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Abstract. This paper presents travelling wave solutions for the nonlinear time-fractional Gardner and Benjamin–
Ono equations via the exp(−�(ε))-expansion approach. Specifically, both the models are studied in the sense of
conformable fractional derivative. The obtained travelling wave solutions are structured in rational, trigonometric
(periodic solutions) and hyperbolic functions. Further, the investigation of symmetry analysis and nonlinear self-
adjointness for the governing equations are discussed. The exact derived solutions could be very significant in
elaborating physical aspects of real-world phenomena. We have 2D and 3D illustrations for free choices of the
physical parameter to understand the physical explanation of the problems. Moreover, the underlying equations
with conformable derivative have been investigated using the new conservation theorem.
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1. Introduction

The generalisation of conventional differentiation and
integration to fractional order is fractional calculus.
The fractional-order modelling provides a more well-
grounded behaviour of the problem than the integer-
order modelling. Over the past decades, fractional
calculus had been broadly applied to quantum mechan-
ics, plasma physics, fibre optics, quantum electronics,
aerodynamics, ocean science, fluid dynamics and math-
ematical physics. A broad class of fractional models
do not have analytical solutions. Hence, it is important
to find the closed-form solutions of fractional models.
With the advancement of symbolic computational pack-
ages, now it is possible to solve higher-order nonlinear
fractional differential equations [1].

Several approaches are available in the literature to
find exact solutions of these models, including the
Hirota bilinear method [2] and ansatz approaches. The
ansatz approaches such as first integral method [3–5],
(G/G ′)-expansion method [6,7], projective Ricatti and

Ricatti–Bernoulli sub-ODE method [8,9], extended trial
equation method [10], the ansatz method [11], sub-
equation method [12], sine-Gordon expansion method
[13–15] and Hirota bilinear method [16–20] are suc-
cessfully used to extract the exact solution of nonlinear
differential equations. Among these methods, the ansatz
approach, the exp(−�(ε))-expansion method which
can be used to obtain a variety of exact solutions
including hyperbolic, periodic and rational solutions,
have attracted the interest of the researchers because of
its ease and applicability. The exp(−�(ε))-expansion
approach had been used successfully to extract vari-
ous solitary wave solutions of scalar (single-component)
and vector (multicomponent/coupled) models and
fractional models. By using the exp(−�(ε))-
expansion approach, the optical soliton of the coupled
Lakshmanan–Porsezian–Daniel model is obtained in
[21], the travelling wave solutions of the conformable
time-fractional resonant nonlinear Schrödinger equa-
tion with Kerr law and parabolic nonlinearity is obtained
in [22]; the solitary wave solutions of Gerdjikov–Ivanov
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equation is obtained in [23], and the travelling wave
solutions of the time-fractional Boussinesq equation
is obtained in [24]. Also, the solitary wave solu-
tion of the well-known Benjamin–Ono equation using
exp(−�(ε))-expansion approach is obtained in [25].

In this article, we consider the conformable time-
fractional Gardner equation:

∂αu

∂tα
+ 6u(1 − u)

∂u

∂x
+ ∂3u

∂x3 = 0, 0 < α ≤ 1 (1)

and conformable time-fractional Benjamin–Ono equa-
tion:

∂2αu(x, t)

∂t2α
+ 2

(
∂u

∂x

)2

+ 2u
∂2u

∂x2

+ ∂4u(x, t)

∂x4 = 0, 0 < α ≤ 1. (2)

The Gardner equation or the combined KdV and mod-
ified KdV equation describes numerous wave phenom-
ena in plasma, hydrodynamics, solid-state and internal
waves [26,27]. The Benjamin–Ono equation describes
many physical phenomena such as internal waves in
deep water, percolation of water in the porous subsur-
face of horizontal layers, long internal gravity waves in
deep stratified fluids [28–31] etc.

The (G ′/G, 1/G) and (1/G ′)-expansion methods are
utilised to solve Gardner equation arising in physi-
cal plasmas in [26], and the travelling wave solution
of the time-fractional Gardner equation in the sense
of Riemann–Liouville fractional derivative concerning
Jacobi elliptic functions is extracted in [27]. The exact
solutions of several other family of KdV equations are
extracted in [32–37].

The one-dimensional internal waves in deep water are
modelled using the Benjamin–Ono equation [28,29].
Recently, the rogue wave and interaction solutions of
the Benjamin–Ono equation is obtained in [30], and the
(2 + 1)-dimensional generalisation of the Benjamin–
Ono equation is studied in [31], and several soliton
solutions are extracted.

The main contribution of this paper are summarised
as follows:

• In this work, we have formulated the time-fractional
Gardner and Benjamin–Ono equations in the con-
formable sense.

• We obtained the exact solution of these two nonlinear
partial fractional differential equations in polynomi-
als of exp(−�(ε)).

