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Abstract. In this paper, the higher-order nonlinear self-dual network equation is investigated. Firstly, an integrable
lattice hierarchy associated with this equation is constructed from a discrete matrix spectral problem without the
denominator. Secondly, the condition of modulational instability for this equation is given. Thirdly, the infinitely
many conservation laws are constructed on the basis of its new Lax representation. Finally, the discrete generalised
(m, N — m)-fold Darboux transformation (DT) with non-zero constant as seed solution is used to derive new
rational soliton (RS) and mixed interaction solutions. As an application, RS solutions can be obtained by the
discrete generalised (1, N — 1)-fold DT (i.e., generalised (m, N — m)-fold DT with m = 1), and mixed interaction
solutions of the usual sech-type soliton (US) and RS can be derived by the discrete generalised (2, N — 2)-fold DT
(i.e., generalised (m, N — m)-fold DT with m = 2). We also perform the numerical simulations for such soliton
solutions to explore their dynamical behaviours. Results given in this paper may have some prospective applications

for understanding the propagation of electrical signals.
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1. Introduction

Nonlinear lattice equations (NLEs), which are obtained
by discretising the spatial variables of the nonlinear par-
tial differential equations (NPDESs) [1-3], can describe
many physical phenomena such as nonlinear optics,
plasma, physics, population dynamics, electric field,
magnetic fluid, etc. [4-13]. A typical example is that
nonlinear self-dual network equation can describe the
propagation of electrical signals in a nonlinear, lumped,
self-dual ladder-type network or nonlinear LC self-dual
circuits, as shown in figure 1, in which [,, and V,, are the
voltage and current in the nth capacitance and induc-
tance respectively [11-13]. Searching for explicit exact
solutions, especially soliton solutions of the NLEs, is
of great significance as they can be used for depicting
and explaining such nonlinear phenomena. Recently,
rogue wave, which is a new type of rational solu-
tions of some NPDEs [3], has been applied in some
discrete NLEs [14,15]. It is still a very meaningful

Published online: 08 March 2021

research work to explore rational solutions of NLEs,
which might be helpful for understanding the corre-
sponding phenomena in the fields of nonlinear science.
Some methods to construct explicit exact solutions of
NLEs have been developed such as the Hirota tech-
nique [16,17], the inverse scattering transformation [ 18],
the algebra-geometric method [19], the N-fold Darboux
transformation (DT) [20-24], etc. Among them, the N-
fold DT based on Lax pair is a powerful approach to
obtain multisoliton solutions without complex iterative
process. Very recently, a generalised (m, N — m)-fold
DT method has been proposed [23—27] and can be taken
as a generalisation of the N-fold DT. Compared with
the N-fold DT which can give usual sech-type soliton
(US) solutions, the generalised (m, N —m)-fold DT not
only expresses US solutions but also gives some rational
soliton (RS) solutions and mixed interaction solutions
between/among RS and US.

In the present paper, we shall apply the generalised
(m, N — m)-fold DT method to the integrable NLEs.
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Figure 1. A ladder-type nonlinear LC circuit (see ref. [12]).

As an example, we shall focus on the following higher-
order nonlinear self-dual network equation [28]:

LLt::(124—0)I'V2 LV: | — 1,1V,

Vai = (V2 + cr)[v 2, + Vn+11n+1 Val?
— Vn— 11 +o(Vit1 — VD],
where 0 = %1, I, = I(n,t) and V,, = V(n,t)

are functions of discrete variable n and time variable
t, Ip; = dl,/dt, V,; = dV,/dt. In fact, from the
physical meaning of [, and V,, in the self-dual net-
work equation, we can easily know that the discrete
variable n is a real integer. In ref. [28], a discrete
Ablowitz—Ladik hierarchy with four potentials cover-
ing eq. (1) has been given, and the symplectic map and
Hamiltonian structures have been studied by means of
the nonlinearisation of Lax pairs related to this inte-
grable hierarchy including eq. (1). To be clear, eq. (1)
and nonlinear self-dual network equation belong to the
same hierarchy. Equation (1) is the second member in
this hierarchy, and so we call eq. (1) the higher-order
nonlinear self-dual network equation. Compared with
nonlinear self-dual network equation, eq. (1) possesses
eight more higher-order nonlinear terms in each equa-
tion which might own new properties. We know that
nonlinear self-dual network equation can describe the
physical phenomenon in a ladder-type electric circuit,
and the two nonlinearities in nonlinear self-dual network
equation denote the current-dependent inductance and
the voltage-dependent capacitance respectively [11-
13]. So it is noteworthy that eq. (1) contains more
nonlinear terms, which may help us to better describe
the propagation of electrical signals by such new non-
linear effects. Comparing with the classical nonlinear
self-dual network equation in refs [11-13], eq. (1) might
describe electrical signals’ propagation more accurately,
and physicists and engineers may design a more compli-
cated electronic circuit diagram by using eq. (1). Yuan et
al [29] have studied the elastic interaction of N-soliton
solutions of eq. (1) via the asymptotic analysis and N-
fold DT. However, as far as we know, the modulational
instability (MI), infinite conservation laws, the discrete
generalised (m, N — m)-fold DT, discrete RS solutions
and mixed interaction solutions of RS and US and their
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dynamical behaviours of eq. (1) have not been consid-
ered before.

Therefore, in this paper, we shall further investigate
eq. (1) using the generalised (m, N — m)-fold DT tech-
nique. The rest of this paper is organised as follows:
In §2, we shall construct an integrable lattice hierarchy
associated with eq. (1). In §3, we investigate the MI in
the framework of eq. (1) with constants as seed solu-
tions. In §4, infinite conservation laws of eq. (1) will
be given. In §5, a discrete version of the generalised
(m, N —m)-fold DT for eq. (1) will be constructed, and
the higher-order RS and mixed interaction solutions are
exhibited from the seed solutions as I, = a,V, = 0
via the resulting DT. Meanwhile, we shall discuss their
dynamical behaviours and propagation characteristics
via numerical simulations. Finally, we give some con-
clusions and discussions.

2. An integrable lattice hierarchy associated with
eq. (1)

In this section, we shall construct an integrable lattice
hierarchy associated with eq. (1). It is noted that the Lax
pair of eq. (1) has been given in ref. [28], but it is difficult
to construct the discrete generalised (m, N —m)-fold DT
of eq. (1) because there is a denominator in its Lax pair.
To construct the discrete generalised (m, N — m)-fold
DT, we must construct a new Lax pair of eq. (1) with-
out the denominator in its Lax pair. For this reason, we
consider the following discrete matrix spectral problem:

Vi
L,V,+A —ol,+—
Ml’l = )\' )

Ep, = My, 1
—oAV,+1, X +1,V,

2)

where ¢, = (P11, P2, )T is a basic solution of eq. (2)
(T denotes the transpose of a vector), A is the spectral
parameter, the discrete variable n is areal integer and the
shift operator E isdefined by Ef (n,t) = f(n+1,1) =
fost, E-Vf(n,t) = f(n—1,1) = f,_1. To obtain an
integrable lattice hierarchy associated with eq. (1), we
solve the following discrete zero-curvature equation:

M, ; = (EN™)M, — M,N™. (3)

stn‘l

Taking

(m) __ An Bn
= (&)
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into eq. (3) and collecting the power coefficients of A’s
various levels leads to the following recursion relations:

+1 . (m) _
A" : An+1 - Afzm) =0,
A (1< j<m):

. - . -
Iy VnAﬁszzl + Aijﬂ = InB,§J+)1 - JVnBr(l{i-l :

