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Abstract. In this paper, the mechanism of system solutions approaching infinity is explored based on a modified
Rayleigh–Duffing oscillator with two slow-varying periodic excitations. System solutions approaching infinity is a
new novel route to bursting oscillation, and are not reported yet. The system can be separated into a fast subsystem and
a slow subsystem according to the slow–fast analysis method. We find that there is a critical value for the fast subsys-
tem, which limits the original region of the stable equilibrium point and the stable limit cycle, the right of which is the
divergent region. When the control parameter slowly varies closely to the critical value δCR, both the stable equilib-
rium point and the stable limit cycle quickly leave the original region and approach positive infinity. The mechanism
of two different bursting forms called bursting oscillation of point/point and bursting oscillation of cycle/cycle
induced by system solutions approaching infinity are explored. This paper provides a new possible route to bursting
oscillation unrelated to bifurcations and deepens the comprehension of bursting dynamics behaviours. Lastly, the
accuracy of our study is verified by overlapping the transformed phase portraits onto the bifurcation diagrams.
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1. Introduction

Various nonlinear natural systems are characterised
by interactions between dynamical processes that run
at quite different time-scales [1–5]. These can often
be modelled as slow–fast systems, where system
behaviours can be separated into interacting slow and
fast changing variables. In the study of slow–fast
dynamics, a special mode of oscillation called burst-
ing oscillation, which is often observed in physics,
biology, mechanics, chemistry, etc. [6–9] has attracted
widespread attention. Bursting oscillation is a waveform
that switches between a relatively large-amplitude oscil-
lation and a nearly harmonic small-amplitude excursion.
Normally speaking, if all the state variables behave
in the static states stage or the microamplitude vibra-
tions, the system is in quiescent state [10]. If all the
state variables exhibit large-amplitude vibrations, we
say the system is in a spiking state [11]. Two pat-
terns of bifurcations can be found in bursting dynamics,
one leading to the system switching from a quiescent
state to a spiking state, and the other leading to the

system switching from a spiking state to a quiescent
state [12,13].

Nonlinear systems with slow-varying periodic exci-
tations are special forms of a slow–fast system [14,15],
which can be expressed in the form

ẋ = f (x, μ, A cos(ωt)) (1.1)

with a magnitude difference between the forcing fre-
quency ω and the natural frequency ωN . In order to
investigate the coupling of the two frequencies, system
(1.1) can be rewritten in the form [16,17]

ẋ = f (x, μ, δ), (fast subsystem)

δ = A cos(ωt), (slow subsystem) (1.2)

in which δ can be considered as a generalised slow-
varying state variable. Then, system (1.2) becomes a
generalised autonomous system. Considering δ as a
control parameter, many results related to the effect
of different time-scales are obtained. For example,
Lakrad and Schiehlen [18] investigated the effects of
slow-varying periodic forcing excitation on a shallow
arch model, and a novel bursting pattern induced by
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Figure 1. Bursting oscillation of point/point (a–c) for μ = −0.01 and bursting oscillation of point/point (d–f) for
μ = 0.5 with different values of parameter F when γ = 1.0, α = 2.0, β = 1.0 and ω = 0.01. (a) F = 0.001,
(b) F = 0.002, (c) F = 0.003, (d) F = 1.0, (e) F = 1.5 and (f) F = 2.0.
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Figure 2. Solutions of eq. (2.2) for F = 10.0, μ = 1.0, α = 2.0, β = 1.0 and ω = 0.01. (a) γ = 1.0 and (b) γ = −1.0.