• The obtained solutions are structured in hyperbolic,
periodic and rational functions.

• The investigation of symmetry analysis, nonlinear
self-adjointness and conservation laws for the gov-
erning equations is done.

The article is organised in the following manner: Sec-
tion 2 illustrates the conformable fractional derivative.
In §3, the exp(−�(ε))-expansion method is presented.
In §4, exp(−�(ε))-expansion method is utilised to
find exact solutions of the time-fractional Gardner and
Benjamin–Ono equations. In §5, symmetry analysis,
nonlinear self-adjointness and conservation laws for the
time-fractional Gardner and Benjamin–Ono equation
are discussed and the conclusion is given at the end of
the article.

2. Conformable fractional derivative

Many successful attempts have been made to define
derivative and integral of fractional order, such as
Riemann–Liouville, Caputo, Riesz, Gränwald–Letnikov
[38–40], Atanngana–Baleanu [41], Caputo–Fabrizio
[42] etc. Among many different definitions of frac-
tional derivatives and integrals, Caputo and Riemann–
Liouville are the much accepted definitions. It is well
known that every fractional derivative has some draw-
backs. Somewhere they challenge the physical signif-
icance of the models of fractional order because of
their failures at fundamental properties of calculus such
as chain rule and Leibnitz rule and many more. In
[43], two examples are presented showing that Jumari’s
Riemann–Liouville derivative does not satisfy the prod-
uct and chain rules. Also, the drawback of the Caputo
derivative is that the differentiation of the function is
pre-assumed. An interesting article “What is fractional
derivative?” provides a fascinating picture of fractional
derivative, what criteria underlying the formulation of
operator capable of being as fractional operator [44].

These operators have singular kernel, and the obtained
solutions have tedious structure. Sometimes with these
operators, it is tough to find the solutions also. To
overthrow these drawbacks, a new explanation to frac-
tional derivative and fractional integral, which is well
behaved and obeying classical properties of known
derivative named conformable fractional derivative and
conformable fractional integral is proposed in [45].

DEFINITION 1 [45,46]

Let f : (0, ∞) → R, then the conformable fractional
derivative of function f of order α of is defined as

(Tα f )(t) = lim
ε→0

f (t + εt (1−α)) − f (t)

ε
, 0 < α < 1,

for all t > 0.
Conformable derivatives enjoy the following

properties:

1. Linearity:

Tα(a f1 + b f2) = a(Tα f1) + b(Tα f2)
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for all a, b ∈ R.
2. Leibniz rule:

Tα( f1 f2) = f1Tα( f2) + f2Tα( f1).

3. Quotient rule:

Tα

(
f1
f2

)
= f2Tα( f1) − f1Tα( f2)

f 2
2

,

If f is differentiable, then

Tα( f )(t) = t1−α

(
d f

dt

)
.

Also Tα(tr ) = r tr−α, r ∈ R, Tα(K ) = 0, where K
is constant function.

4. Let f1 be an α-conformable differentiable function
(0 < α < 1) and f2 be a derivable in the range of
f1, then

Tα( f1 ◦ f2)(t) = t1−α f ′
2(t) f

′
1( f2(t)).

DEFINITION 2 [47]

For n = 	α
, where 	·
 is a ceiling function, the con-
formable time-fractional derivative of order α of u(x, t)
is defined as

uα
t (x, t) = ∂αu(x, t)

∂tα

= lim
ε→0

un−1
t (x, t + εt (n−α)) − un−1

t (x, t)

ε
, t > 0.

Clearly, by using the above definition, one can get

∂αu(x, t)

∂tα
= tn−α ∂nu(x, t)

∂tn
.

3. The exp(−�(ε))-expansion method

In this section, we have outlined the exp(−�(ε))-
expansion approach for conformable time-fractional
equations. Consider a fractional differential equation
with time conformable derivatives [22]:

G(u, Dα
t u, ux , D

2α
t u, uxx , . . .) = 0, 0 < α ≤ 1. (3)

To achieve the exact solution of eq. (3), we have used
the wave transformation u(x, t) = g(ε), where ε =
x − l(tα/α), l is a constant to be determined later. By
this transformation, eq. (3) is converted into a nonlinear
ordinary differential equation.

H(g, g′, g′′, . . .) = 0, (4)

where prime shows derivative with respect to ε.
By the exp(−�(ε)) approach, the exact solution of

eq. (4) is of the given form:

g(ε) =
N∑

n=0

an(exp(−�(ε)))n, (5)

where an(an �= 0) are the solution parameters which are
to be found. �(ε) satisfies the auxiliary equation given
below:

�′(ε) = exp(−�(ε)) + � exp(�(ε)) + �. (6)

The above equation (eq. (6)) has different solution struc-
tures for the constraints over � and �, given in Cases
I–V.