~L,Vo A = ATV — 1, B 4o v, By TV =0,

ol A — o1, AY) — 1,V,BY + 1,V, BY),

_VnAr(z_j_l) + VnA(j-H) + gUth _ B’Sj—l) =0,

n+1 n+1
0 ~1 0 —1
20 LV, AY 4+ ACY + 1L,BY, — oV, B

~ L,V AD —ATD — B + 6V, BSD =1, ,V,

Ly Vg, — 1, A + 1,AC | + 61,V, B
0, VuBY | + 0V, ATY — v, Al
—oB"), +0BV =1,,,

2N LAY oAU — 1L v, BCY

-1 0 0 _
+1,V, B = Vi AQ + v, A0 1+ B — B2
—1 -2 —1 -2

~,V, A5 — AT — 1,BV 46V, BY =0,
M(—m < j< -2

j—1
+ n+1 n+1 _OVnB(j :

n+1

~L,Va A — AV — 1,B) +ov,BY TV =0,

o, A o1, AY) _ v, BY

n+1
+1,V,BY = v, AT 4 v, VR
#1—5 =
VAT + BT = v,Alm =0, @)
Now we choose Af,m) = —A;,fm) = % The recursion

relations determine the other A,(1j ), A,(fj )(—m <j<
m + 1) and B,(,"), B,(fj)(—m — 1 < j < m) uniquely,
and the few coefficients are given as follows:

Br(z;—rln) = Va, Bfgm_l) = —ol,

AP IV AT Z v

B" D =612V, + 6 1>V,_| + V.

By = =V — 11 VP = oy,

Ai(lm—Z) _ I,%ann—l + [r%VnZ_l + In—lInVnz—l
+oly_1l, +0V,V,_1,

A,(l*"”z) = —I,anVn—l - Ir%Vnz—l

- n—lInVnQ_l —oly_1l, —oV,Vy_1,
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B = 12V + 12V2V,

n+1
+ 2y Dy V) + 17 V)
L2V + 0 L2V, + o 12V
+20 Ly L1 Vo + 0V Vi
+ 0V Va1 + Vit

BI" = o}V 2013V, Vo1 — 02V,
— 012, V2 — oI V= I,
— Iy — 1,V — 21,V Vi
— i1V — oy,

A= — _pv2y, -2V, V2 -3V
— 2LV V2 =212,V
— L VAV — L I? (Vo V2,
— LI}V — oI’ L1V,
— 2017 Iy Vot — 0 L Dy Vi
— 0Ly L7 Voo — 0 L I Vi
— o,V V1 —201,V, V2,
— o1,V aVE | =l V, V2,
— 0Ly 1 Vi Vet = Vi — L1 Vi,
= Iny1 V-1,

AT = VIV, + 200V, VE

+ 13V 4P,V V2 42070,V

+ L VEVaor + Ll Vaa Vi,

+ L2V oIV,

+20 L 1 Vet + 0 L g1 Vi

O In I Vaea + 0 Ly 17— Vo

+ol, V,,an_l +201,V, Vnz_1

+ ol VaaVi

+ ol Vi Vi + 0Ly ViV

+ 5LV + In—1Va + Lp1 V-1, ..,
ATV = - D 1 VuAY), - 1,BY),

+oVuBY T+ I Va Al + 1,8,

—oV,BSTT)y < j<m+1),

ATV = ATV @ <im0,

BY " =o1,AV" —01,AY), — 1,V,BY

n+1
j —j—1 j+1
B, VA AL
+BYM (1< j<m),
- r .
BN =—o1,A " +o1,AY),
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+IVB(J)—IVB(J)1+VA( /=0

_ V A(/+1) +Br(lj 1)(_m _

®)

The discrete zero-curvature equation (3) gives rise to
the following integrable lattice hierarchy:

Vi, =0 LAY — o, Athll)—I VaBY Y 4 1,V B

{In,,m = 01,VuBY — o [,Vu,BY, + 0V, ATV —ov, AN — 0B

(=1
n+1
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with
)\2
Ay =7—)\I V- 1+I VaVa-1
+I2VE | 4+ LIV ol
1 1
+oVaVi—1 + InVn—IX - m,
-1 0 0
n+1 n+1 + UB( : —1 A'(1 : + I”Ar(l-i)-l’ (6)
) 0 B© (=2)
—VadAn + VA, + By — Br

When m = 1, using recursion relations (4) with (5),
system (6) reduces to the famous nonlinear self-dual
network equation [11-13]:

{ nt — (12+6)(Vn 1— V),
nt1 (V + o) — Int1),

which is the same as that in ref. [28], and the time part
of its Lax pair is given by

(N

Wy Lo A o, B
AV +AY+ 22— B+
ND — A

n M

—o By VA By AT VarAl +
anl

A

(%_Invnfl — 37 —ol, +

1
IVn 1+ =

—oAV,_ I, —
\ OAVy—1+ 1, 2 oI

®)

When m = 2, system (6) reduces to eq. (1), whose time
part of the Lax pair is given by

By = —oAly, + 012V, + 012V, 1 4V,

1 1
2
_(Gln 1+I V 1+In _1)X+Vn—lﬁ’
Con = —0XVa 1 + A0 LV, + 0l Vi + Lio1)

2 2 1
~0 L}V = Vo = IVt o+ I

1
D, = —Exz + AL, Vot +ol,11,

0 Voot Vo + 12V Vo + 12V2
LV 1 1

1 — fnVn-1 X + m
Here we need to point out that eq. (1) has more nonlin-
ear terms than nonlinear self-dual network equation (7),
which may possess new properties. The new Lax pairs
(2) and (9) do not contain the denominator different from
the one in ref. [28], which is more convenient to con-
struct its DT. Therefore in what follows, we shall further
investigate eq. (1) and discuss its relevant properties.

When m = 3, system (6) reduces to the following
new third-order nonlinear self-dual network equation:

+1 11 Vnz_

Ly = (I? —1—0)[ 12v3 —IZVZV,, 1+12V V2 12V 4200, VD =20 D VI VoV
+12 V3 13+1v,3 1n+1vn Vgt + 0 QL1 lvn 1 =21, 1n+1v + 12 Vo + 17 Vi
_Ir%+1vn - Ir%—}—l w1 — V2Vt = VIV + V, V2 | + Vo VE 1) + Vi — Va1l (10)

Vi = (V2+o)[13v2+213v Ve 1+I3V2 N - A lv VL VE = LR VR -3 V2

-2 nHV V,,+1 3+1Vn+1 I 1oV, +1+a(12 n— 1+1 1n+1 L2 20,V Va1 + L VE

FhaVE = I I = 2Lt Vi Vit — Lt V2 — T2 VA + Lot — Lngal.

