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Abstract. The evolutionary dynamics of bimodal pulsational mode, arising because of the long-range
conjugational gravito-electrostatic interplay in viscoelastic polytropic complex multicomponent astroclouds with
partial ionisation, is classically examined using a non-relativistic generalised hydrodynamic model approach.
The equilibrium distribution of the diversified constitutive species forms a globally quasi-neutral hydrostatic
homogeneous configuration. The primitive set of the astrocloud structuring equations specifically includes polytropic
(hydrodynamic action) and nonlinear logatropic barotropic (turbulence action) effects simultaneously. A normal
mode analysis over the perturbed cloud results in a unique form of sextic polynomial dispersion relation with variable
poly-parametric coefficients. A numerical analysis technique is provided to show the exact nature of the modified
viscoelastic (turbo-viscoelastic) pulsational mode in the two extreme hydrodynamic and kinetic regimes. It is seen
that, in the former regime, the dust–charge ratio (negatively-to-positively charged grains) plays a destabilising role
to the instability. In contrast, the dust–mass ratio (negatively-to-positively charged grains) develops a stabilising
influence in the wave-dynamical processes. In the latter regime, the viscoelastic relaxation velocity associated
with the positively charged grains acts as an amplitude stabiliser. Conversely, the viscoelastic relaxation velocity
of the negatively charged grain fluid introduces destabilising influences. The unique features of the propagatory
and non-propagatory mode characteristics are elaborately illustrated. The reliability of the investigated results
is judiciously validated by comparing the results with the specific reports available in the literature. Lastly, the
first-hand astronomical implications and applications of our study are summarily outlined.
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1. Introduction

The natural existence of conjugational bimodal instabil-
ity dynamics (pulsational type) in complex astrophysical
plasma fluids under the conjoint gravito-electrostatic
interplay is one of the most fundamental tenets in
astrophysics for decades. The instability dynamics is
triggered by the counteraction of long-range conju-
gational gravito-electrostatic force fields in partially
ionised complex dusty astrofluids [1–8]. The threshold
condition responsible for triggering such an instabil-
ity leading to bounded structures to form is that the
gravito-electrostatic forces should be nearly compara-
ble [4]. In other words, bounded structures would result
in the existence of an overlapping scale between the
self-gravitational and electromagnetic interactions by
the constitutive dust grains. Its relevance is primarily

pronounced in various complex mechanisms of wave-
induced fluid material redistribution leading to the
phase dynamics initiation of astrophysical large-scale
bounded structures, such as planetsimals, stellesimals,
comets, etc. [1,2].

A good number of researchers have carried out sys-
tematic investigations to explore the complex instability
dynamics of pulsational source leading to structure
formation in astrofluid media in the recent past. The
conjugational instability dynamics in the presence of
fluid viscoelasticity has recently been addressed by
Dutta and Karmakar [7]. The most important point
reported in their study is that the grain mass and the
viscoelastic relaxation time associated with the charged
dust fluid play stabilising roles on the fluctuations in
the hydrodynamic regime. In contrast, in the kinetic
regime, the stabilising effects are introduced by the
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equilibrium ionic population distribution, dust mass
and dust equilibrium density. Again, they have stud-
ied the evolutional dynamics of the pulsational mode
in non-thermal turbulent viscous astrofluids [5]. They
have found that the non-thermal parameters (electron–
ion non-extensivities) and kinematic viscosity of the
dust fluids act as stabilising agents against the non-local
gravity. In another configuration, Bhakta et al [9] have
found that the dust viscosity has a stabilising influence
on the cloud. The grain surface charge number Zd has
no role to play in the propagation dynamics [9]. As far
as we know, nobody has so far addressed the instabil-
ity dynamics in such complex media in the presence of
the Boltzmann electrons–ions, polytropic bipolar dust
fluids with partial ionisation, nonlinear log-barotropic
effects stemming from fluid turbulence, collective cor-
relative viscoelasticity and heterogeneous interspecies
collisional momentum transfer simultaneously. Such
intricate instability phenomena are unexplored despite
their great importance in understanding bounded struc-
ture formation in real astronomical strongly correlated
environments for years. It may, in other words, be clearly
realised that the conjugational bimodal cloud instabil-
ity dynamics of pulsational type in a strongly coupled
self-gravitating complex plasma fluid in the presence
of turbulent flow and interspecies collisional effects has
still been an open challenge to be addressed in the con-
text of galactic element formation and evolution for
years.

The present work reports a theoretical instability
analysis of conjugational turbo-viscoelastic pulsational
mode in a strongly coupled multifluidic self-gravitating
plasma fluid. It considers all the possible key fac-
tors responsible for structuring the cloud, but rarely
addressed simultaneously in the past. It is motivated
by the need evident from the current observational
scenarios on diversified astro-cosmo-space cloud fluid
dynamics in a generalised hydrodynamic framework
[4,10,11]. Thus, a generalised polynomial dispersion
relation (sextic in degree) with unique variable multi-
parametric coefficients is mathematically derived and
numerically analysed herein. To distinguish and classify
the mode fluctuations on the basis of the perturba-
tion scaling, two extreme classes, hydrodynamic and
kinetic regimes, are considered. It is seen that, in the
hydrodynamic regime, the dust-charge ratio (negative-
to-positive grains) plays a destabilising role whereas,
the dust–mass ratio (negative-to-positive grains) plays
a stabilising role in the wave-dynamic processes. In
the kinetic regime however, the viscoelastic relax-
ation velocity plays a stabilising role for the positively
charged grains, and a destabilising role for the negatively
charged ones in the cloud dynamics. The propagatory
and non-propagatory characteristics of the viscoelastic

bimodal instability in reorganising the cloud are also
explored.

The layout of the paper, apart from the introduction
in §1, is as follows. In §2, we describe the formalism
of the considered astrocloud. Section 3 contains mode
analyses of the conjugational bimodal fluctuations. Sec-
tion 4 describes the numerical results and discussions.
And, finally, in §5, we present some important conclu-
sive remarks together with a concise highlight on future
relevant applicability.