Case I: Hyperbolic function solution
When �2 − 4� > 0 and � �= 0

�1(ε)= ln

⎛
⎝−√

�2−4� tanh
(√

�2−4�
2 (ε+c)

)
−�

2�

⎞
⎠.

(7)

Case II: Periodic solution
When �2 − 4� < 0 and � �= 0

�2(ε) = ln

⎛
⎝

√
4� − �2 tan

(√
4�−�2

2 (ε+c)
)

− �

2μ

⎞
⎠.

(8)

Case III: Hyperbolic function solution
When �2 − 4� > 0, � = 0 and � �= 0,

�3(ε) = −ln

(
�

cosh(�(ε + c)) + sin(h(ε + c)) − 1

)
.

(9)

Case IV: Rational function solution
When �2 − 4� = 0, � �= 0 and � �= 0,

�4(ε) = ln

(
−2(�(ε + c) + 2)

�2(ε + c)

)
. (10)

Case V: When �2 − 4� = 0, � = 0 and � = 0,

�5(ε) = ln(ε + c). (11)

Here c is the constant of integration. We follow Note 1
given below, to evaluate N .

Substituting eq. (5) into eq. (4), a polynomial in
(exp(−�(ε)) is obtained. After that, on collecting all
coefficients of (exp(−�(ε))n, (n = 0, 1, 2, . . .), and
equating to zero yields a system of algebraic equation
in a0, a1, a2, . . . , l, � and �. Solving these equations,
we get a variety of parameters of the exact solutions of
eq. (3).

Note 1. We define the degree of g(ε) as D(g(ε)) =
N , and degree of derivatives of g(ε) turns out to be
D[g(r)] = N + r , D[gm(g(r))s] = Nm + (r + N )s.
By balancing the highest-order derivative terms and the
nonlinear terms, we can find N . This is also known as
homogeneous balance principle.
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Note 2. For N = 2, the values of derivatives of
g(ε), g′(ε) and g′′(ε) are given below:

g′(ε) = a1(− exp(−2�(ε)) − � exp(−�(ε)) − �)

+ 2a2(− exp(−3�(ε)) − � exp(−2�(ε))

+ l exp(−�(ε))),

g′′(ε) = a1(2 exp(−3�(ε)) + (�2 + 2�) exp(−�(ε))

+ 3� exp(−2�(ε)) + ��)

+ a2(6 exp(−4�(ε)) + 10� exp(−3�(ε))

+ 6�� exp(−�(ε))

+ (4�2 + 8�) exp(−2�(ε))) + 2�2).

4. Solution of the time-fractional Gardner and
Benjamin–Ono equations

In this section, a variety of exact travelling solu-
tions of the time-fractional Gardner and Benjamin–Ono
equations are extracted by applying the exp(−�(ε))-
expansion method.

4.1 Time-fractional Gardner equation

By using wave transformation u(x, t) = g(ε), where
ε = x − l (tα/α) to time-fractional Gardner equation

(eq. (1)), we obtain an ordinary differential equation.
The Gardner equation is:

∂αu

∂tα
+ 6u(1 − u)

∂u

∂x
+ ∂3u

∂x3 = 0, 0 < α ≤ 1. (12)

The transformation ε = x − l (tα/α) converts eq. (12)
into an ODE as

−lg′ + 6gg′ − 6g2g′ + g′′′ = 0. (13)

Integrating eq. (13) and setting zero to the integration
constant, we have

−lg + 3g2 − 2g3 + g′′ = 0. (14)

Now balancing g′′ and g3, we get N = 1. Hence the
solution is of the following form:

g(ε) = a0 + a1 exp(−�(ε)). (15)

By substituting g(ε) and g′′(ε) in eq. (14), equating to
zero, the coefficients of (exp(−�(ε)))n , n = 0, 1, 2, 3,
we found the following nonlinear system of equations:

a1�� − 2a3
0 + 3a2

0 − la0 = 0,

a1(�
2 + 2�) − 6a2

0a1 + 6a0a1 − la1 = 0,

3�a1 − 6a0a
2
1 + 3a2

1 = 0,

2a1 − 2a3
1 = 0.

Solving this system of nonlinear equations, we obtain
the following set of solutions:

Case I

a0 = 1 + �

2
, a1 = 1, l = 3 − �2 + 4�

2
.

