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Abstract. In this paper, the higher-order nonlinear self-dual network equation is investigated. Firstly, an integrable
lattice hierarchy associated with this equation is constructed from a discrete matrix spectral problem without the
denominator. Secondly, the condition of modulational instability for this equation is given. Thirdly, the infinitely
many conservation laws are constructed on the basis of its new Lax representation. Finally, the discrete generalised
(m, N − m)-fold Darboux transformation (DT) with non-zero constant as seed solution is used to derive new
rational soliton (RS) and mixed interaction solutions. As an application, RS solutions can be obtained by the
discrete generalised (1, N − 1)-fold DT (i.e., generalised (m, N −m)-fold DT with m = 1), and mixed interaction
solutions of the usual sech-type soliton (US) and RS can be derived by the discrete generalised (2, N − 2)-fold DT
(i.e., generalised (m, N − m)-fold DT with m = 2). We also perform the numerical simulations for such soliton
solutions to explore their dynamical behaviours. Results given in this paper may have some prospective applications
for understanding the propagation of electrical signals.
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1. Introduction

Nonlinear lattice equations (NLEs), which are obtained
by discretising the spatial variables of the nonlinear par-
tial differential equations (NPDEs) [1–3], can describe
many physical phenomena such as nonlinear optics,
plasma, physics, population dynamics, electric field,
magnetic fluid, etc. [4–13]. A typical example is that
nonlinear self-dual network equation can describe the
propagation of electrical signals in a nonlinear, lumped,
self-dual ladder-type network or nonlinear LC self-dual
circuits, as shown in figure 1, in which In and Vn are the
voltage and current in the nth capacitance and induc-
tance respectively [11–13]. Searching for explicit exact
solutions, especially soliton solutions of the NLEs, is
of great significance as they can be used for depicting
and explaining such nonlinear phenomena. Recently,
rogue wave, which is a new type of rational solu-
tions of some NPDEs [3], has been applied in some
discrete NLEs [14,15]. It is still a very meaningful

research work to explore rational solutions of NLEs,
which might be helpful for understanding the corre-
sponding phenomena in the fields of nonlinear science.
Some methods to construct explicit exact solutions of
NLEs have been developed such as the Hirota tech-
nique [16,17], the inverse scattering transformation [18],
the algebra-geometric method [19], the N -fold Darboux
transformation (DT) [20–24], etc. Among them, the N -
fold DT based on Lax pair is a powerful approach to
obtain multisoliton solutions without complex iterative
process. Very recently, a generalised (m, N − m)-fold
DT method has been proposed [23–27] and can be taken
as a generalisation of the N -fold DT. Compared with
the N -fold DT which can give usual sech-type soliton
(US) solutions, the generalised (m, N −m)-fold DT not
only expresses US solutions but also gives some rational
soliton (RS) solutions and mixed interaction solutions
between/among RS and US.

In the present paper, we shall apply the generalised
(m, N − m)-fold DT method to the integrable NLEs.
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Figure 1. A ladder-type nonlinear LC circuit (see ref. [12]).

As an example, we shall focus on the following higher-
order nonlinear self-dual network equation [28]:
⎧
⎪⎪⎨

⎪⎪⎩

In,t = (I 2
n + σ)[InV 2

n − InV 2
n−1 − In−1V 2

n−1
+ In+1V 2

n + σ(In+1 − In−1)],
Vn,t = (V 2

n + σ)[Vn I 2
n+1 + Vn+1 I 2

n+1 − Vn I 2
n

− Vn−1 I 2
n + σ(Vn+1 − Vn−1)],

(1)

where σ = ±1, In = I (n, t) and Vn = V (n, t)
are functions of discrete variable n and time variable
t , In,t = dIn/dt , Vn,t = dVn/dt . In fact, from the
physical meaning of In and Vn in the self-dual net-
work equation, we can easily know that the discrete
variable n is a real integer. In ref. [28], a discrete
Ablowitz–Ladik hierarchy with four potentials cover-
ing eq. (1) has been given, and the symplectic map and
Hamiltonian structures have been studied by means of
the nonlinearisation of Lax pairs related to this inte-
grable hierarchy including eq. (1). To be clear, eq. (1)
and nonlinear self-dual network equation belong to the
same hierarchy. Equation (1) is the second member in
this hierarchy, and so we call eq. (1) the higher-order
nonlinear self-dual network equation. Compared with
nonlinear self-dual network equation, eq. (1) possesses
eight more higher-order nonlinear terms in each equa-
tion which might own new properties. We know that
nonlinear self-dual network equation can describe the
physical phenomenon in a ladder-type electric circuit,
and the two nonlinearities in nonlinear self-dual network
equation denote the current-dependent inductance and
the voltage-dependent capacitance respectively [11–
13]. So it is noteworthy that eq. (1) contains more
nonlinear terms, which may help us to better describe
the propagation of electrical signals by such new non-
linear effects. Comparing with the classical nonlinear
self-dual network equation in refs [11–13], eq. (1) might
describe electrical signals’ propagation more accurately,
and physicists and engineers may design a more compli-
cated electronic circuit diagram by using eq. (1). Yuan et
al [29] have studied the elastic interaction of N -soliton
solutions of eq. (1) via the asymptotic analysis and N -
fold DT. However, as far as we know, the modulational
instability (MI), infinite conservation laws, the discrete
generalised (m, N −m)-fold DT, discrete RS solutions
and mixed interaction solutions of RS and US and their

dynamical behaviours of eq. (1) have not been consid-
ered before.

Therefore, in this paper, we shall further investigate
eq. (1) using the generalised (m, N −m)-fold DT tech-
nique. The rest of this paper is organised as follows:
In §2, we shall construct an integrable lattice hierarchy
associated with eq. (1). In §3, we investigate the MI in
the framework of eq. (1) with constants as seed solu-
tions. In §4, infinite conservation laws of eq. (1) will
be given. In §5, a discrete version of the generalised
(m, N −m)-fold DT for eq. (1) will be constructed, and
the higher-order RS and mixed interaction solutions are
exhibited from the seed solutions as In = a, Vn = 0
via the resulting DT. Meanwhile, we shall discuss their
dynamical behaviours and propagation characteristics
via numerical simulations. Finally, we give some con-
clusions and discussions.

2. An integrable lattice hierarchy associated with
eq. (1)

In this section, we shall construct an integrable lattice
hierarchy associated with eq. (1). It is noted that the Lax
pair of eq. (1) has been given in ref. [28], but it is difficult
to construct the discrete generalised (m, N−m)-fold DT
of eq. (1) because there is a denominator in its Lax pair.
To construct the discrete generalised (m, N − m)-fold
DT, we must construct a new Lax pair of eq. (1) with-
out the denominator in its Lax pair. For this reason, we
consider the following discrete matrix spectral problem:

Eϕn = Mnϕn, Mn =
⎛

⎜
⎝

InVn+λ −σ In+Vn
λ

−σλVn+In
1

λ
+ InVn

⎞

⎟
⎠ ,

(2)

where ϕn = (φ1,n, φ2,n)
T is a basic solution of eq. (2)

(T denotes the transpose of a vector), λ is the spectral
parameter, the discrete variable n is a real integer and the
shift operator E is defined by E f (n, t) = f (n+1, t) ≡
fn+1, E−1 f (n, t) = f (n − 1, t) ≡ fn−1. To obtain an
integrable lattice hierarchy associated with eq. (1), we
solve the following discrete zero-curvature equation:

Mn,tm = (EN (m)
n )Mn − MnN

(m)
n . (3)

Taking

N (m)
n =

(
An Bn
Cn Dn

)

=

⎛

⎜
⎜
⎜
⎝

m∑

j=−m
A( j)
n λ j

m−1∑

j=−m
B( j)
n λ j

−σ
m−1∑

j=−m
B( j)
n λ− j

m∑

j=−m
A( j)
n λ− j

⎞

⎟
⎟
⎟
⎠
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into eq. (3) and collecting the power coefficients of λ’s
various levels leads to the following recursion relations:

λm+1 : A(m)
n+1 − A(m)

n = 0,

λ j (1 ≤ j ≤ m):
InVn A

( j)
n+1 + A( j−1)

n+1 + In B
( j)
n+1 − σVnB

( j−1)
n+1

−InVn A
( j)
n −A( j−1)

n − In B
(− j)
n +σVnB

(− j−1)
n =0,

σ In A
(− j)
n − σ In A

( j)
n+1 − InVnB

( j)
n + InVnB

( j)
n+1

−Vn A
(− j−1)
n + Vn A

( j+1)
n+1 + B( j+1)

n+1 − B( j−1)
n = 0,

λ0: InVn A
(0)
n+1 + A(−1)

n+1 + In B
(0)
n+1 − σVnB

(−1)
n+1

−InVn A
(0)
n − A(−1)

n − In B
(0)
n + σVnB

(−1)
n = In,t Vn

+InVn,t , −In A
(0)
n + In A

(0)
n+1 + σ InVnB

(0)
n

−σ InVnB
(0)
n+1 + σVn A

(−1)
n − σVn A

(1)
n+1

−σ B(1)
n+1 + σ B(−1)

n = In,t ,

λ−1: In A
(1)
n − σ In A

(−1)
n+1 − InVnB

(−1)
n

+InVnB
(−1)
n+1 − Vn A

(0)
n + Vn A

(0)
n+1 + B(0)

n+1 − B(−2)
n

= Vn,t , InVn A
(−1)
n+1 + A(−2)

n+1 + In B
(−1)
n+1 − σVnB

(−2)
n+1

−InVn A
(−1)
n − A(−2)

n − In B
(1)
n + σVnB

(0)
n = 0,

λ j (−m ≤ j ≤ −2):
InVn A

( j)
n+1 + A( j−1)

n+1 + In B
( j)
n+1 − σVnB

( j−1)
n+1

−InVn A
( j)
n − A( j−1)

n − In B
(− j)
n + σVnB

(− j−1)
n = 0,

σ In A
(− j)
n − σ In A

( j)
n+1 − InVnB

( j)
n

+InVnB
( j)
n+1 − Vn A

(− j−1)
n + Vn A

( j+1)
n+1

+B( j+1)
n+1 − B( j−1)

n = 0,

λ−m−1: Vn A
(−m)
n+1 + B(−m)

n+1 − Vn A
(m)
n = 0. (4)

