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Abstract. In this paper we report the control and synchronisation of chaos in a memristive Murali–Lakshmanan–
Chua (MLC) circuit. This circuit, introduced by the present authors in 2013, is basically a non-smooth system
having two discontinuity boundaries by virtue of it having a flux-controlled active memristor as its nonlinear
element. While the control of chaos has been effected using state feedback techniques, the concept of adaptive
synchronisation and observer-based approaches have been used to effect synchronisation of chaos. Both these
techniques are based on state space representation theory which is well known in the field of control engineering.
As in our earlier works on this circuit, we have derived the Poincaré discontinuity mapping (PDM) and zero
time discontinuity mapping (ZDM) corrections, both of which are essential for realising the true dynamics of
non-smooth systems. Further, we have constructed the observer- and controller-based canonical forms of the state-
space representations, have set up the Luenberger observer, derived the controller gain vector to implement state
feedback control and calculated the gain matrices for switch feed back and finally performed parameter estimation for
effecting observer-based adaptive synchronisation. Our results obtained by numerical simulation include time plots,
phase portraits, estimation of the parameters and convergence of error graphs and phase plots showing complete
synchronisation.

Keywords. Memristive Murali–Lakshmanan–Chua circuit; state-space representations; canonical forms;
Luenberger observer; feedback control; gain vectors and matrices; pole placement.
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1. Introduction

Chaotic systems are characterised by their high sen-
sitivity to even infinitesimal changes in their initial
conditions. As a result, these systems, by their intrin-
sic nature, defy attempts at control or synchronisation.
Nevertheless, many techniques have been proposed by
a large group of researchers to control and synchronise
chaotic systems. Control of chaos refers to a process
wherein a judiciously chosen perturbation is applied to
a chaotic system, in order to realise a desirable behaviour
[1]. Since the seminal contribution by Ott et al in 1990
[2], the concept of control of chaos has been modified
and developed by many researchers [3] and applied to
a large number of physical systems [4]. Synchronisa-
tion of chaos, on the other hand, can be described as
a process wherein two or more chaotic systems (either

equivalent or non-equivalent) adjust a given property of
their motion to a common behaviour, due to coupling
or forcing. This may range from complete agreement of
trajectories to locking of phases [5–7].

In this paper, we describe the general principles
of control of chaos using state feedback mechanism
and synchronisation of chaotic systems using observer-
based adaptive techniques. Further using these, we
report the control of chaos in a single memristive
Murali–Lakshmanan–Chua (MLC) oscillator and the
synchronisation of chaos in a two-coupled memristive
MLC oscillator system. The paper is organised as fol-
lows. In §2 we give a brief introduction of the memristive
MLC circuit, its circuit realisation, its circuit equations
and their normalised forms and the description of the
circuit as a non-smooth system. In §3 the various algo-
rithms for the control of chaos are outlined. In §4 the
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Figure 1. The memristive MLC circuit.

control of chaos in the memristive MLC circuit using
state feedback control technique is dealt with. Simi-
larly, in §§5 and 6 the concept of synchronisation of
chaos and its realisation are explained, while in §7 the
observer-based adaptive synchronisation of chaos in a
system of two-coupled memristive MLC oscillator is
described. Finally in §8, the results and further discus-
sions are given.

2. Memristive Murali–Lakshmanan–Chua circuit

The memristive MLC circuit was introduced by the
present authors [8] by replacing the Chua’s diode in
the classical Murali–Lakshmanan–Chua circuit with an
active flux-controlled memristor as its non-linear ele-
ment. The analog model of the memristor used in this
work was designed by Ishaq Ahamed et al [9]. The
schematic of the memristive MLC circuit is shown in
figure 1, while the actual analog realisation based on
the prototype model for the memristor is shown in fig-
ure 2.

Applying Kirchoff’s laws, the circuit equations can
be written as a set of autonomous ordinary differential
equations (ODEs) for the flux φ(t), voltage v(t), current
i(t) and the time p in the extended coordinate system
as
dφ

dt
= v,

C
dv

dt
= i − W (φ)v,

L
di

dt
= −v − Ri + F sin(�p),

d p

dt
= 1. (1)

Here W (φ) is the memductance of the memristor and is
as defined in [10] as

W (φ) = dq(φ)

dφ
=

{
Ga1, |φ| > 1,

Ga2, |φ| ≤ 1,
(2)

where Ga1 and Ga2 are respectively the slopes of the
outer and inner segments of the characteristic curve of

the memristor. We can rewrite eqs (1) in the normalised
form as

ẋ1 = x2,

ẋ2 = x3 − W (x1)x2,

ẋ3 = −β(x2 + x3) + f sin(ωx4),

ẋ4 = 1. (3)

