fluids in industry and technology.
Some of the common examples of Newtonian fluids are
oil, water, ethylene glycol etc. The well-known Navier–
Stokes equation describes the flow of Newtonian fluid.
Sizeable literature on this topic exists in the literature.
Ellahi et al [1] described slip flow of the viscous fluid
with heat and mass transfer. Sweet et al [2] developed
analytic solution for the unsteady magnetohydrody-
namic (MHD) flow of a viscous fluid between moving
parallel plates. Abbas et al [3] discussed MHD stagna-
tion point flow subject to homogeneous–heterogeneous
reactions and slip velocity. Turkyilmazoglu [4] devel-
oped exact solutions for the incompressible viscous fluid
of a porous rotating disk flow. Lin and Zheng [5] demon-
strated Marangoni boundary layer flow and heat transfer
of copper–water nanofluid over a porous medium disk.
Zeeshan et al [6] manifested magnetic dipole influences
in viscous flows of a ferrofluid past a radiative stretching
surface.

Magnetic field in fluid flow has many applications
in engineering, polymer industry, physics, metallurgy
and chemistry. In such applications, the desired char-
acteristics of the end product mainly depend on the
rate of heat cooling. The intensity and orientation of
the applied magnetic field control the fluid behaviour.
Magnetic field has a tendency to change heat transfer
characteristics by rearranging fluid concentration. MHD
flow has an important role in problems related to phys-
iological fluids, for instance, blood plasma and blood
pump machines, in sink float separation and in the con-
struction of loud speakers as sealing materials. Keeping
these features in mind, different flow configurations of
MHD are examined by numerous researchers. Kumari
et al [7] examined transient MHD stagnation flow of
a non-Newtonian fluid due to impulsive motion from
rest. Exact analytical solutions for heat and mass trans-
fer of MHD slip flow in nanofluids have been studied
by Turkyilmazoglu [8]. Hayat et al [9] analysed con-
vective bidirectional flow of a nanofluid with MHD.
Lin et al [10] presented MHD pseudoplastic nanofluid
unsteady flow and heat transfer in a finite thin film
over a stretching surface with internal heat generation.
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Numerical investigation of the effect of magnetic field
on mixed convection heat transfer of the nanofluid in
a channel with sinusoidal walls has been carried out by
Rashidi et al [11]. Sheikholeslami and Rokni [12] exam-
ined nanofluid two-phase model under the influence of
induced magnetic field.

In industrial and technological processes, stretched
flow of flat surface has significant applications. Glass
fibre making, extrusion of plastic sheet, crystal growing,
hot rolling, wire drawing etc. are examples of stretch-
ing surface. Stretched flow caused by a sheet has been
studied by Crane [13]. After that, several researchers
examined flow problems with different stretching con-
figurations. Cortell [14] studied stretched flow of the
viscous fluid with thermal radiation. Mabood and Das
[15] examined melting heat transfer on the hydromag-
netic flow of a nanofluid over a stretching sheet with
radiation and second-order slip. Chemical reaction and
radiation effects on non-Newtonian fluid flow over a
stretching sheet with non-uniform thickness and heat
source have been studied by Ibrahim et al [16]. In all
the abovementioned studies, mathematical modelling
is done using Cartesian coordinate system and flat
sheet is stretched. Stretched flow due to curved sur-
face is studied by Sajid et al [17]. Governing equations
are obtained through curvilinear coordinate system.
For stretched flows, pressure is negligible whereas for
curved stretching surface inside the boundary layer
pressure is not negligible. Flow by curved stretched
surface is a hot topic due to its inevitable applications
in polymer industry, in contemporary technology and
engineering processes. Examples of such applications
are: melt-spinning, polymer extrusion from a dye, the
cooling of huge metallic plate in a cooling bath, may
be an electrolyte, manufacture of rubber and plastic
sheets, wire drawing, production of paper and polymer
sheet, thinning, annealing of copper wires, filaments,
glass fibres, roll-paper production, liquid crystals in
condensation processes etc. Rosca and Pop [18] pre-
sented stretched/shrinked flow over a curved sheet.
Imtiaz et al [19] examined convective flow of Jeffrey
liquid due to a curved stretching surface with chemi-
cal reaction and MHD. Convective flow of ferrofluid
due to a curved stretching surface with homogeneous–
heterogeneous reactions has been analysed by Imtiaz et
al [20].