Substituting the above parameters, the nonlinear con-
formable time-fractional Gardner equation have travel-
ling waves, periodic and rational waves as follows:

u1(x, t) =
(

1 + �

2

)
+ 2�

−√
�2 − 4� tanh

(√
�2−4�

2

(
x − 1

2 (3 − �2 + 4�) t
α

α
+ c

)) − �
,

�2 − 4� > 0, � �= 0,

u2(x, t) =
(

1 + �

2

)
+ �

cosh
(
�

(
x − 1

2 (3 − �2) t
α

α
+ c

)) + sinh
(
�

(
x − 1

2 (3 − �2) t
α

α
+ c

)) − 1
,

�2 − 4� > 0, � = 0, � �= 0,

u3(x, t) =
(

1 + �

2

)
+ 2�√

4� − �2 tan
(√

4�−�2

2

(
x − 1

2 (3 − �2 + 4�) t
α

α
+ c

)) − �
,

�2 − 4� < 0, � �= 0,

u4(x, t) =
(

1 + �

2

)
−

�2
(
x − (3

2

) tα
α

+ c
)

2�
(
x − (3

2

) tα
α

+ c
) + 4

,

�2 − 4� = 0, � �= 0, � �= 0,

u5(x, t) = 1

2
+ 1(

x − (3
2

) tα
α

+ c
) ,

�2 − 4� = 0, � = 0, � = 0.

Case II

a0 = 1 + �

2
, a1 = 1, l = 2 + 3� − �3 + 4��

2 + 2�
.
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For the above set of values, the obtained solution has
singularity at � = −1. Hence, we discard this set of
solutions.

The nature of travelling waves satisfying the Gard-
ner equation (eq. (1)) is shown in figures 1a–1c using
3D and 2D graphics. The travelling wave solutions
u1(x, t), u2(x, t) and u3(x, 1) of eq. (1) are simulated
for various values of physical parameters. The travelling
wave solutions of eq. (1) are provided in figures 1a and
1b. Figures 1a and 1b show the 3D pictures for u1(x, t)
and u2(x, t) for � = 1, � = 3, c = 3.5, α = 0.45.
The 2D picture of the periodic wave solution u3(x, t) of
eq. (1) for � = 2, � = 1, c = 4, α = 0.75 is given in
figure 1c for 0 ≤ x ≤ 40 at t = 1.

4.2 Time-fractional Benjamin–Ono equation

By using the wave transformation u(x, t) = g(ε), ε =
x − l(tα/α), to the time-fractional Benjamin–Ono
equation (eq. (2)), we obtain an ordinary differential
equation. The nonlinear time-fractional Benjamin–Ono
equation is

∂2αu(x, t)

∂t2α
+ 2

(
∂u

∂x

)2

+ 2u
∂2u

∂x2

+∂4u(x, t)

∂x4 = 0, 0 < α ≤ 1. (16)

The transformation ε = x − l(tα/α) converts the
above equation into an ODE as

l2g′′ + (2g′)2 + 2gg′′ + g′′′′ = 0. (17)

Integrating eq. (17) twice and setting zero to the con-
stant of integration, we have

g′′ + g2 + l2g = 0. (18)

Balancing g′′ and g2, we get N = 2. Hence, the solution
takes the form

g(ε) = a0 + a1 exp(−�(ε)) + a2 exp(−2�(ε)). (19)

By substituting eq. (19) in eq. (18) and equating to zero,
the coefficients of (exp(−�(ε)))n , n = 0, 1, 2, 3, 4, we
found the following nonlinear system of equations:

l2a0 + a2
0 + 2�2a2 + ��a1 = 0,

(�2 + 2�)a1 + 6��a2 + 2a0a1 + l2a1 = 0,

3�a1 + (4�2 + 8�)a2 + a2
1 + 2a0a2 + l2a2 = 0,

2a1 + 10�a2 + 2a1a2 = 0,

6a2 + a2
2 = 0.

After solving this system, we have:

(a)

(b)

10 20 30 40

–5

5

10

(c)

Figure 1. Physical features for u1(x, t), u2(x, t) and
u3(x, t). (a) 3D travelling wave picture of the solutionu1(x, t)
of eq. (1) for α = 0.45, � = 1, C = 3.5, � = 3, (b) 3D
travelling wave picture of the solution u2(x, t) of eq. (1) for
α = 0.45, � = 1, C = 3.5, � = 3 and (c) 2D periodic
wave picture of the solution u3(x, 1) of eq. (1) for α = 0.75,
� = 2, C = 4, � = 1.
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Case I

a0 = −�2 − 2�, a1 = −6�,

a2 = −6, l = ±
√

�2 − 4�.