2. Model and formalism

A strongly coupled self-gravitating multifluidic com-
plex plasma system of illimitable spatial extension in
the framework of generalised hydrodynamic model on
the astrophysical spatiotemporal scales is considered.
The viscoelastic plasma model is indeed a complex
admixture of weakly correlated lighter electrons and
less-light ions, and strongly coupled heavier positively
(due to intense radiations) and negatively (due to contact
electrification) charged dust grains with partial ioni-
sation. It may be noted that the viscoelasticity of the
complex admixture arises from the collective correl-
ative interactions among the constituent macroscopic
particles [10,11]. In the case of charged (dust) fluids,
the degree of sensitivity of viscoelasticity can be mea-
sured from the high electrothermal Coulomb coupling
[10]. In contrast, the correlative interaction mechanism
is sourced by the binary and frictional interfluidic cou-
plings [7,10]. The complex multifluidic turbulent effects
are incorporated with the help of nonlinear logatropic
barotropic equation of state arising due to the exis-
tence of multi-spatiotemporal irregular overlapping of
the fluid chaotic vorticity [12–16]. The constitutive com-
ponent fluids constitute a special type of polytropic
(adiabatic) configuration with a polytropic exponent
of γ+ = γ− = γn = 3 in the customary notations
[17]. This is because of the fact that the dimension
along which the thermodynamic potential varies is
D = 1, and hence, γ = (D + 2)/D = 3 [18,19].
The equilibrium macrostate is presupposed as a uni-
form quasi-neutral hydrostatic homogeneous gaseous
phase. The fluid model is simplified by adopting identi-
cal non-Brownian dust microspheres in the absence of
tidal, rotational and extra-galactic disturbance forces.
The presence of asymmetric irregular grains is neglected
for simplicity. Such model environs may be widely real-
isable in a number of star-forming dust–gas complexes
in real astronomical situations [20–24].

In the generalised hydrodynamic viewpoint [7,10,22],
the multifluidic complex model is framed with the
help of continuity equation for fluid flux conservation,
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viscoelastic momentum equation for the force den-
sity conservation, nonlinear log-barotropic equation of
state for the macroscopic thermodynamic characterisa-
tion and closing electrogravitational Poisson equations
for the long-range potential distributions sourced by
the density fields of the charged and massive species.
The dynamics of the thermalised electrons and ions are
respectively modelled with the Boltzmann distribution
laws in the generic notations as

ne = ne0 exp

(
eφ

Te

)
, (1)

ni = ni0 exp

(
−eφ

Ti

)
. (2)

Here, ne(i) denotes the population density of electrons
(ions) at temperature Te(i) eV with the corresponding
equilibrium density value ne(i)0 and electric charge –e
(+e), respectively. The dynamics of the neutral dust is
described in a classical non-relativistic closed custom-
ary form [7,10] in spatially-flat space–time (x , t) given
respectively as

∂nn
∂t

+ ∂

∂x
(nnun) = 0, (3)[

1 + τn

(
∂

∂t
+ un

∂

∂x

)][
ρn

(
∂

∂t
+ un

∂

∂x

)
un

+∂pn
∂x

+ ρn
∂ψ

∂x

+ρn
{
fn,+(un − u+) + fn,−(un − u−)

}]

= χn
∂2un
∂x2 , (4)

∂pn
∂t

+ un
∂pn
∂x

+ γnpn
∂un
∂x

= 0. (5)

Similarly, the equilibrium dynamics of the positively
(negatively) charged dust grains in the same customary
notations are respectively modelled as

∂n+(−)

∂t
+ ∂

∂x

(
n+(−)u+(−)

) = 0, (6)[
1 + τ+(−)

(
∂

∂t
+ u+(−)

∂

∂x

)]

×
[
ρ+(−)

(
∂

∂t
+ u+(−)

∂

∂x

)
u+(−)

− q+(−)n+(−)

∂φ

∂x
+ ∂p+(−)

∂x
+ ρ+(−)

∂ψ

∂x
+ ρ+(−)

{
f+(−),−(+)

(
u+(−) − u−(+)

)

+ f+(n),−(n)

(
u+(−) − un(n)

)}] = χ+(−)

∂2u+(−)

∂x2 ,

(7)

∂p+(−)

∂t
+ u+(−)

∂p+(−)

∂x

+ γ+(−) p+(−)

∂u+(−)

∂x
= 0. (8)

It may be noted that the momentum conservation equa-
tions (eqs (4) and (7)) are validated only if the lowest-
order viscoelasticity of the constituent compressible
fluids does not change in the adopted spatiotemporal
domains [11]. It alternatively indicates that none of the
bulk viscosity (ζ j ) and shear viscosity (η j ) coefficients
undergo any remarkable change either with the variation
in fluid pressure or with the temperature. With all these
basic reservations, the astrofluid model is finally closed
by the electrogravitational Poisson potential distribution
equations respectively given as

∂2φ

∂x2 = 4πe
[
ne − ni + Z−n− − Z+n+

]
, (9)

∂2ψ

∂x2 = 4πG
[
m−n− + m+n+ + mnnn

]
. (10)

The terms n j , u j and m j denote the population density,
flow velocity and mass of the j th dust species, respec-
tively. Here, the index j = + is for positively charged
grains, − is for negatively charged grains and n stands
for neutral grains. The notation, q j = j Z j |e|, signifies
the corresponding grain charge. The parameter, χ j =(
ζ j + 4η j/3

)
, is the effective generalised viscosity,

where ζ j and η j are the bulk (first viscosity, resis-
tance to longitudinal flow) and shear (second viscosity,
resistance to lateral expansion) viscosity coefficients,
respectively. The viscoelastic relaxation time (memory-
parametric effect) is denoted as τ+(−) for charged dust
and τn for neutral dust. p j = Tjρ

γ j
j +Tjn j0 log

(
ρ j/ρ j0

)
is the net pressure in the nonlinear logatropic form in
terms of the material density ρ j at temperature Tj eV
[11]. It is comprehensively composed of the adiabatic
pressure (first term) and the turbulent pressure (second
term) similar to the fluid equilibrium density ρ j0. More-
over, the notations f+(−), f−(+), f+(n), f−(n), fn,+ and
fn,− represent interspecies collisional frequencies of
the j th species. G = 6.67 × 10−11 m3 kg−1 s−2 is the
universal gravitational (Newtonian) coupling constant.
Finally, φ and ψ represent the electrostatic and gravi-
tational potentials developed by charge–matter density
fluids, respectively.