A, B, Thus, we can give a new more higher-order nonlin-
N ,52) = ) ear self-dual network equation which includes 40 more
Cn Dy nonlinear terms in each equation of (10) relative to
the classical nonlinear self-dual network equation and
3 A;f)kj 3 Br(lf))J eq. (1). Similarly, eq. (10) may help to design more com-
j==2 j==2 plicated electrical circuits in LC circuits which might
= 1 ’ ©®)  describe more complex physical phenomena. Accord-
o Y B > AP A ingly, the time part of the Lax pair for (10) is as

follows:
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3) _ ( An Bn
' =(e)

3 . 2 .
Y Al B
j=—3 j=—3
- = 5 (11)
—o > BV AP
j=—3 j=—3

with
Ay = U2V Vo + 12V 4 L1, V2,
tolyly—1 +0Vy Va1
_(Ir%Vl’l Vn—l + I,%Vnz_l + Inln—l Vnz_l
1
+0 lnlp1 + 0 VaVa1) 7 = LB3v3: =V,

V2= D1 Va1 = Iy Va2V,
— Iy IV \ V=12V, 1, V2 =213V, V2,

1
L V122 =212,V 4 1V v

2011, Vo1 —201,V, V2,
—0ln+1Vn—1 V,12_O'In+lly% Vic1—0 1, V2 VnZ_l

— o L, V2Vy g — 012Vl — o LI |V

—0 L 12 Ve — oVl (V2 — I, I2 V3,
11
3y/2 3
—LViVa1 = 53 54

By =—0l, A2+ (0 I2Vy + IV, | + Vo)A
—o I3V - 203V, V1 —a DV,
—o 21\ V2 | — o L2, V2 — T2,
LIy — 1, V2 =21,V Vg — L1 V2
0Lyt + 2V, V2 + 12V
2Ll 1V, + e VoV A+ 1 Ve
120 Iy ly— 1 Vo1 + 01> (Vua + 012 Vg

1
+o VoV +0VuaVE |+ Va-2)3
1

1
+ (=1, V2 =11 V>, ~0 L)) 5+ Vo173,

C, = In;—z — IV, + 12V, + GV,,)% +13v?
23V, Vo + PV + 121,V
AL Ve + ol iy + 0L gy + 01,V
120 1,V Vo140 Ly 1 V24T — (0 12V, V2
+oI?V3 | 42000, V2 | +ol? Va2V,
o I? (V3 4 2Ly Ve + 17 Vo
FIE Vot + VaVE 4 Vo VE | 4+ 0 Vo)A
O LV Fo Ly V2 LA —a Vo142,
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Dy =201 1,1 Vot — 201, V, VI | — InVn_1%
213V, V2 | = 2121, V2 | = 0 lyy1 Ve V2
—0 L1 1 Va1 — 0 LV, Vi
0V ly V2 =0 Ly I Vy oy —0 112 Vi
—0 L,V o V2 | = L2 V3 | —I2VV,
—0 LV lyet — (Vo Vet + IV + L Ly Vi
t0 Iyly—1+0 Vi Ve D412V Vo + 12V,

1
+1,,1n_1V,,2_1+al,,1n_1+avnvn_1)x—1,fv,§_1
_ann—l - In Vn—2 - In+1 Vn—l

1
+ﬁ - InI,%,an—Zvnzfl - n—HIr%Vn—anz

1
— IVl V2 4 L, Va2 — 5/\3.

3. Modulational instability

The modulational instability (MI) may be the main cause
of localised waves. In this section, we investigate the M1
for eq. (1) starting from seed solutions Iy = a, Vo = b,
adding small amplitude to its seed solution as I,, = Ip+
€F,(t) and V,, = Vo + €G,(t), where F,, = F,(t) and
G, = Gy(t) are the perturbation functions of n and
t, € is an infinitesimal amplitude of the perturbation.
Substituting 7, and V,, into eq. (1) yields the real-valued
linearised perturbation coupled system

Fui 4 4ab(a® +0)(Gp_1 — G,)
+(@* +0)b* +0)(Fyi — Fup1) = 0,
Gy + 4ab(b? + o) (Fy — Fyi1)

—(@*+0)B* +0)(Gpi1 — Gu_1) = 0. (12)

We take F, = Pe8' Tk and G, = Qe8' Tk where
P and Q are real constant amplitudes of the perturba-
tion eigenmode, g denotes the frequency and k is the
arbitrary real wave number of the small perturbations.
Similar to ref. [27], substituting F,, and G, into eq. (12),
it can produce one system of coupled linear equations
for P and Q. The system has non-trivial solutions only
when g, k satisfy a dispersion relation, namely

g = 8\/—a2b2(a2 +0)(b? + o) sin? (g)

+2i(a® + o) (b* + o) sink. (13)

We define the MI gain G = |)(g)|, where ) repre-
sents the real part. Figure 2 displays the MI gain map
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Figure 2. (a), (c) Ml gain G vs. kanda whenb = 0,0 = 1;
(b), (d) MI gain G vs. k and a when b = 2,0 = —1. MI
and MS denote modulational instability and modulational
stability.

vs. k and a. When o = 1, for all possible values of
b, the expression g in eq. (13) is pure imaginary and
the MI gain G is equal to zero, which implies that the
MI does not occur. Figures 2a and 2c show one region
which is modulation stability (MS) when » = 0 and
o = 1. When 0 = —1, the expression g in eq. (13) has
real parts and the MI gain G is non-zero, which implies
that there are two distinctive regions including MI and
MS, as shown in figures 2b and 2d, which show two dis-
tinctive regions including MI and MS when b = 2 and
o = —1. In MI regions, small perturbations are unsta-
ble and can be amplified exponentially, while in the MS
regions they are stable and do not grow up.

According to ref. [30], for the sake of discussion, we
set A = —a’b*(a* + o) (b* + o) sin?(k/2). Then two
cases will be discussed as follows:

e For o = 1, for all possible parameter values, A < 0,
that is to say, the MI gain G = 0, which implies
that the MI does not occur, and the whole region is
stable. In this case, the US and RS excitation can
occur in the MS region which are confirmed in the
subsequent RS solutions and numerical simulation
of this paper.

e Foro = —1,iftk #2mn,me Z,|a| > 1,|b] < 1
or la| < 1,|b| > 1, then A > 0, which implies that
the MI occurs. For the other cases, we have A < 0,
which implies that the MI does not occur. Especially,
for k = 2mm ora = £1, then A = 0, the regions in
these lines are MS.
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4. Conservation laws of eq. (1)

Existence of conservation laws plays an important role

in proving their integrability for integrable system [31].

In this part, we shall derive the infinitely many conser-

vation laws for eq. (1). Some physical properties such as

energy, momentum and Hamiltonian conservation laws

can be described by the first three conservation laws.
From Lax pairs (2) and (9), we can get

\%
Pln+1 = A+ 1 Vn)(pl,n + (Tn - O'In>(p2,n’

1
P2.n+1 = Uy —oAV)e1, + (X + InVn>§02,n- (14)

Setting 6, = ¢2.,/¢1.,, We obtain

V,
PLntl 4LV, + (—” — oln)e,,,
P1.n A
I, — o)V, 1
@2 n+1 _In OAVy YoV, (15)
P2.n en A
from which we have
Va
T —oly 9n9n+1 + A+, Vn)0n+l
1
_()_» + InV,,)O,, -1, +o)AV,=0. (16)
Suppose that
O = ZO R (17)
J:

and substitution of (17) into (16) leads to the following
recursion relations:

0 = —0 V1,

6V = L,_1(a V2 + 1),

0P = —(V2 | + DU Voo + 1> Vg

+oV,2),

0 = oV, + DUy (Vo + Vao1)?
oIy (V7,4 0)
+oly 1 Vi2o(Vu2 +2V,—1)
+1, 20 V2 5+ 1)),

0NV ==V + DUy (Voo + V1)
2Lyl (Viiy +0) (Voo + Vi)
Ly (I (Vi + 0)(Vaez + Vo)
+o V3, + o (Vues +4V,_1) V2,
+30 V2V |4+ Vi3)
2Ly 1 Ly—2(0 Vi + D (Via+ Vi)

