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Abstract. In this paper, a diverse range of travelling wave structures of perturbed Fokas–Lenells model (p-FLM) is
obtained by using the extended (G ′/G2)-expansion technique. The existence of the obtained solutions is guaranteed
by reporting constraint conditions. Then, the governing model is converted into the planer dynamical system with
the help of Gallelian transformation. Every possible form of phase portraits is plotted for pertinent parameters, viz.
k, β, d1, d2, d3. We also used the Runge–Kutta fourth-order technique to extract the nonlinear periodic solutions of
the considered problem and outcomes are presented graphically. Furthermore, quasiperiodic and chaotic behaviour
of p-FLM is analysed for different values of parameters after deploying an external periodic force. Quasiperiodic–
chaotic nature is observed for selected values of parameters k, β, d1, d2, d3 by keeping the force and frequency of
the perturbed dynamical system fixed. The sensitive analysis is employed on some initial value problems (IVPs). It
is seen that de-sensitisation is present in the perturbed dynamical system while for the same values of parameters,
the unperturbed dynamical system has a nonlinear periodic solution.
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1. Introduction

Photonics science is one of the active areas of research.
The literature includes numerous mathematical models
that are used to investigate the propagation mechanisms
of pulses across the globe. The essence of these models
depends on the class of pulses which is known as soliton.
For communication, pure glass strands are utilised in
optical fibre technology to transmit light waves. Optical
fibres give improved bandwidth along with a reduction
in the power attenuation due to light signals that makes
it more efficient than the electrical transmission medi-
ums. Optical fibres behave different from other electrical
mediums such that response of copper to current is lin-
ear while response of glass to light is nonlinear [1]. One
interesting example is the Fokas–Lenells (FL) equation,
which appears in the field of nonlinear optical fibres.

The perturbed Fokas–Lenells model (p-FLM) [3] is
discussed here in the following form:

i Ft + d1Fxx + d2Fxt+ |F |2 (d3F + id4Fx )

−i
[
αFx + β(|F |2nF)x + γ (|F |2n)x F

] = 0,

i = √−1, (1)

where F(t, x) describes wave function, x and t are inde-
pendent variables representing the spatial and temporal
components respectively. Dispersion of group veloc-
ity and spatiotemporal dispersion are represented by
the constants d1 and d2 respectively, while self-phase
modulation is represented by d3. The constant d4 is
due to the nonlinear dispersion, α exhibits the effect
of intermodal dispersion, β displays the self-steepening
effect while the constant γ is due to the effect of non-
linear dispersion with full non-linearity. Equation (1)
is a completely integratable, integrable generalisation
of the nonlinear Schrödinger (NLS) equation. Equa-
tion (1) regulates the nonlinear pulse propagation of
optical fibres in monomode and is the first negative
member of the integrable hierarchy linked to the deriva-
tive NLS equation [4]. Within such a model, in addition
to group velocity dispersion (GVD), one considers inter-
modal dispersion as well as nonlinear dispersion, thus
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treating it with a taste of additional dispersive impact.
A plethora of analytical techniques for analysing FLE
has been added.

Differential equations (DEs) are widely used to exam-
ine the various aspects of the sciences. Travelling wave
structures of nonlinear partial differential equations
(PDEs) always remain essential to understand the nature
of the physical phenomenon. A lot of techniques and
their applications are available in the literature for exact
solutions of various forms of DEs. Exact solutions of
nonlinear DEs are imperative to explore the actual pro-
cess with accuracy. That is one of the reasons why
solving DEs is a growing area of investigation among
researchers. Some of them are given in [5–12] and ref-
erence therein.

Knowing the soliton dynamics will lead to substantial
technical and industrial improvements. A lot of exten-
sive studies are also dedicated to the nonlinear NLS
equation family, since it is the governing equation that
defines the propagation of the soliton in many branches
of science, e.g. nonlinear optics. FLM has been investi-
gated by many researchers from different perspectives.
Zhang et al [13] reported exact solutions by construct-
ing the Darboux transformation. In [14], the modified
extended direct algebraic approach is applied to eq. (1)
to get different classes of solutions that contain soliton
solutions, solitary wave solutions and elliptic function
solutions. Exact combined solitary wave solutions of
FLM by using envelope function ansatz are computed
in [15]. Biswas et al [16] computed singular soliton solu-
tions to the model.