Now we choose A(m)
n = −A(−m)

n = 1
2 . The recursion

relations determine the other A( j)
n , A(− j)

n (−m ≤ j ≤
m + 1) and B( j)

n , B(− j)
n (−m − 1 ≤ j ≤ m) uniquely,

and the few coefficients are given as follows:

B(−m)
n+1 = Vn, B(m−1)

n = −σ In,

A(m−1)
n = −InVn−1, A(−m+1)

n = InVn−1,

B(m−2)
n = σ I 2

n Vn + σ I 2
n Vn−1 + Vn,

B(−m+1)
n+1 = −V 2

n In − In+1V
2
n − σ In,

A(m−2)
n = I 2

n VnVn−1 + I 2
n V

2
n−1 + In−1 InV

2
n−1

+ σ In−1 In + σVnVn−1,

A(−m+2)
n = −I 2

n VnVn−1 − I 2
n V

2
n−1

− In−1 InV
2
n−1 − σ In−1 In − σVnVn−1,

B(−m+2)
n+1 = I 2

n V
3
n + I 2

n V
2
n Vn−1

+ 2In In+1V
3
n + I 2

n+1V
3
n

+ I 2
n+1V

2
n Vn+1 + σ I 2

n Vn + σ I 2
n Vn−1

+ 2σ In In+1Vn + σV 2
n Vn−1

+ σV 2
n Vn+1 + Vn−1,

B(m−3)
n = −σ I 3

n V
2
n − 2σ I 3

n VnVn−1 − σ I 3
n V

2
n−1

− σ I 2
n In−1V

2
n−1 − σ I 2

n In+1V
2
n − I 2

n In−1

− I 2
n In+1 − InV

2
n − 2InVnVn−1

− In+1V
2
n − σ In+1,

A(m−3)
n = −I 3

n V
2
n Vn−1 − 2I 3

n VnV
2
n−1 − I 3

n V
3
n−1

− I 2
n In−1VnV

2
n−1 − 2I 2

n In−1V
3
n−1

− I 2
n In+1V

2
n Vn−1 − In I

2
n−1Vn−2V

2
n−1

− In I
2
n−1V

3
n−1 − σ I 2

n In−1Vn

− 2σ I 2
n In−1Vn−1 − σ I 2

n In+1Vn−1

− σ In I
2
n−1Vn−2 − σ In I

2
n−1Vn−1

− σ InV
2
n Vn−1 − 2σ InVnV

2
n−1

− σ InVn−2V
2
n−1 − σ In−1VnV

2
n−1

− σ In+1V
2
n Vn−1 − InVn−2 − In−1Vn

− In+1Vn−1,

A(−m+3)
n = I 3

n V
2
n Vn−1 + 2I 3

n VnV
2
n−1

+ I 3
n V

3
n−1 + I 2

n In−1VnV
2
n−1 + 2I 2

n In−1V
3
n−1

+ I 2
n In+1V

2
n Vn−1 + In I

2
n−1Vn−2V

2
n−1

+ In I
2
n−1V

3
n−1 + σ I 2

n In−1Vn

+ 2σ I 2
n In−1Vn−1 + σ I 2

n In+1Vn−1

+ σ In I
2
n−1Vn−2 + σ In I

2
n−1Vn−1

+ σ InV
2
n Vn−1 + 2σ InVnV

2
n−1

+ σ InVn−2V
2
n−1

+ σ In−1VnV
2
n−1 + σ In+1V

2
n Vn−1

+ InVn−2 + In−1Vn + In+1Vn−1, . . . ,

A( j−1)
n = (E − 1)−1(−InVn A

( j)
n+1 − In B

( j)
n+1

+ σVnB
( j−1)
n+1 + InVn A

( j)
n + In B

(− j)
n

− σVnB
(− j−1)
n ) (1 ≤ j ≤ m + 1),

A(− j+1)
n = −A( j−1)

n (2 ≤ j ≤ m + 1),

B( j−1)
n = σ In A

(− j)
n − σ In A

( j)
n+1 − InVnB

( j)
n

+ InVnB
( j)
n+1 − Vn A

(− j−1)
n + Vn A

( j+1)
n+1

+ B( j+1)
n+1 (1 ≤ j ≤ m),

B( j+1)
n+1 =−σ In A

(− j)
n +σ In A

( j)
n+1
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+ InVnB
( j)
n − InVnB

( j)
n+1 + Vn A

(− j−1)
n

− Vn A
( j+1)
n+1 + B( j−1)

n (−m − 1 ≤ j ≤ −2).

(5)

The discrete zero-curvature equation (3) gives rise to
the following integrable lattice hierarchy:

{
In,tm = σ InVnB

(0)
n − σ InVnB

(0)
n+1 + σVn A

(−1)
n − σVn A

(1)
n+1 − σ B(1)

n+1 + σ B(−1)
n − In A

(0)
n + In A

(0)
n+1,

Vn,tm = σ In A
(1)
n − σ In A

(−1)
n+1 − InVnB

(−1)
n + InVnB

(−1)
n+1 − Vn A

(0)
n + Vn A

(0)
n+1 + B(0)

n+1 − B(−2)
n .

(6)

When m = 1, using recursion relations (4) with (5),
system (6) reduces to the famous nonlinear self-dual
network equation [11–13]:
{
In,t1 = (I 2

n + σ)(Vn−1 − Vn),
Vn,t1 = (V 2

n + σ)(In − In+1),
(7)

which is the same as that in ref. [28], and the time part
of its Lax pair is given by

N (1)
n =

⎛

⎜
⎜
⎝

A(1)
n λ+A(0)

n + A(−1)
n

λ
B(0)
n + B(−1)

n

λ

−σ(B(−1)
n λ+B(0)

n ) A(−1)
n λ+A(0)

n + A(1)
n

λ

⎞

⎟
⎟
⎠

=
⎛

⎜
⎝

λ
2 − InVn−1 − 1

2λ
−σ In + Vn−1

λ

−σλVn−1 + In −λ

2
− InVn−1 + 1

2λ

⎞

⎟
⎠ .

(8)

When m = 2, system (6) reduces to eq. (1), whose time
part of the Lax pair is given by

N (2)
n =

(
An Bn

Cn Dn

)

=

⎛

⎜
⎜
⎜
⎜
⎝

2∑

j=−2
A( j)
n λ j

1∑

j=−2
B( j)
n λ j

−σ
1∑

j=−2
B( j)
n λ− j

2∑

j=−2
A( j)
n λ− j

⎞

⎟
⎟
⎟
⎟
⎠

, (9)

with

An = λ2

2
− λInVn−1 + I 2

n VnVn−1

+I 2
n V

2
n−1 + In In−1V

2
n−1 + σ In In−1

+σVnVn−1 + InVn−1
1

λ
− 1

2λ2 ,

Bn = −σλIn + σ I 2
n Vn + σ I 2

n Vn−1 + Vn

−(σ In−1 + InV
2
n−1 + In−1V

2
n−1)

1

λ
+ Vn−1

1

λ2 ,

Cn = −σλ2Vn−1 + λ(σ InV
2
n−1 + σ In−1V

2
n−1 + In−1)

−σ I 2
n Vn − Vn − I 2

n Vn−1 + In
1

λ
,

Dn = −1

2
λ2 + λInVn−1 + σ In−1 In

+σVn−1Vn + I 2
n Vn−1Vn + I 2

n V
2
n−1

+In−1 InV
2
n−1 − InVn−1

1

λ
+ 1

2λ2 .

Here we need to point out that eq. (1) has more nonlin-
ear terms than nonlinear self-dual network equation (7),
which may possess new properties. The new Lax pairs
(2) and (9) do not contain the denominator different from
the one in ref. [28], which is more convenient to con-
struct its DT. Therefore in what follows, we shall further
investigate eq. (1) and discuss its relevant properties.