the bifurcation delay was analysed. Simo and Woafo
[19] found that the forcing excitation can affect the
dynamical behaviours of the bursting oscillations gen-
erated by double-well in Duffing oscillator. Kovacic
and Lenci [20] showed that when the system takes a
low-valued angular excitation frequency, the response
exhibits a form of bursting oscillation, induced by the
fast oscillations around the slow flow in a forced damped
purely nonlinear oscillator. Zhang et al [21] revealed
a novel vibration form called the slow–fast oscilla-
tion phenomenon when the frequency of the periodic
electrical load is much smaller than the natural fre-
quency of the hydraulic generating system. Ma and
Cao [22] presented the bifurcation mechanisms of the
periodic and chaotic bursting oscillations induced by
delayed pitchfork bifurcation based on the jerk cir-
cuit system driven by parametric excitation. Han et al
[23] proposed a general method for analysing burst-
ing induced by two slow-changing excitations, and
based on this, bursting patterns induced by ampli-
tude modulation [24] and pulse-shaped explosion [25]
are discussed. Wang et al [26] explored the mecha-
nism of possible bursting oscillations in the Filippov
system.

Izhikevich [27] has given a good conclusion of possi-
ble routes to bursting oscillation related to codimension-
1 bifurcations in the general smooth systems. However,
other approaches that lead to bursting dynamics unre-
lated to bifurcations still need to be focussed on. For our
study, a new dynamic mechanism named ‘system solu-
tions approaching infinity’ resulting in bursting oscilla-
tion is revealed, which is independent of bifurcations.
For this purpose, we consider a parametrically-driven
extended Rayleigh–Duffing oscillator [28] with three-

Figure 3. Bifurcation diagram of system (2.1) for the fixed
parameters F = 0.02, γ = 1.0, α = 2.0, β = 1.0 and
δ = −0.5. H means Hopf bifurcation, which exhibits at
μ = 0. Solid red line indicates stable equilibrium branch and
red dotted lines indicate the maximum and minimum ampli-
tudes of stable oscillations bifurcated from H.

well potential modelled by

ẍ − μ(1 − ẋ2)ẋ + (1 − γ cos ωt)(x + αx3 + βx5)

= F cos ωt, (1.3)

where α and β are two positive constant parameters,γ
is the parametric excitation amplitude, the two cosine
functions cos ωt are periodic excitations and F is the
forcing excitation amplitude. The case considered in this
paper is that the natural frequency ωN of system (1.3) is
much greater than the periodic excitation frequency ω,
i.e. there is an order of magnitude difference between
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Figure 4. System solutions approaching positive infinity related to stable equilibrium E near δCR = 1/γ .
Solid red lines indicate stable equilibrium curves and blue dashed lines indicate critical lines δCR = 1/γ .
(a) γ = 2, δCR = 0.5, (b) γ = 1.5, δCR = 0.66667, (c) γ = 1.2, δCR = 0.83333 and (d) γ = 1, δCR = 1.0.

them. Then, the effect of two time-scales appears. The
effective method to solve the slow–fast dynamics is the
slow–fast analysis method, which is proposed by Rinzel
[29]. According to the slow–fast analysis method, sys-
tem (1.3) turns into a combination of a slow subsystem
and a fast subsystem. The main dynamic behaviour of
system (1.3) is determined by the fast subsystem, and
the slow subsystem plays a regulatory role in the main
dynamic behaviour of the system.

In this paper, two different bursting patterns induced
by system solutions approaching infinity are investi-
gated in detail, and are presented in figure 1. We can
easily see that the two bursting patterns are related to
stable equilibrium point and stable limit cycle, respec-
tively. The rest of this paper is organised as follows. In
§2, we summarise some of the results related to stabil-

ities and bifurcations of the fast subsystem by treating
the cosine function cos ωt as a control parameter. In §3,
the mechanism of system solutions approaching infin-
ity related to the stable equilibrium point and the stable
limit cycle are explored. In §4, we propose the mecha-
nism of two different bursting forms induced by system
solutions approaching infinity. Finally, a brief conclu-
sion is given in §5.

2. Bifurcation analysis

Considering cos ωt as a control parameter δ, we obtain
a fast subsystem given by
{
ẋ = y
ẏ=Fδ+μ(1−y2)y−(1−γ δ)(x+αx3+βx5)

(2.1)
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and a slow subsystem by δ̇ = −ω sin ωt .
E(x, 0) is a generalised form of the equilibrium point

of system (2.1), where x depends on the real roots of the
algebraic equation

Fδ − (1 − γ δ)(x + αx3 + βx5) = 0. (2.2)

It is easy to see that if the roots of eq. (2.2) exist, γ

and δ must satisfy 1 − γ δ �= 0. However, if the param-
eters γ and δ satisfy the equation 1 − γ δ = 0, i.e.,

δ = 1

γ
, (2.3)

eq. (2.2) has no equilibrium point. And we also find that
if 1−γ δ ≈ 0, x approaches positive or negative infinity
(see figure 2).