Mathematical analysis of the solutions for qualitative
variance in a family of differential equations, i.e. bifur-
cation analysis, is one of the widely accepted methods
for analysing dynamic systems. Physically, a sudden
qualitative change in the system characterises a bifur-
cation for a gentle difference in parameter values, often
called bifurcation parameters. An essential part of inves-
tigating differential equations is the exploration of the
dynamic behaviour of nonlinear periodic waves and the
investigation of chaos by any means. These areas are
considered to be handy tools to see the insight of any
physical phenomena that are governed by a differen-
tial equation. Some interesting and latest work in this
field can be seen in [17–20] and references therein. In
recent years, the study of differential equations employ-
ing bifurcation analysis is a hot topic of research. To the
best of our knowledge, any study related to the dynam-
ics of nonlinear periodic travelling waves for the p-FLM
equation is not done before. Therefore, an in-depth study
of eq. (1) for these dimensions is worthwhile and is pre-
sented here.

In this paper, we shall use one of the finest and elegant
approaches in the literature, i.e. the extended (G ′/G)-

method. This technique is based on the idea that the
travelling wave solutions of nonlinear differential equa-
tions are expressed by polynomials in (G ′/G), where
G satisfies the ordinary linear differential equation in
second order. This method helps one to describe the
hyperbolic, trigonometric and logical functions of mov-
ing wave solutions which make it different from other
approaches.

The paper is organised as follows: description of the
extended method of (G ′/G2)-expansion and its appli-
cation to the model under consideration is given in
§2. Section 3 is reserved for the analysis of bifurca-
tion, while §4 deals with quasiperiodic and chaotic
behaviours. Section 5 gives conclusion.

2. Travelling wave structures

2.1 The extended (G ′/G2)-expansion method

Assume the PDE, written as

P(F, Ft , Fx , Ftt , Fxx , ...) = 0, (2)

where F is a dependent variable and (t, x) are indepen-
dent variables. After applying the complex transforma-
tion

Step 1

F(t, x) = L(ξ)eikξ , ξ = x − st (3)

eq. (2) converts into the following form:

P(L , L ′, L ′′, ...) = 0, (4)

where L ′ = dL/dξ , L ′′ = d2L/dξ2 and so on.

Step 2
Let us assume eq. (4) has the following solution:

L(ξ) = a0 +
m∑

i=1

[
ai

(
G ′

G2

)
+ bi

(
G ′

G2

)−1]
, (5)

where
(
G ′

G2

)′
= c1 + c2

(
G ′

G2

)2

, (6)

while the constants c1 and c2 are real.
The general solutions of eq. (6) for the parameters c1

and c2 are presented as follows:

• c1c2 > 0
(
G ′

G2

)

= ±
√
c1

c2

[
r1 cos(

√
c1c2ξ) + r2 sin(

√
c1c2ξ)

r2 cos(
√
c1c2ξ) − r1 sin(

√
c1c2ξ)

]
.

(7)
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• c1c2 < 0

(
G ′

G2

)
′ = −

√|c1c2 |
c2

[
r1 sinh(2

√|c1c2 |ξ) + r1 cosh(2
√|c1c2 |ξ) + r2

r1 sinh(2
√|c1c2 |ξ) + r1 cosh(2

√|c1c2 |ξ) − r2

]
.

• c1 = 0, c2 �= 0

(
G ′

G2

)′

= −
[

r1

c2(r1ξ + r2)

]
. (8)

Step 3
After plugging eq. (5) in eq. (4) and comparing the coef-
ficients of (G ′/G2) for different values, we obtain a set
of algebraic equations. This system of algebraic equa-
tions can be solved by using Mathematica/ Maple
and solutions of eq. (4) with the aid of (7) and (8) can
be computed.