When m = 3, system (6) reduces to the following
new third-order nonlinear self-dual network equation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

In,t3 = (I 2
n + σ)[−I 2

n V
3
n − I 2

n V
2
n Vn−1+ I 2

n VnV
2
n−1+ I 2

n V
3
n−1+2In In−1V 3

n−1 − 2In In+1V 3
n + I 2

n−1Vn−2V 2
n−1

+I 2
n−1V

3
n−1 − I 2

n+1V
3
n − I 2

n+1V
2
n Vn+1 + σ(2In In−1Vn−1 − 2In In+1Vn + I 2

n−1Vn−2 + I 2
n−1Vn−1

−I 2
n+1Vn − I 2

n+1Vn+1 − V 2
n Vn−1 − V 2

n Vn+1 + VnV 2
n−1 + Vn−2V 2

n−1) + Vn−2 − Vn+1],
Vn,t3 = (V 2

n + σ)[I 3
n V

2
n + 2I 3

n VnVn−1 + I 3
n V

2
n−1 + I 2

n In−1V 2
n−1 + I 2

n In+1V 2
n − In I 2

n+1V
2
n − I 3

n+1V
2
n

−2I 3
n+1VnVn+1− I 3

n+1V
2
n+1− I 2

n+1 In+2V 2
n+1+σ(I 2

n In−1+ I 2
n In+1 − In I 2

n+1+2InVnVn−1+ InV 2
n−1

+In−1V 2
n−1 − I 2

n+1 In+2 − 2In+1VnVn+1 − In+1V 2
n+1 − In+2V 2

n+1) + In−1 − In+2].

(10)

Thus, we can give a new more higher-order nonlin-
ear self-dual network equation which includes 40 more
nonlinear terms in each equation of (10) relative to
the classical nonlinear self-dual network equation and
eq. (1). Similarly, eq. (10) may help to design more com-
plicated electrical circuits in LC circuits which might
describe more complex physical phenomena. Accord-
ingly, the time part of the Lax pair for (10) is as
follows:
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N (3)
n =

(
An Bn
Cn Dn

)

=

⎛

⎜
⎜
⎜
⎝

3∑

j=−3
A( j)
n λ j

2∑

j=−3
B( j)
n λ j

−σ
2∑

j=−3
B( j)
n λ− j

3∑

j=−3
A( j)
n λ− j

⎞

⎟
⎟
⎟
⎠

(11)

with

An = (I 2
n VnVn−1 + I 2

n V
2
n−1 + In In−1V

2
n−1

+σ In In−1 + σVnVn−1)λ

−(I 2
n VnVn−1 + I 2

n V
2
n−1 + In In−1V

2
n−1

+σ In In−1 + σVnVn−1)
1

λ
− I 3

n V
3
n−1 − Vn In−1

−InVn−2− In+1Vn−1− In I
2
n−1Vn−2V

2
n−1

−In+1 I
2
n Vn−1V

2
n − I 2

n Vn In−1V
2
n−1−2I 3

n VnV
2
n−1

−InVn−1λ
2 − 2I 2

n In−1V
3
n−1 + InVn−1

1

λ2

−2σ I 2
n In−1Vn−1 − 2σ InVnV

2
n−1

−σ In+1Vn−1V
2
n −σ In+1 I

2
n Vn−1−σ InVn−2V

2
n−1

−σ InV
2
n Vn−1 − σ I 2

n Vn In−1 − σ In I
2
n−1Vn−1

−σ In I
2
n−1Vn−2 − σVn In−1V

2
n−1 − In I

2
n−1V

3
n−1

−I 3
n V

2
n Vn−1 − 1

2λ3 + 1

2
λ3,

Bn = −σ Inλ
2 + (σ I 2

n Vn + σ I 2
n Vn−1 + Vn)λ

−σ I 3
n V

2
n − 2σ I 3

n VnVn−1 − σ I 3
n V

2
n−1

−σ I 2
n In−1V

2
n−1 − σ I 2

n In+1V
2
n − I 2

n In−1

−I 2
n In+1 − InV

2
n − 2InVnVn−1 − In+1V

2
n

−σ In+1 + (I 2
n VnV

2
n−1 + I 2

n V
3
n−1

+2In In−1V
3
n−1 + I 2

n−1Vn−2V
2
n−1 + I 2

n−1V
3
n−1

+2σ In In−1Vn−1 + σ I 2
n−1Vn−2 + σ I 2

n−1Vn−1

+σVnV
2
n−1 + σVn−2V

2
n−1 + Vn−2)

1

λ

+ (−InV
2
n−1− In−1V

2
n−1−σ In−1)

1

λ2 +Vn−1
1

λ3 ,

Cn = In
1

λ2 − (I 2
n Vn + I 2

n Vn−1 + σVn)
1

λ
+ I 3

n V
2
n

+2I 3
n VnVn−1 + I 3

n V
2
n−1 + I 2

n In−1V
2
n−1

+I 2
n In+1V

2
n + σ I 2

n In−1 + σ I 2
n In+1 + σ InV

2
n

+2σ InVnVn−1+σ In+1V
2
n + In+1−(σ I 2

n VnV
2
n−1

+σ I 2
n V

3
n−1 + 2σ In In−1V

3
n−1 + σ I 2

n−1Vn−2V
2
n−1

+σ I 2
n−1V

3
n−1 + 2In In−1Vn−1 + I 2

n−1Vn−2

+I 2
n−1Vn−1 + VnV

2
n−1 + Vn−2V

2
n−1 + σVn−2)λ

+(σ InV
2
n−1+σ In−1V

2
n−1+ In−1)λ

2−σVn−1λ
3,

Dn = −2σ I 2
n In−1Vn−1 − 2σ InVnV

2
n−1 − InVn−1

1

λ2

−2I 3
n VnV

2
n−1 − 2I 2

n In−1V
3
n−1 − σ In+1Vn−1V

2
n

−σ In+1 I
2
n Vn−1 − σ InV

2
n Vn−1

−σVn In−1V
2
n−1−σ In I

2
n−1Vn−2−σ In I

2
n−1Vn−1

−σ InVn−2V
2
n−1 − In I

2
n−1V

3
n−1 − I 3

n V
2
n Vn−1

−σ I 2
n Vn In−1−(I 2

n VnVn−1+ I 2
n V

2
n−1+ In In−1V

2
n−1

+σ In In−1+σVnVn−1)λ+(I 2
n VnVn−1+ I 2

n V
2
n−1

+In In−1V
2
n−1+σ In In−1+σVnVn−1)

1

λ
− I 3

n V
3
n−1

−Vn In−1 − InVn−2 − In+1Vn−1

+ 1

2λ3 − In I
2
n−1Vn−2V

2
n−1 − In+1 I

2
n Vn−1V

2
n

−I 2
n Vn In−1V

2
n−1 + InVn−1λ

2 − 1

2
λ3.

3. Modulational instability

The modulational instability (MI) may be the main cause
of localised waves. In this section, we investigate the MI
for eq. (1) starting from seed solutions I0 = a, V0 = b,
adding small amplitude to its seed solution as In = I0 +
εFn(t) and Vn = V0 + εGn(t), where Fn = Fn(t) and
Gn = Gn(t) are the perturbation functions of n and
t , ε is an infinitesimal amplitude of the perturbation.
Substituting In and Vn into eq. (1) yields the real-valued
linearised perturbation coupled system

Fn,t + 4ab(a2 + σ)(Gn−1 − Gn)

+(a2 + σ)(b2 + σ)(Fn−1 − Fn+1) = 0,

Gn,t + 4ab(b2 + σ)(Fn − Fn+1)

−(a2 + σ)(b2 + σ)(Gn+1 − Gn−1) = 0. (12)

We take Fn = Pegt+ikn and Gn = Qegt+ikn , where
P and Q are real constant amplitudes of the perturba-
tion eigenmode, g denotes the frequency and k is the
arbitrary real wave number of the small perturbations.
Similar to ref. [27], substituting Fn and Gn into eq. (12),
it can produce one system of coupled linear equations
for P and Q. The system has non-trivial solutions only
when g, k satisfy a dispersion relation, namely

g = 8

√

−a2b2(a2 + σ)(b2 + σ) sin2
(
k

2

)

+2i(a2 + σ)(b2 + σ) sin k. (13)

We define the MI gain G = |�(g)|, where � repre-
sents the real part. Figure 2 displays the MI gain map
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Figure 2. (a), (c) MI gain G vs. k and a when b = 0, σ = 1;
(b), (d) MI gain G vs. k and a when b = 2, σ = −1. MI
and MS denote modulational instability and modulational
stability.

vs. k and a. When σ = 1, for all possible values of
b, the expression g in eq. (13) is pure imaginary and
the MI gain G is equal to zero, which implies that the
MI does not occur. Figures 2a and 2c show one region
which is modulation stability (MS) when b = 0 and
σ = 1. When σ = −1, the expression g in eq. (13) has
real parts and the MI gain G is non-zero, which implies
that there are two distinctive regions including MI and
MS, as shown in figures 2b and 2d, which show two dis-
tinctive regions including MI and MS when b = 2 and
σ = −1. In MI regions, small perturbations are unsta-
ble and can be amplified exponentially, while in the MS
regions they are stable and do not grow up.

According to ref. [30], for the sake of discussion, we
set A = −a2b2(a2 + σ)(b2 + σ) sin2(k/2). Then two
cases will be discussed as follows:

• For σ = 1, for all possible parameter values, A ≤ 0,
that is to say, the MI gain G = 0, which implies
that the MI does not occur, and the whole region is
stable. In this case, the US and RS excitation can
occur in the MS region which are confirmed in the
subsequent RS solutions and numerical simulation
of this paper.

• For σ = −1, if k �= 2mπ , m ∈ Z , |a| > 1, |b| < 1
or |a| < 1, |b| > 1, then A > 0, which implies that
the MI occurs. For the other cases, we have A ≤ 0,
which implies that the MI does not occur. Especially,
for k = 2mπ or a = ±1, then A = 0, the regions in
these lines are MS.

4. Conservation laws of eq. (1)

Existence of conservation laws plays an important role
in proving their integrability for integrable system [31].
In this part, we shall derive the infinitely many conser-
vation laws for eq. (1). Some physical properties such as
energy, momentum and Hamiltonian conservation laws
can be described by the first three conservation laws.