Through the above values of the parameters, the nonlinear conformable time-fractional Benjamin–Ono equation
has the travelling wave solution, periodic solution as follows:

u1,2(x, t) = (−�2 − 2�) − 12��

−√
�2 − 4� tanh

(√
�2−4�

2

(
x ∓ √

�2 − 4� tα
α

+ c
))

− �

− 24�2

(
−√

�2 − 4� tanh
(√

�2−4�
2

(
x ∓ √

�2 − 4� tα
α

+ c
))

− �
)2 ,

�2 − 4� > 0, � �= 0,

u3,4(x, t) = −�2 − 6�2

cosh
(
�

(
x ∓ � tα

α
+ c

)) + sinh
(
�

(
x ∓ � tα

α
+ c

)) − 1

− 6�2

(
cosh

(
�

(
x ∓ � tα

α
+ c

)) + sinh
(
�

(
x ∓ � tα

α
+ c

)) − 1
)2 ,

�2 − 4� > 0, � = 0, � �= 0,

u5,6(x, t) = (−�2 − 2�) − 12��√
4� − �2 tan

(√
4�−�2

2

(
x ∓ √

�2 − 4� tα
α

+ c
))

− �

− 24�2

(√
4� − �2 tan

(√
4�−�2

2

(
x ∓ √

�2 − 4� tα
α

+ c
))

− �
)2 ,

�2 − 4� < 0, � �= 0.

Case II

a0 = −6�, a1 = −6�, a2 = −6, l = ±
√

4� − �2.

Through the above obtained parameters, the nonlinear conformable time-fractional Benjamin–Ono equation has
travelling wave and periodic solutions as follows:

u7,8(x, t) = (−6�) − 12��

−√
�2 − 4� tanh

(√
�2−4�

2

(
x ∓ √

4� − �2 tα
α

+ c
))

− �

− 24�2

(
−√

�2 − 4� tanh
(√

�2−4�
2

(
x ∓ √

4� − �2 tα
α

+ c
))

− �
)2 ,

�2 − 4� > 0, � �= 0,

u9,10(x, t) = − 6�2

cosh
(
�

(
x ∓ √−�2 tα

α
+ c

))
+ sinh

(
�

(
x ∓ √−�2 tα

α
+ c

))
− 1

− 6

(cosh
(
�

(
x ∓ √−�2 tα

α
+ c

))
+ sinh

(
�

(
x ∓ √−�2 tα

α
+ c

))
− 1)2

,

�2 − 4� > 0, � = 0, � �= 0,
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u11,12(x, t) = (−6�)

− 12��√
4� − �2 tan

(√
4�−�2

2

(
x ∓ √

4� − �2 tα
α

+ c
))

− �

− 24�2

(√
4� − �2 tan

(√
4�−�2

2

(
x ∓ √

4� − �2 tα
α

+ c
))

− �
)2 ,

�2 − 4� < 0, � �= 0.

For different parameters, the travelling wave solutions
of eq. (2) are simulated in figures 2–4. The travelling
wave solution of eq. (2) is given in figures 2a and 2b. The
obtained solution u1(x, t) and its 3D picture are given
in figure 2a for � = 1, � = 3, c = 2, α = 0.75. For the
same values of the physical parameters, the 2D picture
is provided in figure 2b for 0 ≤ x ≤ 5 at t = 1. The 3D
picture of the established solution u2(x, t) of eq. (2) for
� = 1, � = 3, c = 2, α = 0.75 is given in figure 2c.
The 2D picture of the same is provided in figure 3a for
0 ≤ x ≤ 5 at t = 1. The periodic wave solutions of
eq. (2) are given in figures 3b and 3c. 3D picture of
the obtained periodic wave solution u5(x, t) is pictured
in figure 3b for � = 1, � = 1, c = 2, α = 0.75.
The 2D picture for the same is given in figure 3c for
0 ≤ x ≤ 50 at t = 1. 3D and 2D pictures of the obtained
periodic wave solutions u6(x, t) and u6(x, 1) are given
in figures 4a–4c for � = 1, � = 3, c = 2, α = 0.75
for 0 ≤ x ≤ 50. It is clear that 3D picture depicts
the evolution of u for space and time variables, and 2D
picture depicts the evolution of u and v in space for
a fixed time t = 1. All calculations and graphics are
implemented in Mathematica 11.3.

5. Symmetry analysis for the governing equations

This portion is dedicated to the investigation of symme-
try analysis, nonlinear self-adjointness and conservation
laws for eqs (12) and (16) [48–54]. The Lie point sym-
metries of eqs (12) and (16) are generated by a vector
field of the form

X = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
.

(20)

It can be shown by a well-established procedure that eqs
(12) and (16) admit infinitesimals given below:

For (12) we have

ξ1(x, t, u) = 1

2
(1 − 2u)c1,

ξ2(x, t, u) = xc1 + 3tαc1

α
+ c2,

η(x, t, u) = t

(
3c1

α
+ t−αc3

)
, (21)

where c1, c2, c3 are arbitrary constants. The associated
algebra of the Lie point symmetries are given by

X1 = ∂

∂x
, X2 = t1−α ∂

∂t
,

X3 = ∂

∂x

(
6tα

α
+ 2x

)
+

(
6t

α

∂

∂t
+ (1 − 2u)

∂

∂u

)
.