Now, we analyse the bifurcation behaviours of system
(2.2) when 1 − γ δ �= 0. At the equilibrium point E ,
we linearise system (2.1), and the Jacobian matrix is
obtained, which can be expressed as

J =
(

0 1
−(1 − γ δ)(1 + 3αx2 + 5βx4) μ

)
(2.4)

and the characteristic equation can be written as

F(λ) = λ2 − μλ + (1 − γ δ)(1 + 3αx2 + 5βx4) = 0.

(2.5)

According to the Routh–Hurwitz criterion [30], we can
conclude that E is stable for μ < 0 and 1 − γ δ > 0
and unstable for μ > 0. Therefore, at the critical value
μ = 0, a pair of pure imaginary root of eq. (2.5) may
exist, indicating the occurrence of a Hopf bifurcation,
which results in the instability of the equilibrium point
E and the appearance of a limit cycle with the oscillation
frequency �2

H = (1 − γ δ)(1 + 3αx2 + 5βx4) (shown
in figure 3).

3. System solutions approaching infinity

The results of stability and bifurcation behaviours are
summed up in §2. On the basis of the results above,
we shall reveal the mechanism of transition in this sec-
tion, which plays a significant part leading to bursting
behaviours.

3.1 System solutions approaching infinity related to
the stable attractor E

In order to analyse the new novel route of system
solutions approaching infinity to bursting oscillations
clearly, we fix the parameters as F = 0.02, μ = −0.01,
α = 2, β = 1 and ω = 0.01. In this condition, the sys-
tem solutions approaching infinity is related to the stable

Figure 5. Numerical simulation of the relationship of critical
value δCR and γ .

equilibrium point. The equilibrium branch represented
by the change of the system solutions with the slow-
varying parameter δ is shown in figure 4. We can see
that there are two distinctly different parts of the equi-
librium branch with the increase in the control parameter
δ, i.e. a flat section on the left part and a steep section on
the right part, and most values of δ are on the flat section.
By increasing δ gradually, system solutions also increase
gradually. When δ approaches the critical value δCR, a
sudden steep transition of the stable equilibrium point
E takes place, i.e. the system solution of the attractor E
jumps to the positive infinity quickly from the flat sec-
tion of the original place. This type of sharp transition is
defined as ‘system solutions of stable equilibrium point
attractor approaching infinity’.

It is easy to find that δCR strongly depends on
the parameter γ (see figure 5). The δ−γ curve is a
monotonous decreasing function. At the beginning, by
increasing γ ≈ 0 to γ = 0.5 gradually, δCR decreases
sharply almost in a straight line. Then, δCR decreases
gently when γ increases from γ = 0.5 to γ = 1.0.

3.2 System solutions approaching infinity related to
the stable limit cycle

The route of system solutions approaching infinity
related to stable attractor E has been analysed in §3.1.
In this subsection, we shall present the other route of
system solutions approaching infinity related to the sta-
ble limit cycle. We fix F = 0.02, μ = 1.5, α = 2, β =
1 and ω = 0.01. As μ varies from negative to positive,
the stable attractor is a stable limit cycle and the equi-
librium point E is always unstable. The change process
of the system solution behaviours with δ is presented in
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Figure 6. System solutions approaching positive infinity related to stable limit cycle near δCR = 1/γ . The red dotted lines
indicate the maximum and minimum amplitudes of stable oscillations, blue dashed lines indicate critical lines δCR = 1/γ .
(a) γ = 2, δCR = 0.5, (b) γ = 1.5, δCR = 0.66667, (c) γ = 1.2, δCR = 0.83333 and (d) γ = 1, δCR = 1.0.

figure 6. When δ changes from negative to positive and
approaches δCR, the limit cycle surrounding the unsta-
ble equilibrium point E follows a sharp transition to
infinity. Considering that the stable attractor is a stable
limit cycle, the sharp transition in this parameter condi-
tion can be classified as ‘system solutions of stable limit
cycle attractor approaching infinity’.