From Lax pairs (2) and (9), we can get

ϕ1,n+1 = (λ + InVn)ϕ1,n +
(
Vn
λ

− σ In

)

ϕ2,n,

ϕ2,n+1 = (In − σλVn)ϕ1,n +
(

1

λ
+ InVn

)

ϕ2,n. (14)

Setting θn = ϕ2,n/ϕ1,n , we obtain

ϕ1,n+1

ϕ1,n
= λ + InVn +

(
Vn
λ

− σ In

)

θn,

ϕ2,n+1

ϕ2,n
= In − σλVn

θn
+ 1

λ
+ InVn, (15)

from which we have
(
Vn
λ

− σ In

)

θnθn+1 + (λ + InVn)θn+1

−
(

1

λ
+ InVn

)

θn − In + σλVn = 0. (16)

Suppose that

θn =
∞∑

j=0

θ
( j)
n

λ j
, (17)

and substitution of (17) into (16) leads to the following
recursion relations:

θ(0)
n = −σVn−1,

θ(1)
n = In−1(σV

2
n−1 + 1),

θ(2)
n = −(σV 2

n−1 + 1)(I 2
n−1Vn−2 + I 2

n−1Vn−1

+σVn−2),

θ(3)
n = (σV 2

n−1 + 1)(I 3
n−1(Vn−2 + Vn−1)

2

+In−2 I
2
n−1(V

2
n−2 + σ)

+σ In−1Vn−2(Vn−2 + 2Vn−1)

+In−2(σV
2
n−2 + 1)), (18)

θ(4)
n = −(σV 2

n−1 + 1)(I 4
n−1(Vn−2 + Vn−1)

3

+2In−2 I
3
n−1(V

2
n−2 + σ)(Vn−2 + Vn−1)

+I 2
n−1(I

2
n−2(V

2
n−2 + σ)(Vn−3 + Vn−2)

+σV 3
n−2 + σ(Vn−3 + 4Vn−1)V

2
n−2

+3σVn−2V
2
n−1+Vn−3)

+2In−1 In−2(σV
2
n−2+1)(Vn−2+Vn−1)
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+I 2
n−2(σV

2
n−2+1)(Vn−3+Vn−2)

+(Vn−3 + Vn−1)V
2
n−2 + σVn−3).

Equations (9) and (15) lead to
[

ln

(

λ + InVn +
(
Vn
λ

− σ In

)

θn

)]

t

= (E − 1)(An + Bnθn), (19)

where

An = λ2

2
− λInVn−1 + I 2

n VnVn−1

+I 2
n V

2
n−1 + In In−1V

2
n−1 + σ In In−1

+σVnVn−1 + InVn−1
1

λ
− 1

2λ2 ,

Bn = −σλIn + σ I 2
n Vn + σ I 2

n Vn−1

+Vn − (σ In−1 + InV
2
n−1 + In−1V

2
n−1)

1

λ

+Vn−1
1

λ2 .

Substituting (19) into (19) and equating the same pow-
ers of λ in (19) generate the infinitely many conservation
laws for eq. (1), and the first three conservation laws are
listed as follows:

(Tk)t = (E − 1)(Xk), (k = 1, 2, 3) (20)

with

T1 = In(Vn + Vn−1),

X1 = (V 2
n−1 + σ)(In I

2
n−1(Vn−2 + Vn−1)

+In−1(I
2
n +σ)(Vn+Vn−1)+σ In(Vn−2+Vn−1)),

T2 = −1

2
I 2
n (Vn + Vn−1)

2 − In−1 In(V
2
n−1 + σ)

−σVnVn−1,

X2 = −I 2
n (Vn + Vn−1)(V

2
n−1 + σ)

×(I 2
n−1(Vn−2 + Vn−1) + σVn−2) − In(I

2
n−1 + σ)

×(V 2
n−1 + σ)(In−1(Vn−2 + Vn−1)

2

+In−2(V
2
n−2 + σ)) − I 2

n−1(σV
2
n−1 + 1)

×(VnVn−2 + VnVn−1 + V 2
n−1 + σ)

−(VnVn−2 + σ)V 2
n−1 − σVnVn−2 − 1

2
,

T3 = 1

3
I 3
n (Vn + Vn−1)

3 + In−1 I
2
n (V 2

n−1 + σ)

×(Vn+Vn−1)+ In(I
2
n−1(V

2
n−1+σ)(Vn−2+Vn−1)

+σ(Vn + Vn−2)V
2
n−1 + σV 2

n Vn−1 + Vn−2)

+In−1Vn(σV
2
n−1 + 1),

X3 = (V 2
n−1 + σ)(In I

4
n−1(Vn−2 + Vn−1)

3

+I 3
n−1(Vn−2+Vn−1)(I

2
n (Vn−2+Vn−1)(Vn+Vn−1)

+In−2 In(2V
2
n−2 + 2σ) + σVnVn−2

+σVnVn−1 + σV 2
n−1 + 1)

+I 2
n−1(In−2 I

2
n (V 2

n−2 + σ)(Vn + Vn−1)

+In(I
2
n−2(V

2
n−2 + σ)(Vn−3 + Vn−2) + σV 3

n−2

+σ(Vn−3 + 4Vn−1)V
2
n−2 + 4σVn−2V

2
n−1

+σV 3
n−1 + Vn−3) + In−2Vn(σV

2
n−2 + 1))

+In−1(σ I 2
n Vn−2(Vn−2 + 2Vn−1)(Vn + Vn−1)

+2In In−2(σV
2
n−2 + 1)(Vn−2 + Vn−1) + VnV

2
n−2

+(2VnVn−1 + V 2
n−1 + σ)Vn−2 + σVn−1)

+In−2 I
2
n (σV 2

n−2 + 1)(Vn + Vn−1)

+In(I
2
n−2(σV

2
n−2 + 1)(Vn−3 + Vn−2)

+(Vn−3 + Vn−1)V
2
n−2 + Vn−2V

2
n−1 + σVn−3)

+In−2Vn(V
2
n−2 + σ)),

where Tk and Xk are the conserved densities and asso-
ciated fluxes, respectively. The first three conservation
laws represent the energy, momentum and Hamiltonian
laws, respectively.

5. Discrete generalised (m, N − m)-fold DT

In this section, we shall construct the generalised
(m, N − m)-fold DT of eq. (1) based on the basis of
Lax pair (2) and (9). First, we assume that ϕn(λi ) =
(φn(λi ), ψn(λi ))

T (i = 1, 2, . . . ,m) arem distinct solu-
tions of (2) and (9) for m spectral parameters λi (i =
1, 2, . . . ,m) and the initial solutions In, Vn of eq. (1).
We introduce the following special gauge transforma-
tion:

ϕ̃n = Tnϕn

=

⎛

⎜
⎜
⎜
⎝

λN +
N−1∑

j=0
a( j)
n λ j

N−1∑

j=0
b( j)
n λ j

−σ
N−1∑

j=0
b( j)
n λN− j 1 +

N−1∑

j=0
a( j)
n λN− j

⎞

⎟
⎟
⎟
⎠

ϕn ,

(21)

which ensures that ϕ̃n satisfies E ϕ̃n = M̃nϕ̃n and ϕ̃n,t =
˜

N (2)
n ϕ̃n . From the knowledge of DT, we know that Mn

and N (2)
n have the same forms with M̃n and

˜

N (2)
n under

transformations M̃n = Tn+1MnT−1
n and

˜

N (2)
n = (Tn,t +

TnN
(2)
n )T−1

n , except replacing the old potentials In , Vn
with new ones Ĩn , Ṽn . It should be noted that N is a
positive integer in (21), and a( j)

n and b( j)
n , which are
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the functions of variables n and t , can be determined by
the following linear algebraic system with 2N equations
(N = m + ∑n

i=1 Mi , i = 1, 2, . . . ,m):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (0)
n (λi )ϕ

(0)
n (λi ) = 0,

T (0)
n (λi )ϕ

(1)
n (λi ) + T (1)

n (λi )ϕ
(0)
n (λi ) = 0,

T (0)
n (λi )ϕ

(2)
n (λi ) + T (1)

n (λi )ϕ
(1)
n (λi )

+ T (2)
n (λi )ϕ

(0)
n (λi ) = 0,

· · · · · · ,

Mi∑

j=0

T ( j)
n (λi )ϕ

(Mi− j)
n (λi ) = 0,

(22)

where T (i)
n is derived by

Tn(λi + ε) = T (0)
n + T (1)

n ε + · · · + T (Mi )
n εMi ,

while ϕ
(k)
n is determined by

ϕn(λi + ε) = ϕ(0)
n (λi ) + ϕ(0)

n (λi )ε
2 + ϕ(0)

n (λi )ε
4 + · · ·

and

ϕ(k)
n (λi ) = 1

k!
∂k

∂λki

ϕn(λi ).