We are interested in a scale-invariant (normalised)
standard formalism of the conjugational perturbation
dynamics. A standard astrophysical normalisation
scheme [7,9] is accordingly adopted. The normalised
set of eqs (1)–(10) is constructed respectively as
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Ne = e�, (11)

Ni = e−�, (12)

∂N j

∂T
+ ∂

∂X

(
N jM j

) = 0, (13)

[
1 + τ+ωJ

(
∂

∂T
+ M+

∂

∂X

)]

×
[
N+

(
∂

∂T
+ M+

∂

∂X

)
M+

+Z+β−,+N+
∂�

∂X

+β−,+
(
T+
Tp

){
∂N γ

+
∂X

+ ∂

∂X
(log N+)

}

+ N+
∂�

∂X
+ N+

{
F+,−(M+ − M−)

+F+,n(M+ − Mn)
}]

= 1

κ+
(χ+)

∂2M+
∂X2 , (14)

[
1 + τ−ωJ

(
∂

∂T
+ M−

∂

∂X

)]

×
[
N−

(
∂

∂T
+ M−

∂

∂X

)
M−−Z−N−

∂�

∂X

+
(
T−
Tp

){
∂N γ

−
∂X

+ ∂

∂X
(log N−)

}
+ N−

∂Ψ

∂X

+N−
{
F−,+(M−−M+)+F−,n(M−−Mn)

}]

= 1

κ−
(χ−)

∂2M−
∂X2 , (15)

[
1+τnωJ

(
∂

∂T
+Mn

∂

∂X

)][
Nn

(
∂

∂T
+Mn

∂

∂X

)
Mn

+β−,n

(
Tn
Tp

){
∂N γ

n

∂X
+ ∂

∂X
(log Nn)

}
+ Nn

∂Ψ

∂X

+Nn
{
Fn,+(Mn − M+) + Fn,−(M− − Mn)

}]

= 1

κn
(χn)

∂2Mn

∂X2 , (16)

∂2Φ

∂X2 = μ
[
ne0Ne − ni0Ni

+Z−n−0N− − Z+n+0N+
]
, (17)

∂2Ψ

∂X2 = ρ−1
0

[
m−n−(N− − 1)

+m+n+(N+ − 1) + mnnn(Nn − 1)
]
. (18)

The independent parameters X for position and T for
time are normalised by the Jeans wavelength λJ =
css/ωJ and Jeans time ω−1

J = (css/λJ )
−1, respectively.

The dust-acoustic phase speed associated with the nega-
tively charged dust fluid is css = (

Tp/m−
)1/2. Next, the

parameters Ne, Ni and N j are the normalised popula-
tion densities of electrons, ions and the j th dust species,
which are normalised by their respective equilibrium
concentration values ne0, ni0 and n j0. The parame-
ter Mj is the normalised dust fluid velocity associated
with the j th dust species, normalised by css . A nor-
mal constitutional temperature scaling (in eV) supposed
the cloud such that Te∼Ti = Tp >> Tj . Moreover,
Pj = p j/p j0 =N γ

j + log N j denotes the normalised
net pressure in the normalised logatropic form, where
p j0 = n j Tj is the equilibrium isothermal pressure
of the rarefied cloud complex, which may be even of
the polytropic form for denser cases [25]. The term,
κ j = ρ j0ωJλ

2
J , denotes the Jeans dynamic viscos-

ity associated with the j th species. The symbols �

and � are the normalised electrostatic potential and
self-gravitational potential, which are normalised by
the cloud thermal potential, Tp/e and the dust-acoustic
phase speed squared, c2

ss , respectively. Moreover, the
terms F+,−, F+,n , F−,+, F−,n , Fn,+ and Fn,− are the
normalised collisional frequencies of the constitutive
dust species, each normalised by the Jeans frequency
ωJ . In addition, β−, j = m−/m j represents the grain–
mass ratio of the negative to the j th dust species. Finally,
the term μ = e2/(ρ0md−G) denotes a new electrograv-
itational coupling parameter modelling the constitutive
correlated grains in the composite astrocloud.

3. Mode analysis

It is well known that the equilibrium of any turbu-
lent plasma system cannot be defined with the help
of first principles [12–16]. In the present specific case,
the effects of erratic fluid turbulence are strategically
incorporated in the basic set up via a photospectroscop-
ically derived nonlinear log-barotropic equation of state
[16]. It is allowed to undergo a local small-scale per-
turbation around a defined homogeneous equilibrium.
We seek the non-homology perturbation solutions (F1)

for the relevant parameters (F) around their respective
hydrostatic homogeneous equilibrium values (F0) in a
standard form [6] with the normalised angular wave
number K = k/kJ and normalised angular frequency
� = ω/ωJ as

F(X, T ) = F0 + F1 e−i(�T−K X), (19)
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F(X, T ) = [
Ne Ni N+ N− Nn M+ M−
Mn � Ψ ]T , (20)

F0 = [1 1 1 1 1 0 0 0 0 0]T , (21)

F1 = [
Ne1 Ni1 N+1 N−1 Nn1 M+1 M−1

Mn1 �1 �1]T . (22)

The algebraically transformed form of eqs (13)–(18)
in the normalised Fourier space (K , �) is respectively
given as

M+1 = �K−1N+1, (23)[
(1−iτ+ωJ�)

{
−i�2K−1+iβ−,+(1+γ )