2.2 Application to eq. (1)

In this section, authors will compute travelling wave
solutions of eq. (1). Replacing the complex envelope (3)
in eq. (1) and splitting it into real and imaginary parts,
we obtain the following equations:

k2L + d1L
′′ − d1k

2L − d2sL
′′ + d2sk

2L

+ d3L
3 − d4kL

3 + kαL + βkL2n+1 = 0, (9)

− sL ′ + 2d1kL
′ + d1k

2L − 2d2skL
′ + d4L

2L ′

− αL ′ − β(2n + 1)L2nL ′ − 2nL2nL ′ = 0. (10)

After comparing, it is perceived that eqs (9) and (10)
have the same solutions with the following restrictions
[3]:

d4 = 3β − 2μ, α = −s + 2d1k − 2skd2, n = 1.

(11)

It can be verified that restrictions (11) convert eqs (9)
and (10) into the following single equation:

(d1 − d2s)L
′′ + k2(d1 − d2s)L

+(d3 − 2βk + 2k)L3 = 0. (12)

2.2.1 Application to eq. (1). In this section, we shall
determine eq. (1)’s travelling wave solution, which
needs solving only eq. (12). After combining the deriva-
tive terms of the highest order with the nonlinear terms
that appear in eq. (12), we get m = 1 and so solution
(5) takes the following form:

L(ξ) = a0 + a1

(
G ′

G2

)
+ b1

(
G ′

G2

)−1

. (13)

After substituting (13) in eq. (12) and comparing the
coefficients of like powers of (G ′/G2), we obtain a sys-
tem of the following algebraic equations.

(
G ′

G2

)−3

: 2(d1 − d2s)b1c
2
1 + b3

1(d3 − 2βk + 2k)

= 0,

(
G ′

G2

)−2

: 3(d3 − 2βk + 2k)a0b
2
1 = 0,

(
G ′

G2

)−1

: 2(d1 − d2s)b1c1c2

+ b1(d1 − d2s)k
2 + 3(d3 − 2βk + 2k)a2

0b1

+ 3(d3 − 2βk + 2k)a1b
2
1 = 0,

(
G ′

G2

)0

: (d1 − d2s)k
2a0 + (d3 − 2βk + 2k)a3

0

+ 6(d3 − 2βk + 2k)a0a1b1 = 0,

(
G ′

G2

)1

: 2(d1 − d2s)a1c1c2

+ Ba1 + 3(d3 − 2βk + 2k)a2
0a1

+ 3(d3 − 2βk + 2k)a2
1b1 = 0,

(
G ′

G2

)2

: 3(d3 − 2βk + 2k)a0a
2
1 = 0,

(
G ′

G2

)3

: 2(d1 − d2s)a1c
2
2 + (d3 − 2βk + 2k)a3

1

= 0.

With the help of Mathematica, the above algebraic
equations are solved to get different sets of non-trivial
solutions.

Set 1

a0 = ±
√

−(d1 − d2s)k2

(d3 − 2βk + 2k)
, a1 = 0, b1 = 0. (14)
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Set 2

a0 = 0, a1 = ±
√

−2(d1 − d2s)

(d3 − 2βk + 2k)
c2,

b1 = 0, c1 = −k2

2c2
. (15)

Set 3

a0 = 0, a1 = 0, b1 = ±
√

(d1 − d2s)k2

√
2(d3 − 2βk + 2k)c2

,

c1 = −k2

2c2
. (16)

Set 4

a0 = 0, a1 = ±
√

−2(d1 − d2s)

(d3 − 2βk + 2k)
c2,

b1 = ±
√

(d1 − d2s)k2

2
√

2(d1 − d2s)(d3 − 2βk + 2k)c2
,

c1 = k2

4c2
. (17)

Set 5

a0 = 0, a1 = ±
√

−2(d1 − d2s)

(d3 − 2βk + 2k)
c2,

b1 = ±
√

(d1 − d2s)k2

4
√

2(d1 − d2s)(d3 − 2βk + 2k)c2
,

c1 = −k2

8c2
. (18)

It is important to mention here that the above com-
puted sets have different significances. Set 1 leads to
the simplest solution, and hence may not contribute any-
thing towards the physical importance of the considered
model. Sets 2 and 3 give non-trivial solutions but they
are not as general as claimed in (13). Sets 4 and 5 are dif-
ferent from the other solutions as they are non-trivial and
more general than the other sets and thus are more mean-
ingful in terms of the physical description of eq. (1).