(18)
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H7 50 Vi + D (Vas+Va2)
+ (Va3 + Vae DV, s + 0 Va3).
Equations (9) and (15) lead to

v,
[m (x +1,V, + (T” — aln)(?n)}
t

= (E — D(An + Bubh), 19)

where
22 )
A, = ? — AV + 1V, Vi
+I,12V,12_1 + Inln—anz_l +olyl,
1 1
VaV,_ LV 1—— —,
‘*’O_nnl"i‘nnl)b 2132
By, = —oil, + 012V, + 012V,

1
+Vo— (o1 + I Vnz_l + I Vnz_l)x

1
+ Vn— 1 E .
Substituting (19) into (19) and equating the same pow-
ers of A in (19) generate the infinitely many conservation

laws for eq. (1), and the first three conservation laws are
listed as follows:

(T) = (E — D(Xyp),
with
Tl = In(Vn + Vn—l)a
X1 = (VA +0) T2 (Voo + V1)

L1 (I 40) (Vi + Vo 1) 40 Ly (Voo +Vi_1)),

(k=1,2,3) (20)

= —%Ij(vn + Voe)? = L (Vi +0)
—o V' Vi1,

Xo = —I2(Vy 4 Voo )(V2 | +0)
X2 (Vaea 4 Vao1) + 0 Vo) — L(I* | 4+ 0)
X (V2| + )Tyt (Va—z + Vy1)?
(Vi +0) = I2_ (Vi +1)

X(VaVi2 + Vi Vi1 + Vnz_l +o0)
1

—oVyVyio — 5,

_1p 3 2(V?
T = 3L (Vo V1) + L (Vi +0)

—(Vn V2 + G)Vnz_l

X (Vat+ Vo )+ L (L7 (Vi +0) (Vaea+Vio1)
+o (Vi + Vae2) Vi + 0 Vi Vay + Vasa)
+1 1 Va(@ Vi + 1),
X3 = (Vi +0)Unl_{ (Voo + Vaoy)?
) (Va2 + Ve DUy (Vi + Ve D (Va4 V1)
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+ 12D, 2V, 4+ 20) + 0V, Vaa
+oVaVaoi + oV + 1)

I L2 Iy (Vi + ) (Vi + Vi)

(I (Vi +0)(Vas+ Va2) + 0V,
0 (Va3 +4V,_ V2, + 40V, 2V?2
oV 4 Vuls) + LiaVa(o V2, + 1))
L1 O 12 Vs (Vo + 2V 1) (Vi + Vis1)
A2Un Iy (0 VP 5+ D Voo + Vao)) + Va Vi,
+QVuVu 1 + V2 +0)WVua+ V)

+1y 220V 5+ D)(Vy + Vi)

+1,(I? 50 V2 5 + 1) (Va3 + Vu2)

(Va3 + Vae DV 4 Vaa Vi + 0 Va3)
2 Va (VP 5+ 0)),

where Ty and X}, are the conserved densities and asso-
ciated fluxes, respectively. The first three conservation
laws represent the energy, momentum and Hamiltonian
laws, respectively.

5. Discrete generalised (m, N — m)-fold DT

In this section, we shall construct the generalised
(m, N — m)-fold DT of eq. (1) based on the basis of
Lax pair (2) and (9). First, we assume that ¢, (%;) =
(DA, YT (i = 1,2, ..., m)arem distinct solu-
tions of (2) and (9) for m spectral parameters A;(i =
1,2, ...,m) and the initial solutions I, V, of eq. (1).
We introduce the following special gauge transforma-
tion:

On = Ty
N—1 . N—1 .
W Y alu Y bW
Jj=0 j=0
= N-1 . . N—1 . | P
— Z br(l]))\ij 1+ Z a'(lj))\ij
j=0 j=0
(21)
which ensures that ¢, satisfies E¢, = M,¢, and ¢, ; =

N,EZ) . From the knowledge of DT, we know that M,
and N,Ez) have the same forms with Mn and N,gz) under
transformations Mn =Ty 1M, Tn_1 and N,Ez) =T+
T, N,EZ) )T”*I, except replacing the old potentials 7, V;,
with new ones fn, \7,,. It should be noted that N is a
positive integer in (21), and a,(lj ) and b,(/ ), which are
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the functions of variables n and ¢, can be determined by
the following linear algebraic system with 2N equations
(N=m+Y ! [ M,i=12...,m):
7, 0i)ey” (1) = 0,

T 0)e 0 + TV e (i) = 0,
7,7 0o P 00 + T, el (1)
V12000 0) =0,

(22)

s
Y 1 0ne " ) =0,
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I +ob" "

> () )
" a© Vo =00+ Vaay, (23)
n
with
©) ) (N-1)
QO B o) _ AP very _ Aba
no T e(m)’ n— e(m)’ n - e(m) °
A A A
N N N
A = det((AD, AP, AT, (24)

where A = (AE‘{)S)Z(M,-H)sz, in which Aﬂ-’;)s(l =

J<2M;+2,1 <s <N,i=1,2,...,m) are given
by the following formulae:

j=0
j—1
doCh MUY for 1 <j<Mi+1, 1<s<N,
k=0
j—1
S Chy VTR UTIR for 1< j<Mi+1, N+1<s<2N,
) k=0
Bs =\ o

J—(N+1)
o Y Ch NN oy
k=0

Yo G U for My 42 < j <2(Mj+1), 1S5 <N,
k=0

Mi+2<j<2(M;+1), N+1<s<2N,

where Tn(i) is derived by
Tahi +6) = TO 4 TWe 4. 4 TM M
while w,gk) is determined by

on(hi + &) = 0V 0u) + 9" ()e? + 0 (et + -

and

© ) Lot ()
§0n i) = 7 k§0n i)-
k! axl.

According to the above analysis and discrete version
of generalised (m, N — m)-fold DT in refs [24-27], we
can verify that eq. (1) admits the following discrete gen-
eralised (m, N — m)-fold DT:

Theorem 1. Let ¢; (L) = (¢;(Ai), ¥i (X)) be col-
umn vector solutions with distinct spectral parameters
@@ =1,2,...,m) of (2) and (9) and (I, V,,) is the
same seed solutions of eq. (1), as considered above,
then the generalised perturbation (m, N — m)-fold DT
for eq. (1) is given by

and Aa,go), Ab,go) and Ab,(,N_l) are given by the deter-
minant Af\gm) replacing its Nth, 2N)th and (N + 1)th
columns by the column vector b = (bj)anx1 with

j—1
=Y CRAN TR for 1< <M+,

bj= k=0
—yUN"D for M; 42 < j<2(M; +1).
Here a,(gzl and bfll—l)-l are obtained from a,(,O) and b:(ql) by

replacing n withn + 1.

Remark 1. Here m denotes the number of the distinct
spectral parameters, N denotes the order number and
N —m denotes the sum of the order number of the high-
est derivative of the Darboux matrix 7, or the vector
eigenfunction ¢,. Notice that when m = N, the N-fold
DT is a special case of the discrete generalised (I, 0)-
fold DT, which can be used to construct multisoliton
solutions in ref. [29]. When m = 1, Theorem 1 can
reduce to the discrete generalised (1, N — 1)-fold DT,
which is used to get high-order RS solutions of eq. (1).
When m = 2, Theorem 1 can reduce to the discrete
generalised (2, N — 2)-fold DT, which is used to obtain
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mixed interaction solutions of US and RS, and it should
be noted that these new solutions are not singular. For
other cases, new DTs can also be derived, which we
are not discussing here. Next, we shall use the discrete
generalised (1, N — 1)-fold and (2, N — 2)-fold DTs
to construct RS solutions and mixed interaction solu-
tions of US and RS for eq. (1) from the non-zero seed
solutions.