(
T+
Tp

)
K

+(
F+,− + F+,n

)
�K−1

}
+ 1

κ+
(χ+)�K

]
N+1

−(1 − iτ+ωJ�)�K−1(F+,−N−1 + F+,nNn1
)

+ i(1 − iτ+ωJ�)K
(
Z+β−,+�1 + �1

) = 0, (24)

M−1 = �K−1N−1, (25)[
(1 − iτ−ωJ�)

{
−i�2K−1 + i(1 + γ )

(
T−
Tp

)
K

+(
F−,+ + F−,n

)
�K−1

}
+ 1

κ−
(χ−)�K

]
N−1

−(1 − iτ−ωJ�)�K−1(F−,+N−1 + F+,nNn1
)

−i(1 − iτ−ωJ�)K (Z−�1 − �1) = 0, (26)

Mn1 = �K−1Nn1, (27)[
(1−iτnωJ�)

{
−i�2K−1+iβ−,n(1+γ )

(
Tn
Tp

)
K

+(
Fn,+ + Fn,−

)
�K−1

}
+ 1

κn
(χn)�K

]
Nn1

−(1 − iτnωJ�)
(
Fn,+ N+1 + Fn,−N−1

)
�K−1

+i(1 − iτnωJ�)K�1 = 0, (28)

�1 = {
(ni0 − ne0)μ − K 2}−1[

μ(Z−n−0N−1

−Z+n+0N+1)
]
, (29)

�1 = −ρ−1
0

[
m−n−0N−1

+m+n+0N+1 + mnnn0Nn1
]
K 2. (30)

After a systematic algebraic elimination and simplifica-
tion, eqs (23)–(30) decouple into a linear generalised
polynomial dispersion relation with multiparametric
variable coefficients as

[
(1 − iτ+ωJ�)

{−i �2K−1 + a1� + a2
} + a3�

]
×[[

(1−iτ−ωJ�)
{−i �2K−1+a4�+a5

}+a6�
]

×[
(1 − iτnωJ�)

{−i �2K−1 + a7� + a8
} + a9�

]
−[

(1 − iτnωJ�)
(−Fn,−K−1� + a10

)]
[(1−

iτ−ωJ�)
(−F−,n K

−1� + a11
)]]

−[
(1 − iτ+ωJ�)

(−F+,− K−1� + a12
)]

×[[
(1 − iτ−ωJ�)

(−F+,− K−1� + a13
)]

×[
(1 − iτnωJ�)

{−i �2K−1 + a7� + a8
} + a9�

]
−[

(1 − iτnωJ�)
(−Fn,+K−1� + a14

)]
[(1−

iτ−ωJ�)
(−F−,n K

−1� + a11
)]]

+[
(1 − iτ+ωJ�)

(−F+,n�K−1 + a11
)]

×
[[

(1 − iτ−ωJ�)
(−F+,− K−1�

+a13)
][

(1 − iτnωJ�)
(−Fn,−K−1� + a10

)]

−[
(1 − iτnωJ�)

(−Fn,+K−1� + a14
)]

×
[
(1−iτ−ωJ�)

{−i �2K−1+a4�+a5
}+a6�

]]

= 0. (31)

The various multiparametric dispersion coefficients
involved in eq. (31) are given in Appendix A. We see
the mode features on the basis of the hydrokinetic per-
turbation scalings.

3.1 Hydrodynamic regime

In the hydrodynamic regime (�τ+(−) << 1,�τn << 1)

[7], which admits the low-frequency fluctuations to
evolve, the generalised dispersion relation (eq. (31))
reduces to a unique form of sextic polynomial dispersion
relation given as

�6 + A5�
5 + A4�

4 + A3�
3 + A2�

2 + A1�+ A0 = 0.

(32)

The new set of various multiparametric dispersion coef-
ficients involved in eq. (32) are given in Appendix B.
Now, to solve eq. (32) numerically, we use the decom-
position method [26] to reduce eq. (32) into a pair of
cubic form of dispersion relations, and then, the Cardan
method [27,28] to integrate these reduced cubic forms.
Out of all the so obtained six roots, the considered root
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(sixth root, � = �6) with positive real–imaginary parts
(�r > 0, �i > 0) is given as

�6 = −
(
2g0 + 2p2

2h0 + p2l1
)

2
(
1 + p2 + p2

2

) −
[(

2g0 + 2p2
2h0 + p2l1

)2 − 4
(
1 + p2 + p2

2

)(
g2

0 + p2
2h

2
0 + p2l2

)]1/2

2
(
1 + p2 + p2

2

) , (33)

where the different involved terms are given as

g0 = l1 + (
l21 − 4l2

)1/2

2
, h0 = l1 − (

l21 − 4l2
)1/2

2
,

l1 = e1e2 − 9e0

e2
2 − 3e1

, l2 = e2
1 − 3e0e2

e2
2 − 3e1

,

p2 =
[
e2 − 3g0

e2 − 3h0

]1/3

,

e2 = 1

2
A5, e1 = A6 − 1

8
A2

5 + 1

2
A4,

e0 = A7

A6
+ 1

16
A3

5 − 1

4
A5A4 + 1

2
A3,

A7 = b0b1 − A1

2
,

A6 =
[

5

64
A4

5 − 3

8
A4A

2
5 + 1

4
a2

4 + 1

2
A3A5 − A2

]1/2

,

b1 = 1

2
A4 − 1

8
A2

5, b0 = 1

2
A3 − 1

4
A4A5 + 1

16
A3

5.

3.2 Kinetic regime

In the kinetic regime (�τ+(−) >> 1, �τn >> 1), which
allows high-frequency fluctuations to evolve, the gener-
alised dispersion relation (eq. (31)) reduces to a unique
sextic form as

�6 + B5�
5 + B4�

4 + B3�
3 + B2�

2 + B1�+ B0 = 0.