Heat and mass transfer with Soret and Dufour effects
is an important subject due to a wide range of appli-
cations such as in the solidification of binary alloys,
groundwater pollutant migration, chemical reactors,
geosciences multicomponent melts, oil reservoirs, iso-
tope separation and in mixture of gases. Generally, the
effects of diffusion of matter caused by temperature gra-
dients (Soret effect) and diffusion of heat caused by

concentration gradients (Dufour effect) can be influen-
tial when the temperature and concentration gradients
are very large. Hayat et al [21] examined heat and mass
transfer under Soret and Dufour’s effect on mixed con-
vection boundary layer flow over a stretching vertical
surface in a porous medium filled with a viscoelas-
tic fluid. Turkyilmazoglu and Pop [22] studied Soret
and heat source effects on the unsteady radiative MHD
free convection flow from an impulsively started infinite
vertical plate. Soret and Dufour effects on free convec-
tion heat and mass transfer from an arbitrarily inclined
plate in a porous medium with constant wall temper-
ature and concentration have been analysed by Cheng
[23]. Pal and Mondal [24] presented the influence of
chemical reaction and thermal radiation on mixed con-
vection heat and mass transfer over a stretching sheet in
Darcian porous medium with Soret and Dufour effects.
Altawallbeh et al [25] studied linear and nonlinear
double-diffusive convection in a saturated anisotropic
porous layer with Soret effect and internal heat source.
Soret and Dufour effects on unsteady double diffusive
natural convection in porous trapezoidal enclosures have
been analysed by Al-Mudhaf et al [26].

The phenomenon of heat transfer has numerous appli-
cations in industry and engineering processes, e.g.
nuclear reactor cooling, energy production, cooling
of electronic devices, transportations, microelectronics,
fuel cells etc. Flow due to curved stretching surfaces
has promising applications in engineering and industrial
sectors such as paper production, polymer sheet, thin-
ning, annealing of copper wires, filaments, glass fibre,
a wind up rollpaper production, polymer sheet, thin-
ning, annealing of copper wires, filaments, glass fibre,
etc. Major objective of the recent attempt is to examine
Soret and Dufour effects on MHD flow past a curved
stretching sheet. Joule heating is also considered and
convergence results for approximate solutions are devel-
oped by employing homotopy analysis method (HAM)
[27–32]. Impact of different parameters on velocity,
temperature and concentration is discussed. Moreover,
local skin friction coefficient, Nusselt and Sherwood
numbers are analysed.

2. Model development

We consider the two-dimensional flow of incompress-
ible viscous fluid coiled in the form of a circle with
radius (R). The sheet is stretched in s direction and r
is taken perpendicular to s. Magnetic effects with con-
stant intensity (B0) is exerted in radial direction. Joule
heating is present. Under the assumption of low mag-
netic Reynolds number the induced magnetic field is
neglected (see figure 1 [17]).
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Figure 1. Geometry of the problem.

Equations representing the flow of fluid [17,21] are
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Here u and v represent components of velocity in s and r
directions. Further p, μ, ρ, σ ,Cp,T,K,D,C, KT , Tm and
Cs are respectively the pressure, dynamic viscosity, den-
sity, electrical conductivity, specific heat, temperature,
thermal conductivity, mass diffusion coefficient, fluid
concentration, ratio of thermal diffusion, mean temper-
ature and concentration susceptibility.

The boundary conditions in the considered problem
are

u = as, v = 0, T = Tw, C = Cw at r = 0,

u → 0,
∂u

∂r
→ 0, T → T∞,

C → C∞ as r → ∞. (6)

We consider
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in which Tw, Cw, T∞ and C∞ respectively represent
constant sheet temperature, constant sheet concentra-
tion, ambient fluid temperature and ambient fluid con-
centration, a > 0 is the stretching constant and ν is the
kinematic viscosity.

Now continuity equation is identically satisfied and
other expressions are
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f ′(∞) = 0, f ′′(∞) = 0, θ(∞) = 0,
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φ(∞) = 0, (12)
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Here k, Du, Sr, Sc, Pr, Br and M are respectively the
curvature parameter, Dufour number, Soret number,
Schmidt number, Prandtl number, Brinkman number
and Hartman number.

Eliminating pressure in eqs (8) and (9), we get
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Mathematical expressions for skin friction coefficient,
local Nusselt and Sherwood numbers are
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where τw, qw and hm denote the shear stress on the
surface and fluxes due to temperature and concentration

τw = μ

(
− u

r + R
+ ∂u

∂r

)∣∣∣∣
r=0

, qw = − K
∂T

∂r

∣∣∣∣
r=0

,

hm = − D
∂C

∂r

∣∣∣∣
r=0

. (16)

We can write
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where Res = Uws/ν is the local Reynolds number.