2.2.2 Set 1. Using (14) with the help of eq. (13) and
transformation (3) leads to the following solution of
eq. (1):

F1±(t, x) = ±
√

−(d1 − d2s)k2

(d3 − 2βk + 2k)
eik(x−st).

Working on the same lines, different solution sets of the
following travelling structure are given.

2.2.3 Set 2.

2.2.3.1 c1c2 < 0

F2±(t, x) = ±
√

−2|c1c2 | (d1 − d2s)

(d3 − 2βk + 2k)

×
[
r1 sinh(2

√|c1c2|(x − st)) + r1 cosh(2
√|c1c2|(x − st)) + r2

r1 sinh(2
√|c1c2|(x − st)) + r1 cosh(2

√|c1c2|(x − st)) − r2

]
eik(x−st). (19)

2.2.4 Set 3.

2.2.4.1 c1c2 < 0

F3±(t, x) = ±
√

(d1 − d2s)k2

√
2|c1c2|(d3 − 2βk + 2k)

×
[
r1 sinh(2

√|c1c2|(x − st)) + r1 cosh(2
√|c1c2|(x − st)) + r2

r1 sinh(2
√|c1c2|(x − st)) + r1 cosh(2

√|c1c2|(x − st)) − r2

]−1

eik(x−st). (20)
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2.2.5 Set 4.
2.2.5.1 c1c2 > 0

F4±(t, x) = ±
√

−2c1c2(d1 − d2s)

(d3 − 2βk + 2k)

[
r1 cos(

√
c1c2(x − st)) + r2 sin(

√
c1c2(x − st))

r2 cos(
√
c1c2(x − st)) − r1 sin(

√
c1c2(x − st))

]
eik(x−st)

±
√

(d1 − d2s)k2

2
√

2c1c2(d3 − 2βk + 2k)

[
r1 cos(

√
c1c2(x − st)) + r2 sin(

√
c1c2(x − st))

r2 cos(
√
c1c2(x − st)) − r1 sin(

√
c1c2(x − st))

]−1

eik(x−st). (21)

2.2.6 Set 5.
2.2.6.1 c1c2 < 0

F5(t, x) = ±
√

−2|c1c2|(d1 − d2s)

(d3 − 2βk + 2k)

×
[
r1 sinh(2

√|c1c2|(x − st)) + r1 cosh(2
√|c1c2|(x − st)) + r2

r1 sinh(2
√|c1c2|(x − st)) + r1 cosh(2

√|c1c2|(x − st)) − r2

]
eik(x−st)

±
√

(d1 − d2s)k2

4
√

2|c1c2|(d3 − 2βk + 2k)

×
[
r1 sinh(2

√|c1c2|(x − st)) + r1 cosh(2
√|c1c2|(x − st)) + r2

r1 sinh(2
√|c1c2|(x − st)) + r1 cosh(2

√|c1c2|(x − st)) − r2

]−1

eik(x−st). (22)

2.3 Physical Interpretation

Figures 1–3 describe travelling wave solutions of p-
FLM. In figure 1 there is a bright travelling wave
structure displaying frequency peaks of a complex-
valued function F at ξ = 5 and −5 and a break in
between these two values. In figure 2 there is a dark
travelling wave structure displaying frequency dips of a
complex-valued function F between ξ = −2.5 and 2.5
and a smooth curve for the rest of the domain. In figure 3
there are peakon-type travelling wave structures whose
peaks posses discontinuous first derivative. These types
of travelling wave structures are of extreme importance
owing to their efficiency and of course flexibility in the
long-distance optical communication.