According to the above analysis and discrete version
of generalised (m, N −m)-fold DT in refs [24–27], we
can verify that eq. (1) admits the following discrete gen-
eralised (m, N − m)-fold DT:

Theorem 1. Let ϕi (λi ) = (φi (λi ), ψi (λi ))
T be col-

umn vector solutions with distinct spectral parameters
λi (i = 1, 2, . . . ,m) of (2) and (9) and (In, Vn) is the
same seed solutions of eq. (1), as considered above,
then the generalised perturbation (m, N − m)-fold DT
for eq. (1) is given by

Ĩn = In + σb(N−1)
n

a(0)
n

, Ṽn = b(0)
n+1 + Vna

(0)
n+1 (23)

with

a(0)
n = �a(0)

n

�
ε(m)
N

, b(0)
n = �b(0)

n

�
ε(m)
N

, b(N−1)
n = �b(N−1)

n

�
ε(m)
N

,

�
ε(m)
N = det([�(1), �(2), . . . , �(m)]T ), (24)

where �(i) = (�
(i)
j,s)2(Mi+1)×2N , in which �

(i)
j,s(1 ≤

j ≤ 2Mi + 2, 1 ≤ s ≤ N , i = 1, 2, . . . ,m) are given
by the following formulae:

�
(i)
j,s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∑

k=0

Ck
N−sλ

N−s−k
i φ( j−1−k) for 1 ≤ j ≤ Mi + 1, 1 ≤ s ≤ N ,

j−1∑

k=0

Ck
2N−sλ

2N−s−k
i ψ( j−1−k) for 1 ≤ j ≤ Mi + 1, N + 1 ≤ s ≤ 2N ,

j−(N+1)∑

k=0

Ck
s λ

s−k
i ψ( j−1−N−k) for Mi + 2 ≤ j ≤ 2(Mi + 1), 1 ≤ s ≤ N ,

− σ

j−(N+1)∑

k=0

Ck
s−Nλs−N−k

i φ( j−N−1−k) for Mi + 2 ≤ j ≤ 2(Mi + 1), N + 1 ≤ s ≤ 2N ,

and �a(0)
n , �b(0)

n and �b(N−1)
n are given by the deter-

minant �ε(m)
N replacing its N th, (2N )th and (N + 1)th

columns by the column vector b = (b j )2N×1 with

b j =

⎧
⎪⎪⎨

⎪⎪⎩

−
j−1∑

k=0

Ck
NλN−k

i φ( j−1−k) for 1≤ j ≤Mi+1,

− ψ( j−N−1) for Mi + 2 ≤ j ≤ 2(Mi + 1).

Here a(0)
n+1 and b

(1)
n+1 are obtained from a(0)

n and b(1)
n by

replacing n with n + 1.

Remark 1. Here m denotes the number of the distinct
spectral parameters, N denotes the order number and
N −m denotes the sum of the order number of the high-
est derivative of the Darboux matrix Tn or the vector
eigenfunction ϕn . Notice that when m = N , the N -fold
DT is a special case of the discrete generalised (N , 0)-
fold DT, which can be used to construct multisoliton
solutions in ref. [29]. When m = 1, Theorem 1 can
reduce to the discrete generalised (1, N − 1)-fold DT,
which is used to get high-order RS solutions of eq. (1).
When m = 2, Theorem 1 can reduce to the discrete
generalised (2, N − 2)-fold DT, which is used to obtain
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mixed interaction solutions of US and RS, and it should
be noted that these new solutions are not singular. For
other cases, new DTs can also be derived, which we
are not discussing here. Next, we shall use the discrete
generalised (1, N − 1)-fold and (2, N − 2)-fold DTs
to construct RS solutions and mixed interaction solu-
tions of US and RS for eq. (1) from the non-zero seed
solutions.

5.1 Discrete generalised (1, N − 1)-fold DT

In what follows, we produce rational solutions in terms
of determinants introduced above for eq. (1) with σ = 1
by means of the discrete generalised (1, N−1)-fold DT.
For the case σ = −1, the process is similar and will not

be discussed due to its solutions possessing singularity.
Substitution of In = a, Vn = 0 into (2) and (9) yields
the following basic solution:

ϕn(λ) =
(

C1τ
n
1 eρ1t+θ(ε) + C2τ

n
2 eρ2t

C1
λ − τ1

a
τ n1 eρ1t+θ(ε) + C2

λ − τ2

a
τ n2 eρ2t

)

(25)

with

τ1 = 1

2λ
(λ2+1+

√
−(2aλ+λ2 − 1)(2aλ − λ2+1)),

τ2 = 1

2λ
(λ2+1 −

√
−(2aλ+λ2 − 1)(2aλ − λ2+1)),

ρ1 = 1

2λ2 (2a2λ2 + (λ2 + 1)

×
√

−(2aλ + λ2 − 1)(2aλ − λ2 + 1)),

ρ2 = 1

2λ2 (2a2λ2 − (λ2 + 1)

×
√

−(2aλ + λ2 − 1)(2aλ − λ2 + 1)),

θ(ε) =
√

−(2aλ + λ2 − 1)(2aλ − λ2 + 1)

N∑

k=1

dkε
2k,

whereC1,C2 are arbitrary constants,dk(k = 1, 2, . . . , N )

are free real coefficients and ε is an artificially intro-
duced small parameter.

Next, we fix the spectral parameter in eq. (35) as λ =
λ1 + ε2 with λ1 = a + √

a2 + 1, and expand vector
function ϕn in eq. (35) into the Taylor series around ε =
0, explicitly calculating the coefficients of the expansion
in ϕn . In particular, choosing C1 = −C2 = 1/ε, a =
3/4, (i.e., λ1 = 2), we have

ϕ(ε2) =
∞∑

j=0

ϕ
( j)
1 ε2 j = ϕ(0) + ϕ(1)ε2 + ϕ(2)ε4 + ϕ(3)ε6

+ · · · , (26)

where

ϕ(0)
n =

(
φ(0)

ψ(0)

)

=
(

5

4

)n √
15

60
e(9/16)t

(
3ξ

3ξ − 40

)

, (27)

ϕ(1)
n =

(
φ(1)

ψ(1)

)

=
(

5

4

)n √
15

38400
e(9/16)t

(
3ξ3 + 112ξ + 19200t

3ξ3 − 120ξ2 + 1712ξ + 19200t − 12160

3

)

, (28)

ϕ(2)
n =

(
φ(2)

ψ(2)

)

=
(

5

4

)n √
15

2211840000
e(9/16)t

⎛

⎝
81ξ5 + 30240ξ3 + 5184000ξ2t − 5496576ξ + 326246400t
81ξ5 − 5400ξ4 + 174240ξ3 + 5184000ξ2t − 138240000ξ t

−1900800ξ2 + 1247846400t − 9336576ξ + 43059200

⎞

⎠ ,

(29)

where ξ = 25t + 8n and the remaining ϕ
( j)
n ( j ≥ 3) are

omitted here.
According to the discrete generalised (1, N − 1)-fold

DT in Theorem 1, we shall discuss three cases: N = 1, 2
and 3.

5.1.1 First-orderRS solutions anddynamical behaviours.
For N = 1, according to Theorem 1, based on the
discrete generalised (1, 0)-fold DT, we can give the first-
order RS solutions of eq. (1) as

Ĩn = a + b(0)
n

a(0)
n

, Ṽn = b(0)
n+1, (30)

where

a(0)
n = �a(0)

n

�ε
1

, b(0)
n = �b(0)

n

�ε
1

with

�ε
1 =

∣
∣
∣
∣

φ(0) ψ(0)

λ1ψ
(0) −λ1φ

(0)

∣
∣
∣
∣ ,

�a(0)
n =

∣
∣
∣
∣
−λ1φ

(0) ψ(0)

−ψ(0) −λ1φ
(0)

∣
∣
∣
∣ ,

�b(0)
n =

∣
∣
∣
∣

φ(0) −λ1φ
(0)

λ1ψ
(0) −ψ(0)

∣
∣
∣
∣ ,
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Figure 3. Evolution plots of the first-order RS solutions Ĩn and Ṽn with different parameters (a), (c) a = 3/4, λ1 = 2; (b),
(d) a = −3/4, λ1 = 1/2.

Figure 4. Numerical simulations of the first-order RS solutions Ĩn and Ṽn given by eq. (31) with the same parameters as in
figures 3a and 3c. (a), (b) exact solution; (c), (d) unperturbed situation; (e), (f) perturbed by the initial 2% noise; (g), (h)
perturbed by the initial 5% noise.

while b(0)
n+1 are obtained from b(0)

n by replacing n with
n + 1. Then

Ĩn = − 480

9(ξ − 8
3)2 + 256

,

Ṽn = −3

4
+ 600

9(ξ + 4
3)2 + 400

(31)

which have no singularity for all real n and t . It is impor-
tant to point out that we have obtained the non-singular
rational rogue wave solutions of discrete NLEs [25,27],
while in refs [24,26], we have obtained the singular
rational solutions of discrete NLEs, and for NPDEs,
the non-singular RS solutions of mKdV equation have
been given in ref. [23]. However, here we shall give
the non-singular discrete rational solutions of eq. (1),

whose structures are similar to the usual sech-type soli-
ton and different forms of rogue wave solutions. We call
these non-singular solutions (31) the discrete RS solu-
tions. Figure 3 displays the first-order dark and bright
RS structures of solutions (31). From figures 3a and 3c
we can see that the valley of the dark RS solution In and
the peak of the bright RS solution Vn are localised along
the lines 3ξ −8 = 0 and 3ξ +4 = 0 respectively. Along
the line 3ξ − 8 = 0, In reaches the minimum which is
−15/8, while along the line 3ξ + 4 = 0, Vn reaches the
maximum which is 3/4. In addition, if a > 0, then In
is a dark RS, while Vn is a bright RS. When a < 0, the
situation is just opposite (see figures 3b and 3d).