3. Solutions procedure

ParametersH f ,Hθ andHφ , linear operatorsL f ,Lθ and
Lφ along with initial guesses f0(η), θ0(η) and φ0(η) are

H f = e−η, Hθ = e−2η, Hφ = e−2η, (18)
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where ci (i = 1−7) are the unknowns to be determined.

3.1 Zeroth-order deformation problems

Let p ∈ [0, 1] be the embedding parameter. Then defor-
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depicts the embedding parameter. When value of q
changes from zero to one, then both θ̂ (η; q) and f̂ (η; q)
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3.2 mth-Order deformation problems

Deformation problems showing order m are listed
below:
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The general solutions ( fm , θm , φm) comprising some
particular solutions ( f ∗

m , θ∗
m , φ∗

m) are

fm(η) = f ∗
m(η) + c1e−η + c2eη + c3e−2η + c4e2η,

θm(η) = θ∗
m(η) + c5eη + c6e−η,

φm(η) = φ∗
m(η) + c7eη + c8e−η. (37)

4. Analysis of the results

4.1 Results for convergent series solutions

HAM introduces auxiliary parameters h̄ f , h̄θ and h̄φ .
Auxiliary parameters are important for developing con-
vergence results for series solutions. Thus, appropriate
range of values of the parameters are obtained by plot-
ting h̄-curves at 11th-order of approximation that can be
seen in figures 2–4. Specific range of values for series
solutions are found in the ranges −0.3 ≤ h̄ f ≤ −0.05,
−1.0 < h̄θ ≤ −0.75 and −1.1 < h̄φ ≤ −0.75. Further,
the convergence results are obtained at h̄ f = −0.11,
h̄θ = −0.75 and h̄φ = −0.75 (see table 1).

Figure 2. h̄ f -curve of velocity.
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Figure 3. h̄θ -curve of temperature.

Figure 4. h̄φ-curve of concentration.

4.2 Discussions and results

This section illustrates graphical description for
velocity, temperature, concentration, surface drag force
and heat and mass transfer rates corresponding to

certain parameters appearing in the definition of the
given problem.

4.2.1 Dimensionless velocity profiles. Figures 5 and 6
represent graphs of velocity along radial direction,
i.e. f ′(η) that are reversely effected by both k and M .
In figure 5, larger k comprises increasing radius of the

Figure 5. Influence of k on f ′(η).

Figure 6. Influence of M on f ′(η).

Table 1. Convergence results for HAM-based solutions with k = 0.4, Du = 0.11, Sr = 0.11, Sc = 1,
Br = 0.1, Pr = 1 and M = 0.3.

Approximations
order − f ′′(0) −θ ′(0) −φ′(0)

1 2.999 1.0825 1.0828
2 2.998 1.1437 1.1444
5 2.995 1.2442 1.2453
8 2.993 1.2707 1.2721

10 2.992 1.2825 1.2841
15 2.992 1.2825 1.2841
19 2.992 1.2825 1.2841
20 2.992 1.2825 1.2841
25 2.992 1.2825 1.2841
35 2.992 1.2825 1.2841
45 2.992 1.2825 1.2841
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Figure 7. Influence of k on θ(η).

Figure 8. Influence of M on θ(η).

sheet that causes f ′(η) to increase. Figure 6 indicates
reduction in f ′(η) with respect to M . It is due to the fact
that larger M offers more resistive force which decreases
f ′(η).

4.2.2 Dimensionless temperature profiles. Figures
7–13 show the behaviour of different parameters on
temperature θ(η). Figure 7 displays the effect of k on
θ(η). An increasing trend of θ(η) is seen for increas-
ing k. It is due to the fact that radius of the sheet
rises via ascending k. Resistance to the flow of fluid
enhances and θ(η) increases. Figure 8 shows that θ(η) is
directly related to M . Increment in M rises the resistive
forces. Thus, more heat is produced within the system
and so θ(η) increases. Increasing behaviour of θ(η) is
shown in figure 9. Depending on larger Du the ther-
mal diffusion increases and thus temperature increases.
In figure 10 decreasing graph of Sr is shown. In fact,
larger Sr reduces the viscosity which provides less resis-
tance and consequently temperature reduces. Figure 11
shows that θ(η) rises for larger values of Sc. Larger Sc
increases the viscosity of the fluid and thus more resis-
tance is offered that adds up more heat energy to the

Figure 9. Influence of Du on θ(η).