4. Bursting induced by system solutions
approaching infinity

We have explored in details, the two routes of system
solutions approaching infinity. Based on this, we turn to
eq. (1.3) with the modulation frequency 0 < ω � 1,

and explore two attractive bursting patterns induced by
the two routes of system solutions approaching infinity
therein.

4.1 Spiking state and quiescent state areas

As previously mentioned, if we want the bursting phe-
nomena to occur, an important factor is that the dynamic
behaviour of system (2.1) must be able to switch
between a spiking state and a quiescent state. Gen-
erally, the spiking state is a stable limit cycle with a
relatively large amplitude, and the quiescent state is a
stable equilibrium point or a stable limit cycle with a
nearly small amplitude [31,32]. In this paper, as the crit-
ical value is represented by the cosine function cos ωt ,
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(a) (b)

(c)

Figure 7. Spiking state and quiescent state areas in the stable region (−δCR, δCR). (a) The mode cos ωt visits the quiescent
state area, (b) the mode cos ωt visits the quiescent and spiking areas and (c) the mode cos ωt visits the divergent area.

(a) (b)

Figure 8. Bursting oscillation of point/point. (a) Phase diagram on the space of (x, y) and (b) time series.
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(a) (b)

Figure 9. Slow–fast analysis of bursting oscillation of point/point. Blue arrows indicate the directions of the trajectory and
green solid line indicates the stable equilibrium point curve. (a) Transformed phase portrait on the space of (δ, x) and (b)
transformed phase portrait overlapped with the bifurcation curve and the critical value curve.

(b)(a)

Figure 10. Bursting oscillation of cycle/cycle. (a) Phase portrait on the space of (x, y) and (b) time history.

when δ slowly varies through the transition of the qui-
escent state area critical line, i.e. δ can visit the spiking
state and the quiescent state areas periodically and burst-
ing oscillation is generated (see figure 7).

The fast subsystem can exhibit interesting dynamics
of important characteristics similar to those of the qui-
escent state and spiking state. Before the sudden steep
transition, the stable equilibrium point or the stable limit
cycle stays near the origin. This dynamical behaviour is
relatively smooth and mild, which can be regarded as the
quiescent state. When δ approaches the critical value,
the sudden steep transition takes place. This dynami-
cal behaviour is violent and catastrophic, which can be
considered as the spiking state.

In figure 7, we can see that this is the only one quies-
cent state critical line. According to the different regions
where the control parameter δ passes through, the cross-
ing modes can be divided into three cases. In the first
case, δ always stays in the quiescent state area, and the
system may behave in a periodic oscillation. In the sec-
ond case, δ can visit the quiescent state area and the
spiking state area, and bursting oscillation is formed.
In the third case, δ is big enough to enter the divergent
area, and then the system diverges. The stable region
(−δCR, δCR) also can be separated into two parts, a qui-
escent state area and a spiking state area. The main body
of the stable area is quiescent state area, which takes up
most of the parameter space.
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(a) (b)

(c)

Figure 11. Slow–fast analysis of bursting oscillation of point/point. Burgundy arrows indicate the directions of the trajectory
and black dotted line indicates the unstable equilibrium point curve. (a) Transformed phase portrait, (b) transformed phase
portrait overlapped with the bifurcation curve and the critical value curve and (c) local enlargement of the overlay.

4.2 Bursting oscillation of point/point

The schematic diagrams of parameter spatial distri-
bution of the quiescent state and spiking state have
been presented. Next, we shall explore the two bursting
oscillations induced by system solutions approach-
ing infinity. In this subsection, bursting oscillation of
point/point is explored first.