To study whether the above-obtained RS solutions
are stable during the propagation process, we perform
the numerical simulations to explore the dynamics of
some of the above-mentioned RSs of eq. (1) by using



Pramana – J. Phys.           (2021) 95:45 Page 11 of 20    45 

Figure 5. Energy changes of numerical results of the first-order RS solutions in figure 4.

Figure 6. (a), (b) Exact first-order RS solutions Ĩn , Ṽn and initial solution 1.5In→n−2,t=0 + In→n+2,t=0,
1.5Vn→n−2,t=0 + Vn→n+2,t=0; (c), (d) the interaction of exact first-order RS solutions Ĩn , Ṽn and another first-order RS
solutions 1.5In→n−2,t=0, 1.5Vn→n−2,t=0.

the finite difference method [32]. Figures 4a–4d respec-
tively show the numerical results of the exact first-order
RS solutions and the unperturbed exact first-order RS
solutions as an initial condition from t = −4, and
we find that the time evolutions of the RS solutions
without noises is very close to the exact RS solutions.
Figures 4e–4h display the numerical results of the per-
turbed situation by multiplying the analytical first-order
RS solutions by 2% and 5% noises as the initial condi-
tion, respectively. These results show that the 2% or 5%

noise has little effect on the evolutions of the first-order
RS solutions. Moveover, figures 5a and 5b show energy
changes of In and Vn , from which we can see more
clearly that first-order RS solution of In can remain as
the stable evolutions for a longer period with 2% and 5%
noises, while solution Vn has obvious energy change and
remains as the unstable evolutions with noises.

In addition, we also use In = 1.5In→n−2,t=0 +
In→n+2,t=0 and Vn = 1.5Vn→n−2,t=0 + Vn→n+2,t=0 as
initial conditions to model the wave propagation. The
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Figure 7. Evolution plots of the second-order RS solutions Ĩn and Ṽn with different parameters (a), (c)
a = 3/4, λ1 = 2, d1 = 0; (b), (d) a = 9/40, λ1 = 5/4, d1 = 200. The phrases FRS1 and FRS2 stand for two parallel
first-order RS solutions which are derived from the second-order RS solution.

results exhibit non-elastic collision phenomenon of two
first-order RSs (see figure 6).

5.1.2 Second-order RS solutions and dynamical
behaviours. According to Theorem 1, for N = 2,
based on the discrete generalised (1, 1)-fold DT, the
second-order RS solutions of eq. (1) are given by

Ĩn = a + b(1)
n

a(0)
n

, Ṽn = b(0)
n+1, (32)

where

a(0)
n = �a(0)

n

�ε
2

, b(0)
n = �b(0)

n

�ε
2

and

b(1)
n = �b(1)

n

�ε
2

with

�ε
2 =

∣
∣
∣
∣
∣
∣
∣
∣

λ1φ
(0) φ(0) λ1ψ

(0) ψ(0)

λ1φ
(1) + φ(0) φ(1) λ1ψ

(1) + ψ(0) ψ(1)

λ1ψ
(0) λ2

1ψ
(0) −λ1φ

(0) −λ2
1φ

(0)

λ1ψ
(1) + ψ(0) λ2

1ψ
(1) + 2λ1ψ

(0) −λ1φ
(1) − φ(0) −λ2

1φ
(1) − 2λ1φ

(0)

∣
∣
∣
∣
∣
∣
∣
∣

,

in which �a(0)
n , �b(0)

n and �b(1)
n are given by deter-

minant �ε
2 by replacing its second, fourth and third

columns by the column vector (−λ2
1φ

(0), −λ2
1φ

(1) −
2λ1φ

(0), −ψ(0), −ψ(1))T , while b(0)
n+1 are obtained from

b(1)
n by replacing n with n + 1. Then by simplifying the

above expressions we have

Ĩn = F1

G1
, Ṽn = F2

G2
, (33)

where

F1 = 243ξ6 − 3888ξ5 − 14256ξ4

+(−1555200t + 152064)ξ3

+(12441600t − 2239488)ξ2

+(−215654400t − 11059200)ξ

+2488320000t2 + 1105920000t

+491520000,

G1 = 324ξ6 − 5184ξ5 + 67392ξ4

+(−2073600t − 718848)ξ3

+(16588800t + 18210816)ξ2

+(265420800t − 49152000)ξ

+3317760000t2 + 163840000,

F2 = 12960(ξ + 8)4 − 345600(ξ + 8)3

+6082560(ξ + 8)2

+(82944000t − 40550400)(ξ + 8)

−552960000t,

G2 = 81(ξ + 8)6 − 3240(ξ + 8)5

+58320(ξ+8)4+(−518400t − 656640)(ξ+8)3

+(10368000t + 7455744)(ξ + 8)2

+(−16588800t − 49152000)(ξ + 8)

+829440000t2 + 163840000.

For d1 = 0, the second-order RS solutions (33) exhibit
strong interaction (see figures 7a and 7c), while for d1 =
200, the second-order RS solutions (33) are split into
the nearly parallel interactions of one dark RS and one
bright RS solutions (see figures 7b and 7d).
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Next, we studied the dynamical behaviour of the
second-order RS solutions via numerical simulations.
Figures 8a–8d exhibit the numerical results of the unper-
turbed exact second-order RS solutions and the unper-
turbed analytical second-order RS solutions, which
show that the evolutions of the second-order RS solu-
tions without a noise almost coincides with the corre-
sponding exact RS solutions. Figures 8e–8h display the
numerical results of the perturbed situation by adding
2% and 5% noises to the initial conditions. These results
show that the evolutions with 2% and 5% noises have
the same evolutions in comparison with the unper-
turbed solutions. Figures 9a–9d exhibit the numerical
results of the unperturbed exact separable second-order
RS solutions and the unperturbed analytical separable
second-order RS solutions. Figures 9e–9h display the
numerical results of the perturbed situation by adding
2% and 5% noises to the initial conditions. These above
results exhibit strong stability and are also robust against
small noises.

5.1.3 Third-order RS solutions and dynamical behavi-
ours. Similarly, according to Theorem 1, performing
the analogous calculating process for N = 3, the third-
order RS solutions of eq. (1) can be given by

Ĩn = a + b(2)
n

a(0)
n

, Ṽn = b(0)
n+1, (34)

where

a(0)
n = �a(0)

n

�ε
3

,

b(0)
n = �b(0)

n

�ε
3

and

b(2)
n = �b(2)

n

�ε
3

with

�ε
3 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ2
1φ

(0) λ1φ
(0) φ(0) λ2

1ψ
(0) λ1ψ

(0) ψ(0)

�(2,1) �(2,2) �(2,3) �(2,4) �(2,5) �(2,6)

�(3,1) �(3,2) �(3,3) �(3,4) �(3,5) �(3,6)

λ1ψ
(0) λ2

1ψ
(0) λ3

1ψ
(0) −λ1φ

(0) −λ2
1φ

(0) −λ3
1φ

(0)

�(5,1) �(5,2) �(5,3) �(5,4) �(5,5) �(5,6)

�(6,1) �(6,2) �(6,3) �(6,4) �(6,5) �(6,6)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�(2,1) = λ2
1φ

(1) + 2λ1φ
(0), �(2,2) = λ1φ

(1) + φ(0),
�(2,3) = φ(1), �(2,4) = λ2

1ψ
(1) + 2λ1ψ

(0), �(2,5) =
λ1ψ

(1) + ψ(0), �(2,6) = ψ(1), �(3,1) = λ2
1φ

(2) +
2λ1φ

(1) + φ(0), �(3,2) = λ1φ
(2) + φ(1), �(3,3) = φ(2),

�(3,4) = λ2
1ψ

(2) + 2λ1ψ
(1) + ψ(0), �(3,5) = λ1ψ

(2) +
ψ(1), �(3,6) = ψ(2), �(5,1) = λ1ψ

(1) + ψ(0), �(5,2) =
λ2

1ψ
(1)+2λ1ψ

(0), �(5,3) = λ3
1ψ

(1)+3λ2
1ψ

(0), �(5,4) =
−λ1φ

(1) − φ(0), �(5,5) = −λ2
1φ

(1) − 2λ1φ
(0), �(5,6) =

−λ3
1φ

(1) − 3λ2
1φ

(0), �(6,1) = λ1ψ
(2) + ψ(1), �(6,2) =

λ2
1ψ

(2) +2λ1ψ
(1) +ψ(0), �(6,3) = λ3

1ψ
(2) +3λ2

1ψ
(1) +

3λ1ψ
(0), �(6,4) = −λ1φ

(2) −φ(1), �(6,5) = −λ2
1φ

(2) −
2λ1φ

(1) − φ(0), �(6,6) = −λ3
1φ

(2) − 3λ2
1φ

(1) − 3λ1φ
(0)

and �a(0)
n , �b(0)

n and �b(2)
n are given by determinant

�ε
3 replacing its third, sixth and fourth columns by the

column vector (−λ3
1φ

(0), −λ3
1φ

(1)−3λ2
1φ

(0), −λ3
1φ

(2)−
3λ2

1φ
(1)−3λ1φ

(0), −ψ(0), −ψ(1), −ψ(2))T , while a(0)
n+1

and b(0)
n+1 are obtained from a(0)

n and b(0)
n by replacing

n with n + 1. Solutions (34) are too complicated and
therefore omitted here.

The parameters d1, d2 excite the third-order RS solu-
tions to generate abundant wave structures. Next, we
discuss some special structures of the third-order RS
for the following four cases:

• When d1 = d2 = 0, a = 3/4, the strong interac-
tions of the third-order RS solutions are shown in
figures 10a and 10e.