(22)

For (16) we consider the following cases:

Case 1. When α = 1
2 , we have

ξ1(x, t, u) = c1 + xc3

2
, ξ2(x, t, u) = c2 + tc3,

η(x, t, u) = −uc3, (23)

where c1, c2, c3 are arbitrary constants. The associated
algebra of the Lie point symmetries are given by

X1 = ∂

∂x
, X2 = ∂

∂t
,

X3 =
(

(2t)
∂

∂t
− (2u)

∂

∂u

)
+ x

∂

∂x
. (24)

Case 2. When α = 1/3, we have

ξ1(x, t, u) = c1, ξ2(x, t, u) = c2, η(x, t, u) = 0,

(25)

where c1, c2 are arbitrary constants. The associated alge-
bras of the Lie point symmetries are given by

X1 = ∂

∂x
, X2 = ∂

∂t
. (26)
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Figure 2. Physical features for u1(x, t) and u2(x, t). (a) 3D
travelling wave plot of the solution u1(x, t) of eq. (2) for
α = 0.75, � = 1, C = 2, � = 3, (b) 2D travelling wave
plot of the solution u1(x, t) of eq. (2) for α = 0.75, � = 1,
C = 2, � = 3 and (c) 3D travelling wave plot of the solution
u2(x, t) of eq. (2) for α = 0.75, � = 1, C = 2, � = 3.
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Figure 3. Physical features for u2(x, t) and u5(x, t). (a) 2D
travelling wave plot of the solution u2(x, t) of eq. (2) for
α = 0.75, � = 1, C = 2, � = 3, (b) 3D periodic wave
plot of the solution u5(x, t) of eq. (2) for α = 0.75, � = 1,
C = 2, � = 1 and (c) 2D periodic wave plot of the solution
u5(x, t) of eq. (2) for α = 0.75, � = 1, C = 2, � = 1.
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Figure 4. Physical features for u6(x, t). (a) 3D periodic
wave plot of the solution u6(x, t) of eq. (2) for α = 0.75,
� = 1.0, C = 2.0, � = 1.0 and (b) 2D periodic wave plot of
the solution u6(x, t) of eq. (2) for α = 0.75, � = 1, C = 2,
� = 1.

Case 3. When α = 2/3, we have

ξ1(x, t, u) = c1 + xc2

2
, ξ2(x, t, u) = tc2,

η(x, t, u) = −uc2, (27)

where c1, c2 are arbitrary constants. The associated alge-
bras of the Lie point symmetries are given by

X1 = ∂

∂x
, X2 =

(
(2t)

∂

∂t
− (2u)

∂

∂u

)
+ x

∂

∂x
. (28)

5.1 Adjoint system and conditions for nonlinear
self-adjointness

In this portion, we provide informations on the adjoint
system and the condition for nonlinear self-adjointness.
Consider the following theorem.

Theorem 1. A symmetry such as Lie point,
Lie–Bäcklund and nonlocal symmetry given by

X = ξi
∂

∂ x̄ i
+ ηᾱ

∂

∂ ūᾱ
, (29)

for nonlinear partial differential equations

Fᾱ(x̄, u, . . . , us) = 0, ᾱ = 1, 2, . . . , m̄, (30)

with m dependent variables will have an adjoint equa-
tion

F ∗̄
α(x̄, u, . . . , us) = δ(vβ̄Fβ̄ )

δuᾱ
, ᾱ = 1, 2, . . . , m̄ (31)

and Lagrangian given by

L = Z β̄Fβ̄ (x̄, u, u(1), . . . , u(s)), (32)

with Z = Z(x̄, t) depicting a non-local dependent vari-
ables.

Considering eqs (12) and (16), the formal Lagrangian
can be given by

L1 = υ1(x, t)(6ux (1 − u(x, t))u(x, t)

+t1−αut + uxxx),

L2 = υ2(x, t)(2uxxu(x, t)

+(1 − α)(1 − 2α)t1−3αut
+3(1 − α)utt + 2u2

x + uxxxx), (33)

where υ1, υ2 are new-dependent variables called the
non-local variables for (12) and (16), respectively. The
adjoint system can be obtained using

F∗
1 = δL

δp
= 0, F∗

2 = δL
δu

= 0, (34)

where
δL1

δu
= ∂L1

∂u
− Dt

∂L1

∂ut
− Dx

∂L1

∂ux
+ (Dx )

2 ∂L1

∂uxx

−(Dxxx)
3 ∂L1

∂uxxx
,

δL2

δu
= ∂L2

∂u
− Dt

∂L2

∂ut
− Dx

∂L2

∂ux
+ (Dx )

2 ∂L2

∂uxx

−(Dxxx)
3 ∂L2

∂uxxx
+ (Dx )

4 ∂L2

∂uxxxx
. (35)

On the basis of Lagrangian reported in (33), one can get
the adjoint system as

F∗
1 = t−α((α − 1)υ(x, t)