(34)

Likewise, as in the hydrodynamic regime, the various
dispersion multiparametric coefficients involved in eq.
(34) are given in Appendix C. We apply the same pro-
cedure for the exact solutions as previously described.
The considered root of eq. (34) (first root, � = �1) with
real part �r > 0 and imaginary part �i < 0 is given as

�1 = p3r2 − r1

1 − p3
. (35)

Here, the diversified parameters involved are presented
as

r1 = s1 + (
s2

1 − 4s2
)1/2

2
, r2 = s1 − (

s2
1 − 4s2

)1/2

2
,

s1 = q1q2 − 9q0

q2
2 − 3q1

, s2 = q2
1 − 3q0q2

q2
2 − 3q1

,

p3 =
[
q2 − 3s1

q2 − 3s2

]1/3

,

q2 = 1

2
B5, q1 = −B6 − 1

8
B2

5 + 1

2
B4,

q0 = B7

B6
+ 1

16
B3

5 − 1

4
B5B4 + 1

2
B3,

B7 = n0n1 − B1

2
,

B6 =
[

5

64
B4

5 − 3

8
B4B

2
5 + 1

4
B2

4 + 1

2
B3B5 − B2

]1/2

,

n1 = 1

2
B4 − 1

8
B2

5 ,

n0 = 1

2
B3 − 1

4
B4B5 + 1

16
B3

5 .

The exact propagatory and stability features of the
considered cloud dynamics in both the hydrokinetic
perturbation regimes will be discussed in results and
discussions.

4. Results and discussions

The stability behaviours of the turbo-viscoelastic pul-
sational mode excitable in a strongly coupled multi-
fluidic self-gravitating turbulent dusty plasma having
illimitable boundary are investigated on the astrophysi-
cal spatiotemporal scales. A generalised hydrodynamic
model is methodologically constructed to derive a gen-
eralised linear dispersion relation (eq. (31)) followed by
a numerical illustrative analysis in two extreme cases
of perturbation scaling: the hydrodynamic (eq. (32))
and the kinetic (eq. (34)) regimes. The threshold con-
dition for the onset of instability in trivial cases is
K > 1 [1,16,17]. Various parametric inputs for the
numerical analysis to proceed are adopted from the judi-
cious plasma multiparametric windows relevant in the
real astroscenarios [4,7,13,29]. The obtained results are
graphically displayed in figures 1 and 2 in the hydrody-
namic limit and in figures 3 and 4 in the kinetic limit.
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(a) (b)

Figure 1. Profiles of the normalised (a) real frequency (�r , lower curves) and imaginary frequency (�i , upper curves) and (b)
phase velocity (Vp , lower curves) and group velocity (Vg , upper curves) of the turbo-viscoelastic pulsational mode with variation
in the Jeans-normalised wave number (K ) for different values of the negative-to-positive grain–charge ratio (σ = Z−/Z+) in
the hydrodynamic limit. Various lines link to σ = 1.30 (a: blue solid line, A: black dash–dotted line), σ = 1.40 (b: red dashed
line, B: magenta circle-marked solid line) and σ = 1.50 (c: green dotted line, C: brown square-marked solid line) respectively.
Fine input details are discussed in the text.

In figure 1, we show the profiles of the normalised (a)
real frequency (�r , lower curves) and imaginary fre-
quency (�i , upper curves) and (b) phase velocity (Vp,
lower curves) and group velocity (Vg, upper curves)
of the turbo-viscoelastic pulsational mode by varying
the Jeans-normalised wave number (K ) for different
values of negative-to-positive grain-charge ratio (σ =
Z−/Z+) in the hydrodynamic limit. Various lines link
to σ = 1.30, σ = 1.40 and σ = 1.50. The other param-
eters which are kept fixed are ne0 = 6.00 × 1012 m−3,
ni0 = 2.00 × 1013 m−3, n− = 4.00 × 1010 m−3, n+ =
3.50 × 1010 m−3, nn = 5.00 × 1010 m−3, Z− = 1500,
m− = 1.00 × 10−14 kg, m+ = 9.00 × 10−15 kg, mn =
9.00 × 10−15 kg, χ− = 1.00 × 10−1 kg m−1 s−1, χ+ =
1.00×10−1 kg m−1 s−1,χn = 1.00×10−1 kg m−1 s−1,
α1 = T−/Tp = 9 × 10−2, α2 = T+/Tp = 5 × 10−2,
α3 = Tn/Tp = 4×10−2, F−,+ = 1.00×10−1, F−,n =
1.00×10−1, F+,− = 1.00×10−1, F+,n = 1.00×10−1,
Fn,− = 1.00 × 10−1 and Fn,+ = 1.00 × 10−1. It
is seen that both �r and �i increase with increase in
σ (figure 1a). There exists a critical point in the K-
space, given as Kc ≈ 0.20 (figure 1a), beyond which
we speculate both growth (figure 1a, upper curves) and
propagatory (figure 1a, lower curves) characteristics of
the instability. The maximum growth is found to occur
at K ≈ 0.25 (figure 1a, lower curves). Here, it is seen
that the dust charge ratio (negative-to-positive grains)
acts as a destabiliser against the conjugational fluctu-
ations dynamics. Moreover, Vp and Vg increase with
increase in σ (figure 1b). The Vp–Vg profiles in K -
space confirm the dispersive nature of the fluctuations
(figure 1b). In theVg patterns, we see an explosive singu-
larity behaviour at the critical wave number, Kc ≈ 0.20.
It shows that no wave gets excited below this critical

point, and wave propagation initiates only beyond it.
Another interesting feature observed here is thatVg > 0,
which means that the longer waves (gravitational) move
faster than the shorter ones (acoustic), well bolstered in
the light of spectral wave packet model [30]. It indicates
that the wave dispersion caused is an anomalous type
rather than a normal one. This happens physically due
to the fluid turbulent effects in the presence of deviation
from gravito-electrostatic neutrality in the considered
fluid medium.