2.3.1 Remarks. After performing some analysis, the
sufficient conditions for the obtained travelling wave
solutions can be described by the following proposition.

PROPOSITION

If Fi±(t, x), i = 1, 2, . . . , 5, are the travelling wave
solutions of eq. (1) computed by using the extended

(G ′/G2)-expansion approach, then the constraint con-
ditions for the existence are

−(d1 − d2s)

(d3 − 2βk + 2k)
> 0 and (d3 − 2βk + 2k) �= 0.

3. Phase portraits and nonlinear periodic waves

In this section, bifurcation method is used for a detailed
analysis of eq. (1). For this, some notations and def-
initions are taken from literature and presented here.

Equation (12) can be written using the Galilean trans-
formation as a system of nonlinear dynamic equations:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dL

dξ
= Y,

dY

dξ
= −k2L − (d3 − 2βk + 2k)

(d1 − d2s)
L3.

(23)

(1) Level curves Ch(L , y) are defined as

Ch = {(L , Y ) ∈ R × R : H(L , Y ) = h},
where H(L , Y ) is a Hamiltonian function and for
system (23) it can be written as

H(L , Y ) = Y 2

2
+ k2L2

2

+(d3 − 2βk + 2k)L4

4(d1 − d2s)
= h, (24)

where h represents the energy levels. From (24),
it can be verified that
∂L

∂ξ
= ∂H

∂Y
and

∂Y

∂ξ
= −∂H

∂L
. (25)
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Equation (25) confirms the conservation of the
planar Hamiltonian system (23) which guarantees
that phase orbits defined by the vector fields of
(23) posses all travelling wave solutions of eq. (1)
(for details, see [7] and references therein).

In phase portraits at each energy level there is
an orbit, where

Y = ±
√

2h − k2L2 − (d3 − 2βk + 2k)L4

2(d1 − d2s)
.

(26)

(2) Equilibrium point Ei = (Le, Ye) is called

(a) saddle point if J < 0,
(b) centre point for J > 0 and T1 = 0,
(c) a node if J > 0 and T 2

1 − 4J > 0,
(d) zero point when J = 0 and Poincaré index of

(Le, Ye) is zero, where J and T1 represent the
determinant and trace of the Jacobian matrix
for system (23). System (23) contains three
equilibrium points:

E1 = (0, 0), E2 =
(√

−(d1 − d2s)k2

(d3−2βk + 2k)
, 0

)

and

E3 =
(

−
√

−(d1 − d2s)k2

(d3 − 2βk + 2k)
, 0

)
.

3.1 [(d1 − d2s)/(d3 − 2βk + 2k)] < 0

System (23) for this case contains three equilibrium
points E1, E2 and E3. At E1 we get J (E1) > 0 and
T1(M(Q1)) = 0, and thus E1 by definition is a centre
point. For both E2 and E3 the values of the correspond-
ing Jacobian is greater than zero with Poincarè index
zero. Thus, the above analysis suggests that E2, E3 are
cusp points as can be seen in figure 6a. It is noted that
phase portrait of the system of nonlinear ODEs (23) as
shown in figure 4a contains a family of NPO(1,0) which
envelops the centre E1. It is noted that two nonlinear
heteroclinic orbit NHTO (1,0) carries E1 and passes
through the cusp points E2 and E3. For this case, system
(23) contains a nonlinear periodic wave which is drawn
in figure 4b.

3.2 [(d1 − d2s)/(d3 − 2βk + 2k)] > 0

Here, planer dynamical system (23) has only one equi-
librium point which is E1 and is presented in figure 5a.
For E1, determinant and trace of the Jacobian matrix

Figure 1. |F2 | for k=1, β =1, d1 =−2, d2 =0.5, d3 =1, s =
−2.

for system (23) remain the same as in the previous
case, presented in figure 5b. It can be observed from fig-
ure 6b that it contains a family of nonlinear periodic orbit
NPO(1,0) which envelops E1. Nonlinear periodic wave
is computed by using Range–Kutta method of order 4.
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Figure 2. |F3 | for k=1, β =1, d1 =−2, d2 =0.5, d3 =1, s =
−2.