5.1 Discrete generalised (1, N — 1)-fold DT

In what follows, we produce rational solutions in terms
of determinants introduced above for eq. (1) witho = 1
by means of the discrete generalised (1, N —1)-fold DT.
For the case 0 = —1, the process is similar and will not

o0 — (9 Z S\' VIS open (3%
n AQ) 4] 60 36 —40 )"

3
=\ y® ) =\4) 38400 383 — 120£2 4+ 1712& + 19200f — —

(9/16)t

) @ 5\" 15
P =\ @ =\ 1) 571240000°
" v 4 ) 2211840000
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where C, C; are arbitrary constants,dy(k = 1,2, ..., N)
are free real coefficients and ¢ is an artificially intro-
duced small parameter.

Next, we fix the spectral parameter in eq. (35) as A =
A1+ €2 with Ay = a + Va2 + 1, and expand vector
function ¢, in eq. (35) into the Taylor series around & =
0, explicitly calculating the coefficients of the expansion
in ¢,. In particular, choosing C; = —Cy = 1/e,a =
3/4, (i.e., A1 = 2), we have

o0
0 =3¢ eY = g0 g0 4+ oPet 1 g

j=0
+- (26)
where
(27)
(28)
81& S 4 30240& 34+ 5184000& 2 — 5496576& + 326246400t
81355 — 540054 + 17424053 + 5184000&'2t — 138240000&¢ |,
—1900800& 2 + 1247846400t — 9336576& + 43059200
(29)

be discussed due to its solutions possessing singularity.
Substitution of I, = a, V,, = 0 into (2) and (9) yields
the following basic solution:

on(X) = (Cl — 1 1n epP1i+0(e) + C2 2 ’16/021)
(25)
with {
7 = ﬁ<x2+1+¢—(2ax+,\2 — DQai — 12+1)),
,Fﬁ@%rl_\/ (ar+12 — 1)(2ak — A241)),
1 2,2 2
xy/—(2ar + 22 — 1)(2ar — A2 + 1)),
1 2,2 2

xv/—(Qar 4+ 22 — 1)Qar — A2 + 1)),

N
0(e) = vV—Qar + 12 — D)(2ar — 22 + 1) desZk,

k=1

where & = 25¢ + 8n and the remaining (p(]) (j = 3)are
omitted here.

According to the discrete generalised (1, N — 1)-fold
DT in Theorem 1, we shall discuss three cases: N = 1, 2
and 3.

5.1.1 First-order RS solutions and dynamical behaviours.
For N = 1, according to Theorem 1, based on the
discrete generalised (1, 0)-fold DT, we can give the first-
order RS solutions of eq. (1) as

0)
F_atbh 5 0
I, = W, Vo = n+1° (30)
n
where
) 0)
n e n &
A A
with
A — ¢(0) 1p(O)
@ —he@
©) ©)
o _ |—r¢ 14
Aay, —' —y© 5,60 |
6O _x,6©

9’

b(O) _ ‘

@ _y©
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Figure 3. Evolution plots of the first-order RS solutions fn and ‘7,, with different parameters (a), (¢) a = 3/4, 11 = 2; (b),

@@ a=—3/4xr =1/2.

n

Figure 4. Numerical simulations of the first-order RS solutions I, and V, given by eq. (31) with the same parameters as in
figures 3a and 3c. (a), (b) exact solution; (c), (d) unperturbed situation; (e), (f) perturbed by the initial 2% noise; (g), (h)

perturbed by the initial 5% noise.

while b,(loi1 are obtained from b,(lo) by replacing n with
n + 1. Then
480
9§ — §)* +256
600

Vo=—->+ 31
T4 9+ 2+ 400 Gh

M=

which have no singularity for all real n and z. It is impor-
tant to point out that we have obtained the non-singular
rational rogue wave solutions of discrete NLEs [25,27],
while in refs [24,26], we have obtained the singular
rational solutions of discrete NLEs, and for NPDEs,
the non-singular RS solutions of mKdV equation have
been given in ref. [23]. However, here we shall give
the non-singular discrete rational solutions of eq. (1),

whose structures are similar to the usual sech-type soli-
ton and different forms of rogue wave solutions. We call
these non-singular solutions (31) the discrete RS solu-
tions. Figure 3 displays the first-order dark and bright
RS structures of solutions (31). From figures 3a and 3c
we can see that the valley of the dark RS solution 7, and
the peak of the bright RS solution V,, are localised along
the lines 3§ — 8 = 0 and 3£ +4 = O respectively. Along
the line 3¢ — 8 = 0, I, reaches the minimum which is
—15/8, while along the line 3£ + 4 = 0, V,, reaches the
maximum which is 3/4. In addition, if @ > 0, then [,
is a dark RS, while V,, is a bright RS. When a < 0, the
situation is just opposite (see figures 3b and 3d).

To study whether the above-obtained RS solutions
are stable during the propagation process, we perform
the numerical simulations to explore the dynamics of
some of the above-mentioned RSs of eq. (1) by using
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a 5 Energy change of first-order RS I
exactfirst-order RS |
71 = = = Numerical evolution of first-order RS Iwithout noise

-== == Numerical evolution of first-order RS I with 2% noise ]
""""" Numerical evolution of first-order RS | with 5% noise

& :
> e o A

Area of first-order RS I
S

= T e -,_:-.:'a:;?’.'.;?”?”{—' BT
3+
2+
1+F
0 "
0 1 2 3 4 5 6 7 8

initial condition| |
————— exact RS

3t

-8 -6 -4 -2 0 2 4 6 8

—initial condition
————— exact RS

Figure 6. (a),

(b) Exact first-order RS solutions

1.5Vy—n—2,t=0 + Vasn+2.1=0; (¢), (d) the interaction of exact first-order RS solutions fn, Vn and another first-order RS
solutions 1.50, ;-2 1=0, 1.5Vy—n—2.1=0.

the finite difference method [32]. Figures 4a—4d respec-
tively show the numerical results of the exact first-order
RS solutions and the unperturbed exact first-order RS
solutions as an initial condition from t = —4, and
we find that the time evolutions of the RS solutions
without noises is very close to the exact RS solutions.
Figures 4e—4h display the numerical results of the per-
turbed situation by multiplying the analytical first-order
RS solutions by 2% and 5% noises as the initial condi-
tion, respectively. These results show that the 2% or 5%

Ins
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b . Energy change of first-order RS V
exactfirst-order RS V
39+ = = = Numerical evolution of first-order RS V without noise
«= == Numerical evolution of first-order RS V with 2% noise
k.3 S [t Numerical evolution of first-order RS V with 5% noise
37t

w
(2]

®

Area of first-order RS V
R
|

w
w
",

w
N
<

31

30

Vn and initial solution 1.50,,-2;=0 + In—n+2.1=0,

noise has little effect on the evolutions of the first-order
RS solutions. Moveover, figures 5a and 5b show energy
changes of I, and V,, from which we can see more
clearly that first-order RS solution of /,, can remain as
the stable evolutions for a longer period with 2% and 5%
noises, while solution V,, has obvious energy change and
remains as the unstable evolutions with noises.

In addition, we also use I, = 1.5I,,-2:=0 +
In—>n+2,t:O and V,, = l~5Vn—>n—2,t:0 + Vn—>n+2,t:0 as
initial conditions to model the wave propagation. The
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20 10 0 -10-20
t

Figure 7. Evolution plots of the second-order RS solutions in and \7,1 with different parameters (a), (c)

a =3/4% =2,d = 0;(b),(d)a=9/40,1 = 5/4,d

= 200. The phrases FRS; and FRS; stand for two parallel

first-order RS solutions which are derived from the second-order RS solution.

results exhibit non-elastic collision phenomenon of two
first-order RSs (see figure 6).