Figure 2 is depicted similar to figure 1, but now for
different values of negative-to-positive grain–mass ratio
(β−,+ = m−/m+) for Z− = 1000 and Z+ = 1500.
Various lines correspond to β−,+ = 1.10, β−,+ = 1.30
and β−,+ = 1.50. We see that the �r and �i fluctua-
tions decrease with increase in β−,+ (figure 2a). Clearly,
the grain–mass acts as a dispersive stabilising source
towards instability. In addition, we observe similar dis-
persive nature of fluctuations (figure 2b) as speculated
in the previous case (figure 1b). The only difference
found here is that the anomalous dispersion decreases
with increase in β−,+, and vice versa (figure 2b).

Figure 3 is displayed similar to figure 1, but for dif-
ferent values of viscoelastic relaxation mode velocity
(Vrx+, for positively charged grains) in the kinetic limit.
Various lines correspond to Vrx+ = 7.96×10−2 m s−1,
Vrx+ = 8.45 × 10−2 m s−1 and Vrx+ = 9.03 ×
10−2 m s−1. The other parameters which are kept fixed
are: ne0 = 6.00 × 1014 m−3, ni0 = 5.00 × 1014 m−3,
n− = 4.00 × 1011 m−3, n+ = 3.50 × 1011 m−3,
nn = 5.00 × 1011 m−3, Z− = 1500, Z+ = 1000,
m− = 10.00×10−10 kg,m+ = 7.00×10−10 kg,mn =
9.00 × 10−8 kg, χ− = 1.00 × 10−1 kg m−1 s−1, χ+ =
1.00×10−1 kg m−1 s−1,χn = 1.00×10−1 kg m−1 s−1,
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(a) (b)

Figure 2. Same as figure 1, but for different values of the negative-to-positive grain–mass ratio (β−,+ = m−/m+) for
Z− = 1000 and Z+ = 1500. Various lines correspond to β−,+ = 1.10 (a: blue solid line, A: black dash–dotted line),
β−,+ = 1.30 (b: red dashed line, B: magenta circle-marked solid line) and β−,+ = 1.50 (c: green dotted line, C: brown
square-marked solid line), respectively.

(a) (b)

Figure 3. Same as figure 1, but for different values of the viscoelastic relaxation mode velocity (Vrx+, for positive grains)
in the kinetic limit. Various lines correspond to Vrx+ = 7.96 × 10−2 m s−1 (a: blue solid line, A: black dash–dotted line),
Vrx+ = 8.45×10−2 m s−1 (b: red dashed line, B: magenta circle-marked solid line) and Vrx+ = 9.03×10−2 m s−1 (c: green
dotted line, C: brown square-marked solid line); respectively. Further details of the inputs are given in the text.

(a) (b)

Figure 4. Same as figure 3, but for different values of the viscoelastic relaxation mode velocity (Vrx−, for negative grains).
Various lines correspond to Vrx− = 1.2×10−1 m s−1 (a: blue solid line, A: black dash–dotted line), Vrx− = 1.4×10−2 m s−1

(b: red dashed line, B: magenta circle-marked solid line) and Vrx− = 1.6 × 10−2 m s−1 (c: green dotted line, C: brown
square-marked solid line), respectively.
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Table 1. Our results in the present study vs. those in the literature.

S. No. Item Viscoelastic pulsational
mode [7]

Turbo-viscoelastic pulsational
mode (present work)

1 Constitutive species Four-component partially
ionised charge-varying
plasma

Five-component partially
ionised static charge plasma

2 Electron–ionic dynamics Unstable fluids Perfect Boltzmannian
3 Dust charging mechanism Contact electrification

processes
Contact electrification and

radiation-induced electron
emission processes

4 Viscoelasticity Included Included
5 Turbulence effects Neglected Considered via nonlinear

log-barotropic law
6 Equation of state Isothermal Polytropic
7 Total time derivatives in basic

set up
Seven Six

8 Dispersion degree Septic dispersion relation Sextic dispersion relation
9 Propagation nature Propagation starts at K ≈ 0 Propagation starts at

K ≈ 0.20
10 Factors affecting wave

amplitude in hydrodynamic
regime

Dust mass and viscoelastic
relaxation time (negatively
charged dust)

Dust charge ratio
(negative-to-positive
grains); dust mass ratio
(negative-to-positive grains)

11 Factors affecting wave
amplitude in kinetic regime

Dust mass, ion-dust
equilibrium densities

Viscoelastic relaxation
velocity

12 Dust mass Acts as a stabiliser Not studied
13 Dust mass ratio (for

negatively-to-positively
charged grains)

Not considered Stabiliser

14 Ion-dust equilibrium density Acts as a stabiliser Not studied
15 Viscoelastic relaxation time Acts as a stabiliser Not studied
16 Viscoelastic relaxation

velocity
Not studied Stabiliser (for positively

charged grains) and
destabiliser (for negatively
charged grains)

17 Dust charge ratio
(negatively-to-positively
charged grains)

Not considered Acts as destabiliser

18 Nature of dispersion Normal dispersion Anomalous dispersion (from
figures 1b, 2b, 3b and 4b)

19 Applicability Structure formation in
complex astroenvirons

Structure formation in more
complex astroturboenvirons

α1 = Td−/Tp = 5 × 10−2, α2 = T+/Tp = 3 ×
10−2, α3 = Tn/Tp = 4 × 10−2, F−,+ = 1.00 ×
10−1 , F−,n = 1.00 × 10−1 , F+,− = 1.00 × 10−1,
F+,n = 1.00 × 10−1 , Fn,− = 1.00 × 10−1 and
Fn,+ = 1.00 × 10−1. It is seen that �r and �i
strengths of the fluctuations decrease with increase
in Vrx+ (figure 3a). This happens physically due to
the strongly coupled impurity ions with more mass
and less thermal velocity. It is now seen that Vrx+
acts as a stabilising agent towards dynamical instabil-
ity. It is further seen that, in the kinetic regime, the
Vp–Vg variations (figure 3b) show the same disper-
sive characteristic features as previously described in

figures 1b and 2b. The only difference seen here is that
the anomalous dispersion decreases with increase in
Vrx+ with cloud-centric peak shifting, and vice versa
(figure 3b).