4. Quasiperiodic and chaotic dynamics

In this section, we shall examine the quasiperiodic and
chaotic behaviour of the perturbed system that follows:

Figure 3. | F4 | for k=1, β =1, d1 =−2, d2 =0.5, d3 =1, s =
−2.

⎧
⎪⎨

⎪⎩

dL

dξ
= Y,

dY

dξ
= −k2L − (d3 − 2βk + 2k)

(d1 − d2s)
L3 + g0 cos (ζ t),

(27)
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Figure 4. For k = 0.5, β = 2, d1 = 1, d2 = 1, d3 = 1, s = 2,
nonlinear dynamical system are depicted.

where ζ is the frequency and g0 is the perturbation
intensity. The difference between systems (23) and (27)
is the addition of the superficial periodic force into
system (27). The existence of seven parameters, viz.
k, β, d1, d2, d3, g0 and ζ along with perturbation terms
makes the study of periodic and chaotic behaviour of p-
FLM a difficult task. In order to tackle our problem, we
shall use different tools such as phase portrait method,
time series analysis and Poincaré section. To investi-
gate the problem from different aspects, we analyse the
influence of parameters by assuming two different cases.
For the first case we keep k, β, d1, d2, d3, g0 constant
and discuss the effect of frequency while for the second
case we investigate by assuming ζ and g0 as constants
and varying the other parameters.

In figure 6, two-dimensional phase portrait, time
series graph and Poincaré section are presented for
k = 0.5, β = 2, d1 = 3, d2 = 1, d3 = 1, s =
2, g0 = −2 and ζ = 0.31. It is noticed that system
(27) is a quasiperiodic system for ζ = 0.31, while a
pattern can be seen in Poincaré section which negates
the chaotic properties at given values of parameters. In
figure 7, the two-dimensional phase portrait is repre-
sented, along with the time series graph and Poincaré
section for ζ = 6.3, keeping the other parameters the

Figure 5. For k = 0.5, β = 2, d1 = 3, d2 = 1, d3 = 1, s = 2
nonlinear dynamical system are depicted.

same as in figure 6. It is observed that system (27)
represents quasiperiodic properties for ζ = 6.3. The
points on Poincaré section carries a specific shape for
these values which nullify the existence of chaotic struc-
ture for these specific values of parameters.

In figure 8, we plotted the two-dimensional phase por-
trait, time series graph and Poincaré section for ζ = 6.3
by taking the other parameters the same as in figure 6. It
is perceived that perturbed dynamical structure (27) car-
ries quasiperiodic behaviour for ζ = 6.3. The points on
Poincaré section represents a particular pattern for these
values which nullify the existence of chaotic structure
for these specific values of parameters. In figure 8, we
present the two-dimensional phase portrait, time series
graph and Poincaré section for k = 2.5, β = 1, d1 =
2, d2 = 1, d3 = 1.5, s = 1, g0 = −2 and ζ = 0.31. It
is noticed that perturbed dynamical system (27) depicts
quasiperiodic properties, whereas the Poincaré section
shows a particular behaviour that balances the presence
of chaotic properties for the considered values of param-
eters. In figure 9, we presented the two-dimensional
phase portrait, time series graph and Poincaré section for
k = 0.5, β = 1, d1 = 1.5, d2 = 1, d3 = 0.75, s = 0.5,
keeping the other parameters the same as in figure 8.
It is observed that perturbed dynamical system (27)
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Figure 6. Nonlinear dynamical systems are depicted for
k = 0.5, β = 2, d1 = 3, d2 = 1, d3 = 1, s = 2, g0 = −2
and ζ = 0.31.

displays quasiperiodic–chaotic properties. The points
on Poincaré section are scattered and do not admit any
specific shape. This is due to the quasiperiodic–chaotic
properties of perturbed dynamical system (27).