5.1.2 Second-order RS solutions and dynamical
behaviours. According to Theorem 1, for N = 2,
based on the discrete generalised (1, 1)-fold DT, the
second-order RS solutions of eq. (1) are given by

€))
F_atb 5 0
n = -0 Vo = bn+1» (32)
an
where
(] (0)
n ’ n
A3 A3
and
1
W AbY
= Tas
2
with
rp© »© LA
Af — )»1(15(1) 4 ¢(0) ¢(1) )»li/f(l) 4 1/,(0)
2= Ay © A2y © —119©

PRE/ARIEETAC) )»%Tl’(l) + 20y @ —x190M — O

F) = 243£5% — 3888¢° — 14256¢%
+(—1555200¢ 4 152064)&3
+(12441600f — 2239488)&2
+(—215654400f — 11059200)&
124883200007 + 1105920000¢
4491520000,
324£% — 518487 + 67392¢4
+(—2073600r — 718848)&3
+(16588800r + 18210816)¢>
+(265420800¢ — 49152000)&
+3317760000¢> + 163840000,
12960(& + 8)* — 345600(¢ + 8)°
+6082560(£ + 8)2
+(829440007 — 40550400) (£ + 8)
—552960000¢,
G, = 81(¢ + 8)% — 3240(¢ + 8)°
+58320(£ +8)* + (—518400r — 656640) (£ +8)*

G

F

v ©
A
—)L%QS(O) ’
_k%¢(1) —2%19©

in which Aa,(,o), Ab,go) and Ab,gl) are given by deter-
minant A§ by replacing its second, fourth and third
columns by the column vector (—)\%(/5(0), —A%QS(I) -
22100, —yp Oy UNT while bfﬂ:l are obtained from
b,gl) by replacing n with n + 1. Then by simplifying the
above expressions we have
F ~ F.

_19 Vl’l = _27

Gi G2
where

(33)

n:

+(103680007 + 7455744) (£ + 8)*
+(—165888007 — 49152000) (£ + 8)
482944000072 + 163840000.

For d; = 0, the second-order RS solutions (33) exhibit
strong interaction (see figures 7a and 7¢), while ford; =
200, the second-order RS solutions (33) are split into
the nearly parallel interactions of one dark RS and one
bright RS solutions (see figures 7b and 7d).
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Next, we studied the dynamical behaviour of the
second-order RS solutions via numerical simulations.
Figures 8a—8d exhibit the numerical results of the unper-
turbed exact second-order RS solutions and the unper-
turbed analytical second-order RS solutions, which
show that the evolutions of the second-order RS solu-
tions without a noise almost coincides with the corre-
sponding exact RS solutions. Figures 8e—8h display the
numerical results of the perturbed situation by adding
2% and 5% noises to the initial conditions. These results
show that the evolutions with 2% and 5% noises have
the same evolutions in comparison with the unper-
turbed solutions. Figures 9a-9d exhibit the numerical
results of the unperturbed exact separable second-order
RS solutions and the unperturbed analytical separable
second-order RS solutions. Figures 9e-%h display the
numerical results of the perturbed situation by adding
2% and 5% noises to the initial conditions. These above
results exhibit strong stability and are also robust against
small noises.

5.1.3 Third-order RS solutions and dynamical behavi-
ours. Similarly, according to Theorem 1, performing
the analogous calculating process for N = 3, the third-
order RS solutions of eq. (1) can be given by

2
a—+ by, ~ (0)
n = W, Vo = bn+17 (34)
where
0)
n AS ’
3
)
Lo _ b
n - A8
3
and
(2)
n 3
A3
with
)\%(]5(0) )»145(0) ¢(0) k%w(o) MW(O) w(O)
A@GD A@22) AQ23) AQZ4) AR5 ARO
AF — AGD AGB2) AB3) AG4H  ABS ABGO
5=

ay @ )\%W(O) )L?W(O) —119© —)»%(]5(0) —A?(])(O)
AGD AG2 AG3) AGH  AGSH AGO

AGD A2 AG3) A6 AGS5  AG66
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AGH )ﬁw(Z) + 200D 4 O ABGSD = 5y @ 4
V(1) AGO = @ AGCD = 3,y 4 O AG2 —
A%lﬁ(l)‘i'z)»llﬁ(o), AG3) — A?¢(1)+3;\%w(0), AGH —
1D — @ AGS = —A%(b(l) — 2019, AGO —
_)L-;’¢(1) — 3A%¢(0), AGD = )y @ 4y A6 —
A%¢(2)+2A11/,(1)+‘/,(0), A©:3) — )»%1[/(2)4—3)»%1//(1)%—
3@ ACH = ) 6@ — (D A6 = _)\%¢(2) —
221D — O A6.0) — _)L?¢(2) — 3)%(]5(1) — 3010
and Aa,(,o), Ab,(,o) and Ab,(lz) are given by determinant
Af replacing its third, sixth and fourth columns by the
column vector (—A?qb(o), —)ﬁqb(l)—%%q&(o), —k%d)(z)—
30390 =321, —y @, —y D, —y )T whilea,)

n+1

and br(lo+)1 are obtained from a,(lo) and b,(,o) by replacing

n with n + 1. Solutions (34) are too complicated and
therefore omitted here.

The parameters d|, d» excite the third-order RS solu-

tions to generate abundant wave structures. Next, we

discuss some special structures of the third-order RS

for the following four cases:

e When d; = d» = 0,a = 3/4, the strong interac-
tions of the third-order RS solutions are shown in
figures 10a and 10e.

e When d; = 100, dy = 0, a = 9/40, the weak inter-
actions of the third-order RS solutions 7, and V,, are
shown in figures 10b and 10f, from which we can see
that the third-order RS is split into three first-order
parallel RSs with two first-order bright RSs and one
first-order dark RS.

e When d, = 800, di = 0, a = 9/40, the weak inter-
actions of the third-order RS solutions 7,, and V,, are
shown in figures 10c and 10g. This shows a simi-
lar situation to figures 10b and 10f, while they have
different space structures.

e When d; = 100, d» = 400, a = 9/40, the weak
interactions of the third-order RS solutions /,, and
V, are shown in figures 10d and 10h, which shows
a similar situation to figures 10b, 10f and 10c, 10g.
However, they have different space distribution.

AR — )v%¢(l) + 201900, ACD = 36D 4 O,
ARSI — ¢(1), ACH — k%w(l) + 2)\1#,(0)’ A2 —
My D 4 O AR — () AGD — A%¢(2) +
22100 + 0O ABCD = 3,0@ 4 oD AGD = @)

Moreover, the dynamics of the third-order RS solu-
tions given by eq. (34) are considered. Figures 11 and 12
respectively show the numerical results of third-order
strong and weak RS solutions, which also display that
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o = N W

Figure 8. Numerical simulations of the second-order RS solutions I, and V, given by eq. (33) with the same parameters as
in figures 7a and 7c. (a) and (b) exact solution; (¢) and (d) unperturbed situation; (e) and (f) perturbed by the initial 2% noise;

(g) and (h) perturbed by the initial 5% noise.

Figure 9. Numerical simulations of separatable second-order RS solutions I, and v, given by eq. (33) with d; = 200 (see
figures 7b and 7d). (a)—(b) exact solution; (¢)—(d) unperturbed situation; (e)—(f) perturbed by the initial 2% noise; (g)—(h)

perturbed by the initial 5% noise.

the evolution without a noise agrees with the exact RS
solutions in a relatively longer time interval and exhibits
better stability.