Lastly, figure 4 is displayed similar to figure 3, but for
different values of viscoelastic relaxation mode veloc-
ity (Vrx−, for negatively charged grains). Various lines
correspond to Vrx− = 1.2 × 10−1 m s−1, Vrx− =
1.4 × 10−2 m s−1 and Vrx− = 1.6 × 10−2 m s−1.
Here, it is seen that �r and �i profiles of the fluctu-
ations increase with increase in Vrx− (figure 4a). This
is because the electrons are relatively weakly coupled
due to their lesser mass. It acts as a destabilising source
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in the wave dynamics processes. Moreover, the Vp–
Vg variations (figure 4b) depict the same dispersive
characteristic features as previously described in fig-
ures 1b, 2b and 3b. The only difference seen here is
that the anomalous dispersion exhibited by the con-
jugational instability increases with increase in Vrx−
with anticloud-centric peak shifting (against the previ-
ous cloud-centric peak shifting as in figure 3b), and vice
versa (figure 4b).

In summary, we can instantly say from our numerical
analysis that the relevant wave features under the com-
bined action of the conjugational gravitoelectrostatic
interplay in the turbo-viscoelastic correlated astrocloud
fluid in both the hydrokinetic regimes are illustrated.
Various stabilising and destabilising sources against the
cloud collapse are identified. The results on the current
turbo-viscoelastic pulsational mode stability are in good
agreement with the earlier viscoelastic pulsational mode
features [7] as clearly highlighted in table 1. Various
qualitative aspects between the complementary turbo-
viscoelastic and viscoelastic pulsational modes for an
instant perception are also concisely outlined in table 1.

5. Conclusions

The turbo-viscoelastic pulsational mode instability beha-
viours in a strongly coupled multifluidic self-gravitating
plasma fluid of infinite spatial extension (>> Jeans
length) are theoretically investigated in the framework
of a generalised hydrodynamic model configuration.
The instability analysis is executed in two extreme
cases of the hydrodynamic and kinetic regimes of
paramount astronomical importance. A constructive
numerical illustrative scheme is presented in detail. Var-
ious stabilising and destabilising key factors against
the non-local naturalistic cloud collapse are identified
judiciously. The main conclusive remarks drawn are as
follows:

1. A theoretical model study of the turbo-viscoelstic
pulsational mode instability in a strongly coupled mul-
tifluidic self-gravitating complex plasma fluid is con-
structed.

2. A detailed generalised dispersion relation (polyno-
mial in nature) and its illustration on the fluctuations
dynamics are numerically presented.

3. The turbo-viscoelstic (pulsational) instability shows
both the propagatory and anomalous dispersive features
in the cloud complex.

4. In the hydrodynamic regime, the dust-charge ratio
(negatively-to-positively charged dust grains) acts as
the destabiliser and the dust–mass ratio (negatively-to-
positively charged dust grains) acts as the stabilising

sources against the non-local gravitational collapse
dynamics.

5. In the kinetic regime, the viscoelastic relaxation
mode velocity of the positively (negatively) charged
grains acts as a stabiliser (destabiliser).

6. The group dispersion of the pulsational instability
interestingly exhibits a singular type of behaviour at a
certain critical wave number on the Jeans scale length
(Kc ≈ 0.20).

7. Comparison of our results with the literature shows
good agreement, thereby ensuring the reliability of the
proposed bimodal analysis.

To sum up, we further concede that considering the
effects of complex fluid turbulence via the nonlinear
logatropic barotropic nonlinear law [13] in our presented
investigation is physically not so justifiable. It is hereby
suggested that a fully nonlinear spectral power-law treat-
ment of both the wave kinetic energy and cloud material
density [13] is indeed necessary. This important fluid
aspect, however, is left now for our next investigations.

The presented analysis, despite some analytic sim-
plifications in the basic fluid model set up without any
loss of astrobasic generality, may be conveniently use-
ful in understanding the physical insights responsible
for the formation of complex astronomical environs
and associated hydrowave instability phenomena of
self-gravitational origin leading to wave-induced mat-
ter accretive–decretive processes and subsequent early
phases of large-scale bounded structures via global
cloud collapse in diversified astro-cosmo-plasmic cir-
cumstances.

Acknowledgements

Active cooperation from Tezpur University is duly
acknowledged. The financial support from the SERB
(Grant- EMR/2017/003222) is thankfully recognised.

Appendix A: General dispersion coefficients

Various multiparametric coefficients appearing in our
derived generalised dispersion relation (eq. (31)) in the
previously described customary notations are presented
as

a1 = (
F+,− + F+, n

)
K−1,

a2 = iβ−,+
[
(1 + γ )

(
T+
Tp

)

−μZ2+n+0
{
(ni0 − ne0)μ − K 2}−1

]
K

−im+n+0ρ
−1
0 K−1,
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a3 = 1

κ+
V 2
r x+(τ+ m+ n+0)K ,

a4 = (
F−,+ + F−, n

)
K−1,

a5 = i

[
(1 + γ )

(
T−
Tp

)
− μZ2−n−0

×{
(ni0−ne0)μ−K 2}−1

]
K−im−n−0ρ

−1
0 K−1,

a6 = 1

κ−
V 2
r x−(τ− m− n−0)K ,

a7 = (
Fn,− + Fn,+

)
K−1,

a8 = i

[
β−,n

{
(1+γ )

(
Tn
Tp

)}
K−m+n+0ρ

−1
0 K−1

]
,

a9 = 1

κn
V 2
r xn(τn mn nn0)K ,

a10 = −i m−n−0ρ
−1
0 K−1,

a11 = −i mnnn0ρ
−1
0 K−1,

a12 = i
[
μZ+Z−n−0β−,+

{
(ni0−ne0)μ−K 2}−1

]
K

−im−n−0ρ
−1
0 K−1,

a13 = i
[
μZ+Z−n+0

{
(ni0 − ne0)μ − K 2}−1

]
K

−im+n+0ρ
−1
0 K−1,

a14 = −i m+n+0ρ
−1
0 K−1.