Since the forcing excitation frequency ω is small,
according to the slow–fast analysis method, we can treat
the slow-varying excitation cos ωt as a state variable δ.
And then, eq. (2.1) becomes a new three-dimensional
system with three variables (x, y, δ = cos ωt). By
projecting the new three-dimensional system on the sub-
space (δ, x) or (δ, y), we can obtain the transformed
phase portrait [33], which exhibits the relationships

between the new state variable δ and the other two vari-
ables x and y.

When we fix the parameters as F = 0.02, μ = −0.01,
γ = 1.0, α = 2.0, β = 1.0 and ω = 0.01, the related
phase diagram and time history are presented in fig-
ure 8. It can be easily seen that the trajectory switches
between two equilibrium points. In order to investigate
the dynamical mechanism of this oscillation, we super-
imposed the transformed phase portrait in the plane of
(δ, x) onto the bifurcation diagram, shown in figure 9,
and the critical value of δ is δCR = 1/γ = 1.0.

In such a case, the stable attractor is an equilibrium
E . The trajectory follows almost strictly along E for a
long time interval, corresponding to the quiescent state.
When δ approaches the critical value δCR = 1.0, sys-
tem (2.1) undergoes a catastrophic transition from the
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origin of the stable equilibrium point E to the positive
infinity, which leads to the spiking state. When δ arrives
at the maximum value 1.0, then it starts to decrease.
From figure 4d, we can see that the solutions of system
approach zero in the extreme time, leading to the trajec-
tory undergoing an oscillation to the stable equilibrium
E with high frequency quickly. Figure 9 shows that the
amplitude of the high frequency decreases gradually,
corresponding to the quiescent state. When δ reaches
the minimum value −1, the next evolution begins.

Bursting oscillation of point/point is a common
bursting type, which is investigated so much [34–36].
However, the mechanism of bursting oscillation of
point/point in this paper is different from that of the pre-
vious study, as the transition between the spiking state
and the quiescent state is not bifurcation, but system
solutions approaching infinity.

4.3 Bursting oscillation of cycle/cycle

Bursting oscillation of point/point has been discussed in
§4.2. In this subsection, we shall explore the other burst-
ing oscillation induced by system solutions approaching
infinity, i.e. bursting oscillation of cycle/cycle.

For this purpose, we fix the parameters as F =
0.02, μ = 1.5, γ = 1.0, α = 2.0, β = 1.0 and
ω = 0.01. The stable attractor in this condition is a
stable limit cycle. The phase diagram and time history
are shown in figure 10, from which we can see that
the trajectory always moves in the stable limit cycle.
The mechanism of this bursting also can be revealed by
superimposing the phase diagram in the space of (δ, x)
onto to the bifurcation diagram of the control parameter
δ (see figure 11).

The trajectory first moves in the vector field of the
stable limit cycle, and behaves in a high-frequency oscil-
lation with a relatively small amplitude. This movement
can be considered as the quiescent state. When δ slowly
changes to the critical value δCR = 1.0, a sudden sharp
transition takes place, leading to the trajectory approach-
ing infinity, corresponding to the spiking state. After
reaching the maximum value 1.0, δ begins to decrease.
The amplitude of the oscillations decreases sharply in
a narrow parameter interval. Then, the trajectory enters
the quiescent state area. The oscillation becomes mild
and oscillates in the limit cycle oscillation with a small
amplitude. When δ reaches the minimum value −1, the
next evolution starts.

5. Conclusions

The modified Rayleigh–Duffing oscillator behaves in
different bursting dynamics under different parameter

conditions. In this paper, we reveal a novel route to burst-
ing oscillation, called system solutions approaching
infinity, which is not reported yet. The system exhibits
one critical value, and when the periodic control param-
eter slowly varies through the critical value, a sudden
sharp transition takes place, leading to the system solu-
tion approaching infinity. Based on this phenomenon,
we present an explanation of a new novel mechanism
for two different patterns of bursting oscillations, which
are common and well-studied. Our research provides a
special scheme connecting the quiescent state and the
spiking state independent of bifurcations, and gives a
new idea of the possible mechanism of bursting dynam-
ics.
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