Figure 10. Influence of Sr on θ(η).

Figure 11. Influence of Sc on θ(η).

fluid. This leads to an enhancement in θ(η). Figure 12
shows the impact of Br upon θ(η). Ascending values of
Br increases the fluid viscosity that provides more heat
energy due to more collisions between the fluid particles
and so θ(η) rises. Effects of Pr on θ(η) in a decreasing
manner can be seen in figure 13. As Pr depicts frac-
tion of diffusivity in momentum to thermal diffusivity,
larger Pr causes reduction in the coefficient of thermal
diffusion and as a consequence θ(η) decreases.
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Figure 12. Influence of Br on θ(η).

Figure 13. Influence of Pr on θ(η).

Figure 14. Influence of k on φ(η).

4.2.3 Dimensionless concentration profiles. Graph-
ical results of concentration profile are depicted in
figures 14–18. Figure 14 shows the impact of curvature
parameter k on concentration profile φ(η). As viscos-
ity is inversely related to k, concentration rises with the
increase in curvature parameter. Concentration profiles
φ(η) are presented for various values of M in figure 15.
As M is increased it causes retardation to the fluid flow

Figure 15. Influence of M on φ(η).

Figure 16. Influence of Du on φ(η).

Figure 17. Influence of Sr on φ(η).

which enhances the fluid concentration. Figure 16 illus-
trates the fluctuation in concentration profile for varying
values of Du. Larger values of Du causes low friction
which in turn enhances the concentration. Contrary to
the effect of Du, Sr increases φ(η) (see figure 17). An
impact of Sc on φ(η) is shown in figure 18. Larger value
of Sc indicates that the momentum diffusivity dominates
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Figure 18. Influence of Sc on φ(η).

Figure 19. Influence of k on Re1/2Cf .

Figure 20. Influence of M on (Res)−1/2Nu.

the mass diffusivity, which causes enhancement in the
fluid concentration.

4.2.4 Skin friction coefficient, Nusselt number and
Sherwoood number. Impact of curvature parameter
(k) on skin friction coefficient (Cf(Re)1/2) via Hart-
man number (M) is illustrated in figure 19. Here
Cf(Re)1/2 decreases by increasing the values of k.

Figure 21. Influence of Du on (Res)−1/2Sh.

Figure 22. Influence of k on P(η).

Figure 23. Influence of M on P(η).

Figure 20 portrays the variation of M with Nusselt
number Nu(Res)−1/2 against k. Here, it is seen that sur-
face heat flux enhances for larger values of M and it
decreases with the enhancement in k. Influence of Du
on Sherwood number Sh(Res)−1/2 via Pr is illustrated in
figure 21. Here surface mass flux increases by increasing
the values of Du.
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Table 2. Comparison of surface drag force with values from Mabood and Das [15] and Imtiaz et al [19]
at k = ∞.

M
Mabood and

Das [15] Imtiaz et al [19] Present

1 1.4142135 1.4142 1.4142266
5 2.4494897 2.4494 2.4495271

10 3.31662 3.3166 3.3166679
50 7.1414284 7.1414 7.1414769

100 10.049875 − 10.049924

4.2.5 Dimensionless pressure. Graphical results of
dimensionless pressure (P(η)) are sketched in figures 22
and 23. P(η) shows dual behaviour in both these figures.
Influences of M and k on P(η) are reverse. Hence P(η)

vanishes far away from the sheet.
Comparison of skin friction coefficient for various

values of M in limiting cases is presented in table 2.
Here it is seen that the obtained solutions agree well
with the results of Mabood and Das [15] and Imtiaz et
al [19].

5. Concluding remarks

Here the effects of Soret and Dufour numbers on MHD
viscous fluid flow induced by curved stretching sheet
is analysed. Further, inclusion of Joule heating modi-
fies the heat characteristics. The following results are
outlined:

• Curvature number contributes to an enhancement in
velocity profiles.

• Fluid temperature rises with an increase in Du while
it reduces when Sr is increased.

• Temperature and concentration increase with an
increment in M.

• Influence of Du on concentration is qualitatively
opposite to that of Sr.

• Surface drag force is found to decline upon increas-
ing k.

• Sh shows increasing trend for larger Pr.
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