• When d1 = 100, d2 = 0, a = 9/40, the weak inter-
actions of the third-order RS solutions In and Vn are
shown in figures 10b and 10f, from which we can see
that the third-order RS is split into three first-order
parallel RSs with two first-order bright RSs and one
first-order dark RS.

• When d2 = 800, d1 = 0, a = 9/40, the weak inter-
actions of the third-order RS solutions In and Vn are
shown in figures 10c and 10g. This shows a simi-
lar situation to figures 10b and 10f, while they have
different space structures.

• When d1 = 100, d2 = 400, a = 9/40, the weak
interactions of the third-order RS solutions In and
Vn are shown in figures 10d and 10h, which shows
a similar situation to figures 10b, 10f and 10c, 10g.
However, they have different space distribution.

Moreover, the dynamics of the third-order RS solu-
tions given by eq. (34) are considered. Figures 11 and 12
respectively show the numerical results of third-order
strong and weak RS solutions, which also display that
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Figure 8. Numerical simulations of the second-order RS solutions Ĩn and Ṽn given by eq. (33) with the same parameters as
in figures 7a and 7c. (a) and (b) exact solution; (c) and (d) unperturbed situation; (e) and (f) perturbed by the initial 2% noise;
(g) and (h) perturbed by the initial 5% noise.

Figure 9. Numerical simulations of separatable second-order RS solutions Ĩn and Ṽn given by eq. (33) with d1 = 200 (see
figures 7b and 7d). (a)–(b) exact solution; (c)–(d) unperturbed situation; (e)–(f) perturbed by the initial 2% noise; (g)–(h)
perturbed by the initial 5% noise.

the evolution without a noise agrees with the exact RS
solutions in a relatively longer time interval and exhibits
better stability.

Finally, we summarise a few wave features of discrete
RS solutions In and Vn for eq. (1) in table 1. The first
column in table 1 shows the order numbers of the solu-
tions, while the second, third, fifth and sixth columns
exhibit the powers of the polynomials involved in each
pair of solutions. The fourth and last columns give the
background levels of the solutions. From table 1, we
can easily obtain the following information: provided

the order N of the RS solutions is odd, the highest pow-
ers in the numerator polynomial of the solutions In and
Vn are 2N (2N − 1) − 2 and 2N (2N − 1), respectively,
while both the highest powers in the denominator poly-
nomial are 2N (2N − 1), and the background levels of
the solutions In and Vn are zero and −3/4, respectively.
On the other hand, supposing that the order N is even,
the highest powers in the numerator polynomial of the
solutions In and Vn are 2N (2N + 1) and 2N (2N +
1)−2, respectively, while both the highest powers in the
denominator polynomial are 2N (2N+1), and the back-
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Figure 10. Evolution plots of third-order RS solutions Ĩn and Ṽn with different parameters (a), (e) a = 3/4, λ1 = 2,
d1 = d2 = 0; (b), (f) a = 9/40, λ1 = 5/4, d1 = 100, d2 = 0; (c), (g) a = 9/40, λ1 = 5/4, d1 = 0, d2 = 800; (d), (h)
a = 9/40, λ1 = 5/4, d1 = 100, d2 = 400. The phrases FRS1, FRS2 and FRS3 stand for three parallel first-order RSs which
are derived from the third-order RS solutions.

Figure 11. Numerical simulations of third-order interaction RS solutions Ĩn and Ṽn with same parameters as in figures 10a
and 10e. (a), (b) exact solution; (c), (d) unperturbed situation; (e), (f) perturbed by the initial 2% noise; (g, h) perturbed by
the initial 5% noise.
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Figure 12. Numerical simulations of the separatable third-order RS solutions Ĩn and Ṽn with d1 = 100, d2 = 0 with the same
parameters as in figures 10b and 10f. (a), (b) exact solution; (c), (d) unperturbed situation; (e), (f) perturbed by the initial 2%
noise; (g), (h) perturbed by the initial 5% noise.

Table 1. Main mathematical features of rational solutions In and Vn of order N .

N HPN of In HPD of In Background of In HPN of Vn HPD of Vn Background of Vn

1 0 2 0 2 2 −3/4
2 6 6 3/4 4 6 0
3 10 12 0 12 12 −3/4
4 20 20 3/4 18 20 0
... ... ... ... ... ... ...
2N − 1 2N (2N − 1) − 2 2N (2N − 1) 0 2N (2N − 1) 2N (2N − 1) −3/4
2N 2N (2N + 1) 2N (2N + 1) 3/4 2N (2N + 1) − 2 2N (2N + 1) 0

Here, HPN and HPD stand for the highest powers in the numerator and denominator, respectively

ground levels of the solutions In andVn are 3/4 and zero,
respectively.

5.2 N -Soliton solutions on non-zero background of
eq. (1) via N -fold DT

In this section, we produce N -soliton solutions on non-
zero constant seed background in terms of determinants
for eq. (1) with σ = 1 by means of the discrete N -
fold DT. In ref. [29], the N -fold DT of eq. (1) has been
constructed and N -soliton solutions of eq. (1) on zero
background has been given. N -Soliton solutions on non-
zero constant seed background can also be similarly
expressed, which are similar to the sech-type soliton
solutions on zero background, but different from the
standard sech-type soliton solutions. The interaction
between this type of soliton solution and RS solution
on the same non-zero constant seed background will
be discussed in the next subsection through the dis-
crete generalised (2, N − 2)-fold DT. When σ = −1,
the process is similar and will not be discussed due

to its solutions possessing singularity. Substitution of
In = a, Vn = 0 into (2) and (9) yields the following
basic solution:

ϕn(λ) =
(

C1τ
n
1 eρ1t + C2τ

n
2 eρ2t

C1
λ − τ1

a
τ n1 eρ1t + C2

λ − τ2

a
τ n2 eρ2t

)

,

(35)

with

τ1 = 1

2λ
(λ2 + 1 +

√
−(2aλ + λ2 − 1)(2aλ − λ2 + 1)),

τ2 = 1

2λ
(λ2 + 1

−
√

−(2aλ + λ2 − 1)(2aλ − λ2 + 1)),

ρ1 = 1

2λ2 (2a2λ2

+(λ2 + 1)
√

−(2aλ + λ2 − 1)(2aλ − λ2 + 1)),
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ρ2 = 1

2λ2 (2a2λ2 − (λ2 + 1)

×
√

−(2aλ + λ2 − 1)(2aλ − λ2 + 1)),

whereC1,C2 are arbitrary constants,dk(k = 1, 2, . . . , N )

are free real coefficients.
From Theorem 1, we can derive N -soliton solutions

of eq. (1). When N = 1, the 1-fold explicit solutions of
eq. (1) can be given as

Ĩn = a + b(0)
n

a(0)
n

, Ṽn = b(0)
n+1, (36)

if we choose a = 3/4, C1 = −C2 = 1, which can be
rewritten as

Ĩn = λ1(4 − λ2
1)(4λ2

1 − 1)

10λ2
1(λ

2
1 − 1) cosh

[
1
2 (1 + 1

λ2
1
)η1t + n ln

2λ2
1+η1+2

2λ2
1−η1+2

+ 1
2 ln

17λ2
1−4η1−8

17λ2
1+4η1−8

]

− 6λ2
1(λ

2
1 + 1)

,

Ṽn =
(−λ2

1 + 1){3λ1 cosh

[
1
2 (1 + 1

λ2
1
)η1t + n ln

2λ2
1+η1+2

2λ2
1−η1+2

+ 1
2 ln

18λ4
1+9λ2

1η1+86λ2
1−16η1−32

18λ4
1−9λ2

1η1+86λ2
1+16η1−32

]

− 2λ2
1 + 2}

4λ1(λ1 + 1)
√

(λ1 − 1)2 cosh

[
1
2 (1 + 1

λ2
1
)η1t + n ln

2λ2
1+η1+2

2λ2
1−η1+2

+ 1
2 ln

18λ4
1+9λ2

1η1+86λ2
1−16η1−32

18λ4
1−9λ2

1η1+86λ2
1+16η1−32

]

− 6λ2
1

,

(37)

where

η1 =
√

(λ2
1 − 4)(4λ2

1 − 1)

and λ1 > 2 is a real constant. It is worth noting that
solutions (37) are sech-type soliton solutions with the
same non-zero seed background as RS solutions in the
previous subsection. With the same method and process,
multisoliton solutions on the same non-zero seed back-
ground can also be obtained which are omitted here.
The mixed interaction solutions on the non-zero seed
background are discussed in the next subsection.

5.3 Discrete generalised (2, N − 2)-fold DT

In the previous two subsections, we have used the dis-
crete generalised (1, N − 1)-fold DT with only one
spectral parameter to derive the RS solutions of eq. (1),
and we have used the discrete N -fold DT with N spec-
tral parameters to derive the multisolutions of eq. (1)
on non-zero background. Next, we shall use the discrete
generalised (2, N−2)-fold DT with two spectral param-
eters to give some new interaction solutions of eq. (1).
We only discuss two cases: N = 2 (i.e. the generalised
(2, 0)-fold DT) and N = 3 (i.e. the generalised (2, 1)-
fold DT).