Finally, we summarise a few wave features of discrete
RS solutions 7, and V,, for eq. (1) in table 1. The first
column in table 1 shows the order numbers of the solu-
tions, while the second, third, fifth and sixth columns
exhibit the powers of the polynomials involved in each
pair of solutions. The fourth and last columns give the
background levels of the solutions. From table 1, we
can easily obtain the following information: provided

the order N of the RS solutions is odd, the highest pow-
ers in the numerator polynomial of the solutions 7, and
Viyare 2N(2N — 1) —2 and 2N (2N — 1), respectively,
while both the highest powers in the denominator poly-
nomial are 2N (2N — 1), and the background levels of
the solutions /,, and V), are zero and —3/4, respectively.
On the other hand, supposing that the order N is even,
the highest powers in the numerator polynomial of the
solutions /,, and V,, are 2N(2N + 1) and 2N (2N +
1) — 2, respectively, while both the highest powers in the
denominator polynomial are 2N (2N + 1), and the back-
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Figure 10. Evolution plots of third-order RS solutions fn and \7,, with different parameters (a), (e) a = 3/4, A1 = 2,
di =dr =0;(b), ) a =9/40, Ay = 5/4,d; = 100, d>» = 0; (¢), (g) a = 9/40, Ay = 5/4,d; = 0, d = 800; (d), (h)
a =9/40, A1 = 5/4,d; = 100, d, = 400. The phrases FRS1, FRS, and FRS3 stand for three parallel first-order RSs which
are derived from the third-order RS solutions.

Figure 11. Numerical simulations of third-order interaction RS solutions I, and V, with same parameters as in figures 10a
and 10e. (a), (b) exact solution; (¢), (d) unperturbed situation; (e), (f) perturbed by the initial 2% noise; (g, h) perturbed by
the initial 5% noise.



45  Page 16 of 20

(2021) 95:45

Pramana — J. Phys.

Figure 12. Numerical simulations of the separatable third-order RS solutions in and \7,1 with di = 100, d» = 0 with the same
parameters as in figures 10b and 10f. (a), (b) exact solution; (¢), (d) unperturbed situation; (e), (f) perturbed by the initial 2%

noise; (g), (h) perturbed by the initial 5% noise.

Table 1. Main mathematical features of rational solutions 7, and V,, of order N.

N HPN of I, HPD of I, Background of 7, HPN of V, HPD of V,, Background of V,,
1 0 2 0 2 2 _3/4

2 6 6 3/4 4 6 0

3 10 12 0 12 12 —3/4

4 20 20 3/4 18 20 0

IN—1 2N@N-1)—2 2N@N-1) 0 IN@N — 1) INQN —1) —3/4

IN INCN + 1) INQN +1) 3/4 INAN+1)—2 2NQN+1) 0

Here, HPN and HPD stand for the highest powers in the numerator and denominator, respectively

ground levels of the solutions /,, and V,, are 3 /4 and zero,
respectively.

5.2 N-Soliton solutions on non-zero background of
eq. (1) via N-fold DT

In this section, we produce N-soliton solutions on non-
zero constant seed background in terms of determinants
for eq. (1) with 0 = 1 by means of the discrete N-
fold DT. In ref. [29], the N-fold DT of eq. (1) has been
constructed and N-soliton solutions of eq. (1) on zero
background has been given. NV-Soliton solutions on non-
zero constant seed background can also be similarly
expressed, which are similar to the sech-type soliton
solutions on zero background, but different from the
standard sech-type soliton solutions. The interaction
between this type of soliton solution and RS solution
on the same non-zero constant seed background will
be discussed in the next subsection through the dis-
crete generalised (2, N — 2)-fold DT. When ¢ = —1,
the process is similar and will not be discussed due

to its solutions possessing singularity. Substitution of
I, = a,V, = 0into (2) and (9) yields the following
basic solution:

Citj'eP!! + Crtler?
her2t |2

) = A — A —
on(A) (Cl 2 '(1"6'01’ +C 2
a a

(35)

with

1
— ﬁ(xz + 14+ vV=Qar+ 22— DHQar — A2 + 1)),

1(>M2+1
Ty = —
ST

—V=Qar+ 22 = 1)2ar — 22 + 1)),

1

m (2(12)\,2

p1 =

+(A% + DV —Qar + 22 — 1)2ar — A2 + 1)),



Pramana — J. Phys. (2021) 95:45

1
P2 = m(zazxz — A+ 1)

xv/—Qak + A2 — 1)2ar — A2 + 1)),

where C, C; are arbitrary constants,dy(k = 1,2, ..., N)
are free real coefficients.

From Theorem 1, we can derive N-soliton solutions
of eq. (1). When N = 1, the 1-fold explicit solutions of
eq. (1) can be given as
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5.3.1 Mixed interaction of one US and one first-order
RS via discrete generalised (2, 0)-fold DT. First, we
setthat A\ = a ++va?+1and Ay # a + Va2 +1
(e.g. A = —6). Then, we set the spectral parameter
A in eq. (35) as A = A; + &2, and expand the vector
function ¢, in (35) as Taylor series around ¢ = 0 by
choosing C —Cy = 1/e. Thus, a,(lo), b,(lo) and b,gl)
can be determined by the following system:

) { L2 e, ) =0, (38)
a+b ~ T, (A X2) =0,
) n+1
fn with
vt as | n@m T Lvihenbe - o aa? o _an” o _ A6
n e n e n P
Ay Ay Ay
i ME =A@ - 1)
n = ,
2092 _ 1 1 D3+mA2 1 A —4m=8 | 0.0
10A7(A7 — 1) cosh [2(1 + x%)mt +nln e +51In e 6AT(AT+ 1)
52 1 1 234m+2 | 1, 18RI A86AT—16n =32 | .0
o (=A7 + D{3A1 cosh |:2(1 + A%)mt + nln FTe— + 51n TS0 00+ 860 1671 =32 207 + 2}
n = ,
2 1 1 234mi+2 | 1 18I 8eal—16m =32 | .o
4r1(A1 + 1D/ (A1 — 1)? cosh |:2(1 + A%)171t +nln Fyv— + 5 1n T892y 186031 161, 32 647
(37)
where and
0 0 0 0
m=0I-dH@2-1 Mot ¢O g @
Af — )LIW( ) )\11#( ) —119© _)‘1¢( )
and A; > 2 is a real constant. It is worth noting that 2 Mbrn don A¥2a  Von |

solutions (37) are sech-type soliton solutions with the
same non-zero seed background as RS solutions in the
previous subsection. With the same method and process,
multisoliton solutions on the same non-zero seed back-
ground can also be obtained which are omitted here.
The mixed interaction solutions on the non-zero seed
background are discussed in the next subsection.

5.3 Discrete generalised (2, N — 2)-fold DT

In the previous two subsections, we have used the dis-
crete generalised (1, N — 1)-fold DT with only one
spectral parameter to derive the RS solutions of eq. (1),
and we have used the discrete N-fold DT with N spec-
tral parameters to derive the multisolutions of eq. (1)
on non-zero background. Next, we shall use the discrete
generalised (2, N —2)-fold DT with two spectral param-
eters to give some new interaction solutions of eq. (1).
We only discuss two cases: N = 2 (i.e. the generalised
(2,0)-fold DT) and N = 3 (i.e. the generalised (2, 1)-
fold DT).