4.1 Sensitivity analysis

Here we are inclined to investigate the sensitivity for
the solution of the perturbed dynamical system (27).

Figure 7. Nonlinear dynamical systems are depicted for
k = 0.5, β = 2, d1 = 3, d2 = 1, d3 = 1, s = 2, g0 = −2
and ζ = 6.3.

For this purpose, we have considered three different
initial conditions: (L , Y ) = (0.01, 0.01) in red solid
line, (L , Y ) = (0.02, 0.02) in dashed blue curve and
(L , Y ) = (0.5, 0.5) in dotted dashed green curve while
the values of other parameters are the same as in fig-
ure 9. The comparison of the solutions at different initial
conditions are displayed in figures 10–12. The
quasiperiodic chaotic properties of the perturbed dynam-
ical system (27) makes the system desensitised with
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Figure 8. Nonlinear dynamical systems are depicted for
k = 2.5, β = 1, d1 = 2, d2 = 1, d3 = 1.5, s = 1, g0 = −2
and ζ = 0.31.

the tested initial condition for some specific values of
parameters.

5. Conclusion

The current study discussed the chirped soliton solutions
of the FL equation in the presence of Hamiltonian per-
turbation terms. The complex envelope travelling-wave
hypothesis is invoked to reduce the governing model to

Figure 9. Nonlinear dynamical systems are depicted for
k = 0.5, β = 1, d1 = 1.5, d2 = 1, d3 = 0.75, s = 0.5,
g0 = −2 and ζ = 0.31.

an ODE. The resultant ODE is a first-order nonlinear
ODE with six-degree terms. Hence, it is handled ana-
lytically using the auxiliary equation method with two
structures. As a result, different types of chirped soliton
solutions including bright, dark, kink and singular soli-
tons are derived. Additionally, a set of combo optical
soliton solutions are obtained as well. The associated
chirp is also induced for each of these optical solitons.
The graphical representations for some of the obtained
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Figure 10. 2D Graphics of sensitive analysis for
k = 0.5, β = 1, d1 = 1.5, d2 = 1, d3 = 0.75, s = 0.5,
g0 = −2 and ζ = 0.31.

Figure 11. 2D Graphics of sensitive analysis for
k = 0.5, β = 1, d1 = 1.5, d2 = 1, d3 = 0.75, s = 0.5,
g0 = −2 and ζ = 0.31.

Figure 12. 2D Graphics of sensitive analysis for
k = 0.5, β = 1, d1 = 1.5, d2 = 1, d3 = 0.75, s = 0.5,
g0 = −2 and ζ = 0.31.

chirped solitons are also exhibited by selecting suitable
values of parameters.

Travelling wave solutions of p-FLM have been com-
puted via the extended (G ′/G2)-method and the con-
straint conditions for the existence of these solutions
are reported. We have studied the qualitative behaviour
of the periodic nonlinear waves using the theory of the
planer dynamical system. It is observed that the govern-
ing model only contains the nonlinear periodic wave.
Also, bifurcation theory is utilised and two different
phase portraits are presented. Each phase portrait is
labelled for orbits. The effect of physical parameters:
dispersion of group velocity (d1), spatio-temporal (d2),
self-phase modulation (d3), nonlinear dispersion (d4),
intermodal dispersion (α), self-steepening (β) nonlin-
ear dispersion with full non-linearity (γ ), frequency of
the travelling wave (s), strength of the perturbation g0

and frequency of the perturbed term (ζ ) have been anal-
ysed on the quasiperiodic and chaotic properties of the
dynamical structure with perturbation (27). The results
reported are confirmed by the Poincaré section and later
by sensitive analysis. It is noticed that when group
velocity is decreased from 2 to 1.5, self-phase modu-
lation is reduced from 1.5 to 0.75 and the frequency of
the travelling wave is considered 0.5 instead of 1 by
keeping the other parameters the same as in figure 8 a
chaotic behavior is observed.
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