5.3.1 Mixed interaction of one US and one first-order
RS via discrete generalised (2, 0)-fold DT. First, we
set that λ1 = a + √

a2 + 1 and λ2 �= a + √
a2 + 1

(e.g. λ2 = −6). Then, we set the spectral parameter
λ in eq. (35) as λ = λ1 + ε2, and expand the vector
function ϕn in (35) as Taylor series around ε = 0 by
choosing C1 = −C2 = 1/ε. Thus, a(0)

n , b(0)
n and b(1)

n
can be determined by the following system:
{
T (0)
n (λ1)ϕ

(0)
n (λ1) = 0,

Tn(λ2)ϕn(λ2) = 0,
(38)

with

a(0)
n = �a(0)

n

�ε
2

, b(0)
n = �b(0)

n

�ε
2

, b(1)
n = �b(1)

n

�ε
2

and

�ε
2 =

∣
∣
∣
∣
∣
∣
∣
∣

λ1φ
(0) φ(0) λ1ψ

(0) ψ(0)

λ1ψ
(0) λ2

1ψ
(0) −λ1φ

(0) −λ2
1φ

(0)

λ2φ2,n φ2,n λ2ψ2,n ψ2,n

λ2ψ2,n λ2
2ψ2,n −λ2φ2,n −λ2

2ψ2,n

∣
∣
∣
∣
∣
∣
∣
∣

,

where �a(0)
n , �b(0)

n and �b(1)
n are given by the determi-

nant �ε
2 replacing its second, fourth and third columns

by the column vector (−λ2
1φ

(0), −ψ(0), −λ2
2φ2,n,

−ψ2,n)
T , while b(0)

n+1 is obtained from b(0)
n by replac-

ing n with n + 1.
Through the discrete generalised (2, 0)-fold DT, the

explicit exact solutions of eq. (1) can be obtained as

Ĩn = a + b(1)
n

a(0)
n

, Ṽn = b(0)
n+1. (39)

Taking appropriate parameters, figure 13 shows the
elastic interaction processes between one US and one
first-order RS. Figure 13a shows the elastic interaction
between one bright US and one dark first-order RS for
Ĩn . Figure 13c shows the elastic interaction between
one bright US and one bright first-order RS for Ṽn .
Figure 13b displays the elastic interaction between one
dark US and one bright first-order RS for Ĩn . Figure 13d
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Figure 13. Mixed interaction of one-soliton and first-order RS solution with parameters (a), (c) a = 3/4, λ1 = 2, λ2 = −6;
(b), (d) a = −3/4, λ1 = 1/2, λ2 = −6. The phrases DS, BS, DRS, BRS stand for dark soliton, bright soliton, dark first-order
RS, bright first-order RS, respectively.

Figure 14. Numerical simulations of the interaction solutions Ĩn and Ṽn with the same parameters as in figures 13a and 13c.
(a), (b) exact solutions; (c), (d) unperturbed situation; (e), (f) perturbed by the initial 2% noise; (g), (h) perturbed by the initial
5% noise.

exhibits the elastic interaction between one dark US and
one dark first-order RS for Ṽn .

Figure 14 displays the numerical results by choosing
parameters as in figures 13a and 13c. Obviously, the
numerical results show that the 2% and 5% noises have
no effect on the evolution of Ĩn and Ṽn in (39) except Ĩn
having a slight effect with 5%. These results show results
nearly similar to one first-order RS (see figure 4).

5.3.2 Mixed interaction of one US and second-order
RS via discrete generalised (2, 1)-fold DT. Similar to
the previous process, setting λ1 = a + √

a2 + 1 and
λ2 �= a+√

a2 + 1 (e.g. λ2 = 6), then we set the spectral
parameter λ in eq. (35) as λ = λ1 + ε2, and expand the

vector function ϕn in (35) as Taylor series around ε = 0
by choosing C1 = −C2 = 1/ε. Thus, a(0)

n , b(0)
n and b(2)

n
can be determined by the following system:
⎧
⎪⎨

⎪⎩

T (0)
n (λ1)ϕ

(0)
n (λ1) = 0,

T (0)
n (λ1)ϕ

(1)
n (λ1) + T (1)

n (λ1)ϕ
(0)
n (λ1) = 0,

Tn(λ2)ϕn(λ2) = 0,

(40)

with

a(0)
n = �a(0)

n

�ε
3

, b(0)
n = �b(0)

n

�ε
3

, b(2)
n = �b(2)

n

�ε
3

and
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Figure 15. Mixed interaction solutions of one US and second-order RS with parameters (a), (c) a = 3/4, λ1 = 2, λ2 = −6,
d1 = 0; (b), (d) a = 3/4, λ1 = 2, λ2 = −6, d1 = 4. The phrase SRS stands for second-order RS.
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,

�(2,1) = λ2
1φ

(1) + 2λ1φ
(0), �(2,2) = λ1φ

(1) + φ(0),
�(2,3) = φ(1), �(2,4) = λ2

1ψ
(1) + 2λ1ψ

(0), �(2,5) =
λ1ψ

(1) + ψ(0), �(2,6) = ψ(1), �(4,1) = λ1ψ
(1) + ψ(0),

�(4,2) = λ2
1ψ

(1)+2λ1ψ
(0), �(4,3) = λ3

1ψ
(1)+3λ2

1ψ
(0),

�(4,4) = −λ1φ
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(1) − 2λ1φ

(0),

�(4,6) = −λ3
1φ

(1) − 3λ2
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(0), where �a(0)
n , �b(0)

n and

�b(2)
n are given by the determinant � replacing its

third, sixth and fourth columns by the column vector
(−λ3

1φ
(0), −λ3

1φ
(1)−3λ2

1φ
(0), −ψ(0), −ψ(1), −λ3

2φ2,n,

−ψ2,n)
T , while b(0)

n+1 is obtained from b(0)
n by replacing

n with n + 1. Through discrete generalised (2, 1)-fold
DT, an explicit exact solution of eq. (1) can be obtained
as

Ĩn = a + b(2)
n

a(0)
n

, Ṽn = b(0)
n+1. (41)

Figure 15 shows the mixed interaction of one US
and second-order RS for solutions (41) with (40). Fig-
ures 15a and 15c display the strong elastic interaction
between one dark US and second-order RS. Figures 15b
and 15d display the strong interaction of one dark US
and two parallel first-order RSs which are derived from
the second-order RS by choosing non-zero parameter
d1.

Here we need to explain that in §3, we know that
the MI does not occur when σ = 1, the whole region
is MS region, and US, RS and their mixed interac-
tion solutions are all obtained in this stable region. In

this section, we have performed the numerical analy-
sis to check the stability of the derived solutions by
adding 2% to 5% noises to these solutions. From these
numerical simulation results, we can clearly see that
these solutions remain stable evolutions for a longer
period with 2% to 5% noises. That is to say, the sta-
bility of the numerical simulation of these solutions
is consistent with the result through MI analysis. In
addition, if we choose σ = −1, the derived solutions
possess singularities so that we omit discussing them
here.

It should be noted that the discrete generalised
(m, N−m)-fold DT can give more abundant interaction
structures of US and RS when 2 < m < N . We shall
not discuss these cases here.

6. Conclusions

In this paper, we have derived an integrable lattice hier-
archy (6) from a discrete matrix spectral problem (2),
and we have studied the second member eq. (1) with
σ = 1 (i.e., the higher-order self-dual network equation)
in this hierarchy, which may describe the propagation
of electrical signals in a ladder-type nonlinear self-
dual network. Starting from the non-zero seed solutions
(I0 = a, V0 = 0), the MI of eq. (1) has been stud-
ied as shown in figure 2. Starting from Lax pairs (2)
and (9), an infinite number of conservation laws (20)
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have been explicitly given. We have constructed the dis-
crete generalised (m, N −m)-fold DT for eq. (1), from
which exact RS solutions, mixed interaction solutions of
US and RS and numerical simulation results have been
derived. In particular, one-, two- and three-RS solutions
in terms of determinant for eq. (1) have been derived
via the discrete generalised (1, N − 1)-fold DT and rel-
evant structures are shown graphically. Figure 3 exhibits
the first-order RS structures of solutions In and Vn with
N = 1, figures 4–6 show the dynamical evolutions of
the first-order RS structures, figure 7 shows the second-
order RS structures of solutions In and Vn with N = 2,
figures 8 and 9 exhibit the dynamical evolutions of the
second-order RS structures, figure 10 displays the third-
order RS structures of solutions In and Vn with N = 3
and figures 11 and 12 display the dynamical evolutions
of the second-order RS structures. Table 1 shows a few
mathematical features of such RS solutions of eq. (1).
By applying the discrete generalised (2, N−2)-fold DT,
the mixed interaction solutions of US and RS have been
obtained and the interaction structures are shown graph-
ically. Figure 13 exhibits the interaction between one US
and first-order RS with N = 2, numerical simulation
results in figure 14 show the dynamical evolutions of
such mixed interaction structures and figure 15 exhibits
the interaction structures of one US and second-order
RS with N = 3.

In theory, it is perfectly possible to expand eigen-
functions at more spectral parameters to get more
new solutions of eq. (1) via the discrete generalised
(m, N −m)-fold DT. However, in fact, the relevant cal-
culations are very complex, and further investigation is
needed. Finally, it is important to note that eq. (1) and
new eq. (10) may provide the possibility for design-
ing more complicated electrical circuits in LC circuits,
and the results of this paper also provide a theoretical
basis for seeking the propagation of stable electrical sig-
nals in electrical circuits. We hope that eq. (1) and its
related results obtained in this paper might be helpful for
understanding the propagation phenomena of electrical
signals in practical application.
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