MYon MWon —Aadon —A3Yan

where Aa,(,o), Ab,(,o) and Abﬁ,]) are given by the determi-
nant Aj replacing its second, fourth and third columns

by the column vector (—A%(;S(O),—l//(()),—)»%d)z,n,

—wz,n)T, while bfﬁgl is obtained from b,(lo) by replac-
ing n withn + 1.

Through the discrete generalised (2, 0)-fold DT, the
explicit exact solutions of eq. (1) can be obtained as

(1
~ a+b ~ 0
I”:T)n’ v, =0
dp

(39)
Taking appropriate parameters, figure 13 shows the
elastic interaction processes between one US and one
first-order RS. Figure 13a shows the elastic interaction
between one bright US and one dark first-order RS for
I,. Figure 13c shows the elastic interaction between
one bright US and one bright first-order RS for V.
Figure 13b displays the elastic interaction between one
dark US and one bright first-order RS for 7,,. Figure 13d
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Figure 13. Mixed interaction of one-soliton and first-order RS solution with parameters (a), (¢) a = 3/4, A1 =2, 1, = —6;

(b), (d) a = —3/4, A1 = 1/2, Ap = —6. The phrases DS, BS, DRS, BRS stand for dark soliton, bright soliton, dark first-order

RS, bright first-order RS, respectively.

5
1 -1 n

Figure 14. Numerical simulations of the interaction solutions I, and V,, with the same parameters as in figures 13a and 13c.
(a), (b) exact solutions; (¢), (d) unperturbed situation; (e), (f) perturbed by the initial 2% noise; (g), (h) perturbed by the initial

5% noise.

exhibits the elastic interaction between one dark US and
one dark first-order RS for V,,.

Figure 14 displays the numerical results by choosing
parameters as in figures 13a and 13c. Obviously, the
numerical results show that the 2% and 5% noises have
no effect on the evolution of 7, and V,, in (39) except I,
having a slight effect with 5%. These results show results
nearly similar to one first-order RS (see figure 4).

5.3.2 Mixed interaction of one US and second-order
RS via discrete generalised (2, 1)-fold DT. Similar to

the previous process, setting A = a + ~/a% + 1 and

A # a++/a? + 1 (e.g. . = 6), then we set the spectral
parameter A in eq. (35) as A = A1 + &2, and expand the

vector function ¢, in (35) as Taylor series around ¢ = 0
by choosing C1 = —C> = 1/¢. Thus, a,(,o), b,(lo) and b,(12)
can be determined by the following system:
T, 0y (1) = 0,
7,900 ) + T,V gy (1) = 0,
T (A2)gn(A2) =0,

(40)

with
) (2)
a,~ = AE ’ n AE ’ bn - Aé
3 3 3

and
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Figure 15. Mixed interaction solutions of one US and second-order RS with parameters (a), (¢) a = 3/4, A1 = 2, A, = —6,

di =0;(b),(d)a =3/4, A1 =2, Ay = —6,d; = 4. The phrase SRS stands for second-order RS.
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AGCD — )L%(f)(l) + 2k1¢(0), ACZD — )»1(15(1) + ¢(0)’
A23) — ¢(1), A2 — k%lﬂ(l) + 2)»11ﬁ(0), A2S —
)»llﬁ(l) + W(O), A2.0) — 1/,(1), AGD — )L“/,(l) + 1/,(0)’
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AGD — _)L1¢(1) _ d,(O)’ A& — —)L%d)(l) _ 2A1¢)(0),
AGO) — —)\?gb(l) — 3)\%¢(0), where Aa,(lo), Ab,(,o) and

Ab,(,z) are given by the determinant A replacing its
third, sixth and fourth columns by the column vector
(=118, =2} =339, —y 0, —y D, —13g2,,
—1//2,,,)T, while b,(gz | is obtained from bf,o) by replacing
n with n 4+ 1. Through discrete generalised (2, 1)-fold
DT, an explicit exact solution of eq. (1) can be obtained
as

a+ b,(12)

aton _ 50
0

n = Va 41)

Figure 15 shows the mixed interaction of one US
and second-order RS for solutions (41) with (40). Fig-
ures 15a and 15c display the strong elastic interaction
between one dark US and second-order RS. Figures 15b
and 15d display the strong interaction of one dark US
and two parallel first-order RSs which are derived from
the second-order RS by choosing non-zero parameter
di.

Here we need to explain that in §3, we know that
the MI does not occur when o = 1, the whole region
is MS region, and US, RS and their mixed interac-

tion solutions are all obtained in this stable region. In

this section, we have performed the numerical analy-
sis to check the stability of the derived solutions by
adding 2% to 5% noises to these solutions. From these
numerical simulation results, we can clearly see that
these solutions remain stable evolutions for a longer
period with 2% to 5% noises. That is to say, the sta-
bility of the numerical simulation of these solutions
is consistent with the result through MI analysis. In
addition, if we choose o —1, the derived solutions
possess singularities so that we omit discussing them
here.

It should be noted that the discrete generalised
(m, N —m)-fold DT can give more abundant interaction
structures of US and RS when 2 < m < N. We shall
not discuss these cases here.

6. Conclusions

In this paper, we have derived an integrable lattice hier-
archy (6) from a discrete matrix spectral problem (2),
and we have studied the second member eq. (1) with
o = 1(i.e., the higher-order self-dual network equation)
in this hierarchy, which may describe the propagation
of electrical signals in a ladder-type nonlinear self-
dual network. Starting from the non-zero seed solutions
(Io = a, Vo = 0), the MI of eq. (1) has been stud-
ied as shown in figure 2. Starting from Lax pairs (2)
and (9), an infinite number of conservation laws (20)
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have been explicitly given. We have constructed the dis-
crete generalised (m, N — m)-fold DT for eq. (1), from
which exact RS solutions, mixed interaction solutions of
US and RS and numerical simulation results have been
derived. In particular, one-, two- and three-RS solutions
in terms of determinant for eq. (1) have been derived
via the discrete generalised (1, N — 1)-fold DT and rel-
evant structures are shown graphically. Figure 3 exhibits
the first-order RS structures of solutions I,, and V,, with
N = 1, figures 4-6 show the dynamical evolutions of
the first-order RS structures, figure 7 shows the second-
order RS structures of solutions /,, and V,, with N = 2,
figures 8 and 9 exhibit the dynamical evolutions of the
second-order RS structures, figure 10 displays the third-
order RS structures of solutions /,, and V,, with N =3
and figures 11 and 12 display the dynamical evolutions
of the second-order RS structures. Table 1 shows a few
mathematical features of such RS solutions of eq. (1).
By applying the discrete generalised (2, N —2)-fold DT,
the mixed interaction solutions of US and RS have been
obtained and the interaction structures are shown graph-
ically. Figure 13 exhibits the interaction between one US
and first-order RS with N = 2, numerical simulation
results in figure 14 show the dynamical evolutions of
such mixed interaction structures and figure 15 exhibits
the interaction structures of one US and second-order
RS with N = 3.

In theory, it is perfectly possible to expand eigen-
functions at more spectral parameters to get more
new solutions of eq. (1) via the discrete generalised
(m, N —m)-fold DT. However, in fact, the relevant cal-
culations are very complex, and further investigation is
needed. Finally, it is important to note that eq. (1) and
new eq. (10) may provide the possibility for design-
ing more complicated electrical circuits in LC circuits,
and the results of this paper also provide a theoretical
basis for seeking the propagation of stable electrical sig-
nals in electrical circuits. We hope that eq. (1) and its
related results obtained in this paper might be helpful for
understanding the propagation phenomena of electrical
signals in practical application.
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