Here dot stands for differentiation with respect to the
normalised time τ (see below) and W (x1) is the nor-
malised value of the memductance of the memristor,
given as

W (x1) = dq(x1)

dx1
=

{
a1, |x1| > 1,

a2, |x1| ≤ 1,
(4)

where a1 = Ga1/G and a2 = Ga2/G are the normalised
values of Ga1 and Ga2 mentioned earlier and are nega-
tive. The rescaling parameters used for the normalisation
are

x1 = Gφ

C
, x2 = v, x3= i

G
, x4 = Gp

C
, G = 1

R
,

β = C

LG2 , ω = �C

G
= 2πνC

G
, τ = Gt

C
, f = Fβ.

(5)

In our earlier work on this memristive MLC circuit,
see [8], we reported that the addition of memristor
as the nonlinear element converts the system into a
piecewise-smooth continuous flow having two discon-
tinuous boundaries, admitting ‘grazing bifurcations’, a
type of discontinuity induced bifurcation (DIB). These
grazing bifurcations were identified as the cause for
the occurrence of hyperchaos, hyperchaotic beats and
transient hyperchaos in this memristive MLC system.
Further we have reported ‘discontinuity-induced Hopf
and Neimark–Sacker bifurcations’ in the same circuit,
refer [11]. Thus, the memristive MLC circuit shows rich
dynamics by virtue of it being a non-smooth system.
Hence, we give a brief description of the memristive
MLC circuit in the framework of non-smooth bifurca-
tion theory.

2.1 Memristive MLC circuit as a non-smooth system

The memristive MLC circuit is a piecewise-smooth con-
tinuous system by virtue of the discontinuous nature
of its nonlinearity, namely the memristor. An active
flux-controlled memristor is known to switch state with
respect to time from a more conductive ON state to
a less conductive OFF state and vice versa at some
fixed values of flux across it, see [11]. In the nor-
malised coordinates, this switching is found to occur
at x1 = +1 and x1 = −1. These switching states of
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Figure 2. A multisim prototype model of a memristive MLC circuit. The memristor part is shown by the dashed outline. The
parameter values of the circuit are fixed as L = 21 mH, R = 900 �, C1 = 10.5 nF. The frequency of the external sinusoidal
forcing is fixed as νext = 8.288 kHz and the amplitude is fixed as F = 770 mVpp (peak-to-peak voltage).

the memristor give rise to two discontinuity bound-
aries or switching manifolds, 	1,2 and 	2,3, which
are symmetric about the origin and are defined by the
zero sets of the smooth functions Hi (x, μ) = CT x,
where CT = [1, 0, 0, 0] and x = [x1, x2, x3, x4], for
i = 1, 2. Hence, H1(x, μ) = (x1 − x∗

1 ), x∗
1 = −1 and

H2(x, μ) = (x1 − x∗
1 ), x∗

1 = +1, respectively. Con-
sequently, the phase space D can be divided into three
subspaces S1, S2 and S3 due to the presence of the two
switching manifolds. The memristive MLC circuit can
now be rewritten as a set of smooth ODEs

ẋ(t) =
{

F1,3(x, μ), H1(x, μ) < 0 and H2(x, μ) > 0, x ∈ S1,3

F2(x, μ), H1(x, μ) > 0 and H2(x, μ) < 0, x ∈ S2

(6)

where μ denotes the parameter dependence of the vector
fields and the scalar functions. The vector fields Fi ’s are

Fi (x, μ) =
⎛
⎜⎝

x2
−ai x2 + x3

−βx2 − βx3 + f sin(ωx4)

1

⎞
⎟⎠ ,

i = 1, 2, 3, (7)

where we have a1 = a3.
The discontinuity boundaries 	1,2 and 	2,3 are not

uniformly discontinuous. This means that the degree
of smoothness of the system in some domain D of the
boundary is not the same for all points x ∈ 	i j ∩ D.
This causes the memristive MLC circuit to behave as a
non-smooth system having a degree of smoothness of
either one or two. In such a case, it will behave either as a
‘Filippov system’ or as a ‘piecewise-smooth continuous
flow’ respectively, refer Appendix A in [11].
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Figure 3. The equilibrium points E± in the subspaces S1 and
S3 for the parameter value above βc = 0.8250. The initial
conditions are x1 = 0.0, x2 = 0.01, x3 = 0.01 for the fixed
point E+ in the subspace S3 and x1 = 0.0, x2 = −0.01,
x3 = −0.01 for the fixed point E− in the subspace S1.