+ tα(6υxu(x, t)2−6υxu(x, t)−υxxx)−tυt )=0,

F∗
2 = (6α3 − 11α2 + 6α − 1)t−3αυ(x, t)

+ 2υxxu(x, t) − (2α2 − 3α + 1)t1−3αυt

− 3(α − 1)υt t + υxxxx = 0. (36)
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DEFINITION 3

Equations (12) and (16) are nonlinear self-adjointness
on the conditions of adjoint system if it satisfies

F∗
1 |z=Z(x,t,u) = �1F1 = 0,

F∗
2 |z=Z(x,t,u) = �2F2 = 0 (37)

such that not all z = Z(x, t, u) are zero and �i (i =
1, 2, . . . ) are undetermined coefficients.

Therefore, from the coefficient of ux , uxx , ut , uxxx , we
attain

�1 = −Zu, �2 = −Ru . (38)

Substituting these into (37), we obtain a huge system of
linear PDEs. Solving the system using SYM package
[17], we obtain

H = tα−1 (c2 + c1u) , R = x F2(t) + F1(t). (39)

Hence, eqs (12) and (16) are nonlinear self-adjointness.
This property will give us the liberty to construct con-
servation laws for eqs (12) and (16) in the subsequent
subsection.

5.2 Conservation laws

In this section, we establish the conservation laws of eqs
(12) and (16). We recall the following theorem:

Theorem 2. System (30) with symmetry reported in
(29) satisfies the conservation equation

Di (C
i )|(30)=0 = 0, (40)

where

Ci = ξiL + W ᾱ

[
∂L
∂uᾱ

i

− Dj

(
∂L
∂uᾱ

i j

)

+ Dj Dk

(
∂L

∂uᾱ
i jk

)
− · · ·

]

+ Dj

(
W ᾱ

) [
∂L
∂uᾱ

i j

− Dk

(
∂L

∂uᾱ
i jk

)
+ · · ·

]

+ Dj Dk

(
W ᾱ

) [
∂L

∂uᾱ
i jk

+ · · ·
]

(41)

andW ᾱ = ηᾱ −ξ j uᾱ
j . The expressionC

i represents the
conserved vectors.

In accordance with (2) and the nonlinear self-adjoint
substitution, we compute the conservation laws of eqs
(12) and (16), using the obtained point symmetries:

For (12) we obtain

(i) The symmetry X1 = ∂x admits the conserved
vectors

Cx
1 = ut (A1u + A2),

Ct
1 = ux (−(A1u + A2)). (42)

(ii) The symmetry X2 = t1−α∂t admits the con-
served vectors

Cx
2 = (A1u + A2)

× (6ut (u(x, t) − 1)u(x, t) − uxxt ) ,

Ct
2 = (A1u + A2))

× (uxxx − 6ux (u(x, t) − 1)u(x, t)) .

(43)

(iii) The symmetry

X3 = ∂

∂x

(
6tα

α
+ 2x

)

+
(

6t

α

∂

∂t
+ (1 − 2u)

∂

∂u

)

admits the conserved vectors

Cx
3 = 1

tα
2(A1u + A2)

× (3tα(−3u(x, t)2(α − 2tut )

+ u(x, t)(α − 6tut ) + 2αu(x, t)3

− tuxxt + tut − αuxx ) + αt xut ),

Ct
3 = 1

α
(A1u + A2)

× (−6tα(ux (6(u(x, t) − 1)u(x, t) + 1)

− uxxx) − 2α(u(x, t) + xux ) + α). (44)

For (16) we obtain

Case 1. For α = 1/2,

(i) The symmetry X1 = ∂x admits the conserved
vectors

Cx
1 = 2F2(t)uxu(x, t)

+(α − 1)t−3α((2α − 1)tut
−3t3αutt )(F1(t)

+x F2(t)) + F2(t)uxxx ,

Ct
1 = (α − 1)((F1(t)

+x F2(t))((t − 2αt)t−3αux
+3uxt ) − 3ux (F

′
1 + x F ′

2)). (45)

(ii) The symmetry X2 = ∂t admits the conserved
vectors

Cx
2 = −ut (2ux (F1(t) + x F2(t))

−2F2(t)u(x, t))

−2u(x, t)uxt (F1(t) + x F2(t))
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−uxxxt (F1(t) + x F2(t)) + F2(t)uxxt ,

Ct
2 = (F1(t) + x F2(t))

×(2uxxu(x, t) + 2u2
x + uxxxx)

−3(α − 1)ut (F
′
1 + x F ′

2). (46)

(iii) The symmetry

X3 = (2t)
∂

∂t
− (2u)

∂

∂u
+ x∂x

admits the conserved vectors

Cx
3 = x(F1(t) + x F2(t))(2uxxu(x, t) + (α − 1)