Here, the parameter

Vrx j =
[(

χ j/
(
τ j m j n j0

))1/2
]

appearing in a3, a6 and a9 is the viscoelastic relaxation
mode velocity associated with the j th dust species.

Appendix B: Hydrodynamic dispersion coefficients

The various multiparametric coefficients appearing in
our derived generalised dispersion relation (eq. (32)) in
the hydrodynamic regime are given as

A5 = i{a1 + a3 + a4 + a6 + a7 + a9}K ,

A4 = ia8 − (a4 + a6)(a7 + a9)K + ia5

+Fn,− F−,nK
−1

−(a1 + a3)(a4 + a6 + a7 + a9)K + ia2

+F+,− F−,+K−1 + F+,n Fn,+K−1,

A3 = −(a4 + a6)a8K + a5(a7 + a9)K

+Fn,−a11 + F−,na10

−i(a1 + a3)
{−ia8K+(a4 + a6)(a7 + a9)K

2

−ia5K
−1−Fn,− F−,n

}−a2(a4+a6+a7+a9)K

+i F+,−
{
F−,+a7 + F−,+a9

+ia13 + Fn,+F−,n K
−1}

−F−,+ a12 + i F+,n
{
F−,+Fn,−K−1

+Fn,+(a4 + a6) + ia14
} − Fn,+a11,

A2 = −(a5a8 − a10a11)K − i(a1 + a3){(a4 + a6)a8

+a5(a7+a9)+Fn,−a11K
−1 + F−,na10K

−1}K 2

−ia2
{−i K−1a8 + (a4 + a6)(a7 + a9)

−ia5K
−1 − Fn,−F−,nK

−2}K 2

+i F+,−
{
F−,+a8K

−1 − a7a13

−a9a13 − Fn,+a11K
−1 − F−,na14K

−1} K
−ia12

{
F−,+a7 + F−,+a9 + ia13

+Fn,+F−,nK
−1}K

−ia11
{
F−,+Fn,−K−1 + Fn,+

(a4 + a6)

+ia14
}
K − i F+,n

{
F−,+a10K

−1 + Fn,−a13K
−1

+Fn,+a5K
−1 + a4 a14 + a6 a14

}
K ,

A1 = −i(a1+a3)(a5a8−a10a11)K
2−ia2

{
(a4+a6)a8

+a5(a7+a9)+Fn,−a11K
−1+ F−,na10K

−1}K 2

−i F+,−(a8a13 − a11a14)K

−ia12
(
F−,+a8K

−1 − a7a13

−a13a9 − Fn,+a11K
−1 − F−,na14K

−1)K 2

+ia15
(
F−,+a10K

−1 + Fn,−a13K
−1

+ Fn,+a5K
−1 + a4a14 + a6a14

)
K 2

+i F+,n(a10a13 − a5a14)K ,

A0 = −i[a2(a5a8 − a10a11) − a12(a8a13 − a11a14)

+a11(a10a13 − a5a14)]K
2.

Appendix C: Kinetic dispersion coefficients

Various multiparametric coefficients appearing in our
derived generalised dispersion relation (eq. (32)) in the
kinetic regime are given as

B5 = i(a1 + a4 + a7)K ,

B4 =
{
g1

(
τ−τnω

2
J

)−1 − a1(a4 + a7)
}
K 2

+{
ia2 − a3(τ+ωJ )

−1}K
+F+,−F−,+ + Fn,+F+,n τ−τ+,

g1 = −a4a7τ−τnω
2
J + i(a5 + a8)τ−τnω

2
J K

−1

−(a9τ− + a6τn)ωJ K
−1

+Fn,−F−,n τnτ−ω2
J K

−2,

B3 = {
ia1g1K + g2 + i F+,− g4

}(
τ−τnω

2
J

)−1
K 2
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−{
a2 + ia3

(
τ+ω2

J

)−1}
(a4 + a7)K

2

−a12F−,+K − a11Fn,+K

−ig7F−,n
(
τ+τnω

2
J

)−1
K 2,

g2 = −{(a4a8 + a5a7)}τ−τnω
2
J

+i(a4a9τ− + a6a7τn)ωJ

+(
a11Fn,− + a10F−,n

)
τ−τnω

2
J K

−1,

g4 = (
a7F−,+ + ia13 + F−,n Fn,−K−1)τ−τnω

2
J K

−1,

g7 = −{(
a4Fn,+ + ia14 + F−,+Fn,−K−1)}

×τ−τnω
2
J K

−1,

B2 = {
i(a1g2 + a2g1 − a12g4 + a15g7)

−a3g1(τ+ωJ )
−1}(τ−τnω

2
J

)−1
K 3

+{(
g3 + ig5F+,−

)
τ+

−ig8F+,nτ−
}(

τ+τ−τnω
2
J

)−1
K 2,

g3 = −{(a5a8 + a10a11)}τ−τnω
2
J

−i(a5a9τ− + a6a8τn)ωJ − a6a9,

g5 = −a7a13τ−τnω
2
J + {(

a8 F−,+ − a11 Fn,+
+a14F−,n

)
τnωJ + ia9F−,+

}
τ−ωJ K

−1,

g8 = a4a14τ−τnω
2
J + {(

a10 F−,+ − a5 Fn,+
+a13Fn,−

)
τ−τnω

2
J − ia6Fn,+τnωJ

}
K−1,

B1 = {
i(a1g3 + a2g2 − a12g5 + a15g8)

−a3g2(τ+ωJ )
−1}(τ−τnω

2
J

)−1
K 3

+i
{(
g6F+,−

)
τ−1− −g9F+,n τ−1+

}(
τnω

2
J

)−1
K 2,

g6 = −(a8a13 − a11 a14)τnω
2
J − ia9a13ωJ ,

g9 = (a5a14 − a10 a13)τ−τnω
2
J + ia6a14τn ωJ ,

B0 = {
i(a2g3 + a11g9 + a12a7) − a3g3(τ+ωJ )

−1}
×(

τ−τnω
2
J

)−1
K 3.
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