2.2 Equilibrium points and their stability

In the absence of the driving force, that is if f =
0, the memristive MLC circuit can be considered as
a three-dimensional autonomous system with vector
fields given by

Fi (x, μ) =
⎛
⎝ x2

−ai x2 + x3
−βx2 − βx3

⎞
⎠ , i = 1, 2, 3. (8)

This three-dimensional autonomous system has a triv-
ial equilibrium point E0, two ‘admissible equilibrium’
points E± and two ‘boundary equilibrium’ points EB±.
The trivial equilibrium point is given as

E0 = {(x1, x2, x3)|x1 = x2 = x3 = 0}. (9)

The two admissible equilibria E± are

E± = {(x1, x2, x3)|x2 = x3 = 0, x∗
1

= constant and not equal to ± 1}. (10)
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The two boundary equilibrium points are

EB± = {(x1, x2, x3)|x2 = x3 = 0, x̂1 = ±1}. (11)

The multiplicity of equilibrium points arises because of
the non-smooth nature of the nonlinear function, namely
W (x1) given in eq. (4). To find the stability of these
equilibrium states, we construct the Jacobian matrices
Ni , i = 1, 2, 3 and evaluate their eigenvalues at these
points,

Ni =
⎛
⎝0 1 0

0 −ai 1
0 −β −β

⎞
⎠ , i = 1, 2, 3. (12)

The characteristic equation associated with system Ni
in these equilibrium states is

λ3 + p2λ
2 + p1λ = 0, (13)

where λ’s are the eigenvalues that characterise the equi-
librium states and pi’s are the coefficients, given as
p1 = β(1+ai ) and p2 = (β +ai ). The eigenvalues are

λ1 = 0, λ2,3 = −(β + ai )

2
±

√
(β − ai )2 − 4β

2
,

(14)

where i = 1, 2, 3. Depending on the eigenvalues, the
nature of the equilibrium states differ.

1. When (β − ai )
2 = 4β, the equilibrium state will

be a stable/unstable star depending on whether
(β + ai ) is positive or not.

2. When (β − ai )
2 > 4β, the equilibrium state will

be a saddle.
3. When (β − ai )

2 < 4β, the equilibrium state will
be a stable/unstable focus.

For the third case, the circuit admits self-oscillations
with natural frequency varying in the range√[

(β − a1)2 − 4β
]
/2 < ω0 <

√[
(β − a2)2 − 4β

]
/2.

It is at this range of frequency that the memristor switch-
ing also occurs.

As the vector fields F1(x, μ) and F3(x, μ) are sym-
metric about the origin, that is F1(x, μ) = F3(−x, μ),
the admissible equilibria E± are also placed symmet-
ric about the origin in the subspaces S1 and S3. These
are shown in figure 3 for a certain choice of parametric
values.

2.3 Sliding bifurcations and chaos

Let us assume the bifurcation points at the two switching
manifolds to be

EB± = {(x1, x2, x3)|x2 �= 0, x3 = 0, x̂1 = ±1}. (15)

a(i)

a(ii)

Figure 4. The chaotic dynamics of the memristive MLC
oscillator arising due to sliding bifurcations occurring in the
circuit, with a(i) the time plot of the x1 variable and a(ii)
phase portrait in the (x1−x2) plane. The step size is assumed
as h = 1

1000 (2π/ω), with ω = 0.65 and f = 0.20.

Then we find from eqs (8) that F2(x, μ) �= F1(x, μ) at
x ∈ 	1,2 and F2(x, μ) �= F3(x, μ) at x ∈ 	2,3. Under
such conditions, the system is said to have a degree of
smoothness of order ‘one’, that is r = 1. Hence, the
memristive MLC circuit can be considered to behave as a
Filippov system or a Filippov flow capable of exhibiting
sliding bifurcations.

Sliding bifurcations are discontinuity-induced bifur-
cations (DIBs) arising due to the interactions between
the limit cycles of a Filippov system with the boundary
of a sliding region. Four types of sliding bifurcations
have been identified by Feigin [12] and were subse-
quently analysed by di Bernado, Kowalczyk and others
[13–16] for a general n-dimensional system. These four
sliding bifurcations are crossing-sliding bifurcations,
grazing-sliding bifurcations, switching-sliding bifurca-
tions and adding-sliding bifurcations.