× (2α − 1)t1−3αut − 3(α − 1)utt

+ 2u2
x + uxxxx)

+ (2u(x, t) + 2tut + xux )(2F2(t)u(x, t)

− 2ux (F1(t) + x F2(t)))

− 2u(x, t)(2tuxt + 3ux + xuxx )

× (F1(t) + x F2(t)) − (2tuxxxt + 5uxxx
+ xuxxxx)(F1(t) + x F2(t)) + F2(t)

× (2tuxxt + 4uxx + xuxxx ),

Ct
3 = −(α − 1)t−3α(2u(x, t) + 2tut + xux )

× (3t3α(F ′
1 + x F ′

2) + (2α − 1)t (F1(t)

+ x F2(t))) + 2t (F1(t) + x F2(t))

× (2uxxu(x, t) + (α − 1)(2α − 1)t1−3αut

− 3(α − 1)utt + 2u2
x + uxxxx)

+ 3(α − 1)(xuxt + 4ut + 2tutt )(F1(t)

+ x F2(t)). (47)

Case 2. For α = 1/3,

(i) The symmetry X1 = ∂x admits the conserved
vectors

Cx
1 = 2F2(t)uxu(x, t)

+ (α − 1)t−3α((2α − 1)tut

− 3t3αutt )(F1(t) + x F2(t))

+ F2(t)uxxx ,

Ct
1 = (α − 1)((F1(t)

+ x F2(t))((t − 2αt)t−3αux
+ 3uxt ) − 3ux (F

′
1 + x F ′

2)). (48)

(ii) The symmetry X2 = ∂t admits the conserved
vectors

Cx
2 = −ut (2ux (F1(t) + x F2(t))

− 2F2(t)u(x, t)) − 2u(x, t)uxt (F1(t)

+ x F2(t)) − uxxxt (F1(t)

+ x F2(t)) + F2(t)uxxt ,

Ct
2 = (F1(t) + x F2(t))

× (2uxxu(x, t) + 2u2
x + uxxxx)

− 3(α − 1)ut (F
′
1 + x F ′

2). (49)

Case 3. For α = 2/3,

(i) The symmetry X1 = ∂x admits the conserved
vectors

Cx
1 = 2F2(t)uxu(x, t)

+(α − 1)t−3α((2α − 1)tut
−3t3αutt )(F1(t)+x F2(t))+F2(t)uxxx ,

Ct
1 = (α − 1)((F1(t)+x F2(t))

×((t − 2αt)t−3αux
+3uxt )−3ux (F

′
1+x F ′

2)). (50)

(ii) The symmetry

X2 = (2t)
∂

∂t
− (2u)

∂

∂u
+ x∂x

admits the conserved vectors

Cx
2 = x(F1(t) + x F2(t))(2uxxu(x, t)

+ (α − 1)(2α − 1)t1−3αut

− 3(α − 1)utt + 2u2
x + uxxxx)

+ (2u(x, t) + 2tut + xux )(2F2(t)u(x, t)

− 2ux (F1(t) + x F2(t))) − 2u(x, t)

× (2tuxt + 3ux + xuxx )

× (F1(t) + x F2(t))

− (2tuxxxt + 5uxxx + xuxxxx)

× (F1(t) + x F2(t)) + F2(t)

× (2tuxxt + 4uxx + xuxxx )

Ct
2 = −(α − 1)t−3α(2u(x, t) + 2tut + xux )

× (3t3α(F ′
1 + x F ′

2) + (2α − 1)t (F1(t)

+ x F2(t))) + 2t (F1(t) + x F2(t))

× (2uxxu(x, t) + (α − 1)(2α − 1)t1−3αut

− 3(α − 1)utt + 2u2
x + uxxxx)

+ 3(α − 1)(xuxt + 4ut + 2tutt )(F1(t)

+ x F2(t)). (51)

6. Conclusion

The time-fractional Gardner and Benjamin–Ono equa-
tions in the conformable sense are being discussed. The
exp(−�(ε))-expansion method is utilised for extract-
ing exact solutions of the considered models. Several
travelling wave solutions are obtained, and the achieved
solutions are structured in terms of periodic, rational
and hyperbolic functions. The obtained solutions criti-
cally depend on fractional-order α of the models, and the
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arbitrary parameters of the obtained solutions can be
used for controlling and manipulating the evolutionary
dynamics of the models. Finally, the results confirm
the reliability and applicability of the exp(−�(ε))-
expansion method for nonlinear partial fractional mod-
els. For the obtained solutions, 3D and 2D plots are
provided in figures 1–4. Moreover, the symmetry anal-
ysis, nonlinear self-adjointness and conservation laws
for the governing equations are also being discussed.
The results obtained can be seen as potentially useful
for application in mathematical physics, fluid dynam-
ics, optics and engineering.
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