The memristive MLC circuit is found to admit three
types of sliding bifurcations, namely crossing-sliding,
grazing-sliding and switching sliding bifurcations [17].
Let the parameters be chosen as a1,3 = −0.55, a2 =
−1.02, β = 0.95, f = 0.20 and ω = 0.65. For
these parameters, the memristive MLC circuit under-
goes repeated sliding bifurcations at the discontinuity
boundaries 	1,2 and 	2,3, giving rise to a chaotic state
as shown in figure 4. Here a(i) shows the time plot of
the x1 variable and a(ii) shows the phase portrait in the
(x1–x2) plane. In the subsequent section, we shall show
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that this chaotic behaviour exhibited by the memris-
tive MLC circuit can be controlled using state feedback
control technique.

3. Control of chaos

Control of chaos refers to purposeful manipulation of the
chaotic behaviour of a nonlinear system to some desired
or preferred dynamical state. As chaotic behaviour is
considered undesired or harmful, a need was felt for
suppression of chaos or at least reducing it as much as
possible. For example, control of chaos is necessary in
avoiding fatal voltage collapses in power grids, elim-
ination of cardiac arrhythmias, guiding cellular neural
networks to reach certain desirable pattern formations,
etc. The earliest attempts at controlling chaos were
focussed on eliminating the response of a chaotic sys-
tem, which resulted in the destruction of the dynamics
of the system itself. However, it was Ott et al [2] who
showed that it would be beneficial to force the chaotic
system to one of its infinite unstable periodic orbits
(UPO) which are embedded in the chaotic attractor of the
system without totally destroying the dynamics of the
system. Following this, many workers have developed
newer techniques to control chaos and have applied them
successfully on a variety of systems to realise different
desired behaviours. Generally, all the known methods of
chaos control can be grouped into two categories, either
feedback control methods or non-feedback control
algorithms.

3.1 Feedback controlling algorithms

Feedback control algorithms essentially make use of the
intrinsic properties of chaotic systems to stabilise orbits
which are already existing in the systems. The adaptive
control algorithm (ACA) developed by Huberman and
Lumer [18] and applied by Sinha et al [19] and Rajasekar
and Lakshmanan [3], the Ott–Grebogi–Yorke (OGY)
algorithm developed by Ott et al [2] and applied in [5,
20–23], the control engineering approach, developed in
[24,25] are all examples of these algorithms.

3.2 Non-feedback methods

The non-feedback methods refer to the use of some
small perturbing external force, or noise, or a con-
stant bias potential, or a weak modulating signal to
some system parameter. The parametric control of
chaos was demonstrated in [3,5,26–30]. The control

of chaos by applying a constant weak biasing voltage
was demonstrated in [5] in the case of MLC oscil-
lator and Duffing oscillator and by the addition of
noise was demonstrated in a BVP oscillator in [3].
The other control algorithms are entrainment or open
loop control method developed and applied in [31–
35] and the oscillation absorber method developed in
[36,37].

3.3 Control of chaos using state feedback

As the feedback and non-feedback methods of chaos
control have many drawbacks, a continuous time feed-
back control using small perturbations was proposed
numerically by Pyragas [38]. This control scheme was
provided a rigorous basis by Chen and Dong and
was demonstrated successfully in time continuous sys-
tems like Duffing oscillator [39], Chua’s circuit [25,40]
and so on. However, the drawbacks of these methods
are

1. they can be applied only when the dynamical equa-
tions for the system are known a priori

2. the internal state variables are assumed to be avail-
able to construct control forces

3. the controller structure, in some cases, is extremely
complicated

4. limited information may be available and the only
measurable quantity of the system is its output

5. for non-smooth systems, these conventional tech-
niques, in particular addition of a second weak
periodic excitation or the addition of a constant
bias do not seem to enforce control of chaos

Under such conditions, a parallel state reconstruction
by means of either a Kalman filter or Luenberger-type
observer must be used to implement control laws. For
this purpose, the state-space representation of the system
and their transformations to either controller canoni-
cal form or observer canonaical form are derived, refer
Appendix A.

The state-space representation refers to the mod-
elling of dynamical systems in terms of state vectors
and matrices so that the analyses of such systems are
made conveniently in the time domain, using the basic
knowledge of matrix algebra [41,42]. This representa-
tion is a well researched area in the field of control
engineering [41,43,44]. The main advantage of this
approach is that it presents a uniform platform for
representing time-varying as well as time-invariant sys-
tems, linear as well as piece-wise nonlinear systems.
Further, the vector fields for all the subspaces of the
system take on a uniform form. Some of the methods
of control that fall in this category are adaptive control
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[45], observer-based control [46], sliding mode control
[47], impulsive control [48] and backstepping control
[49], linear switched state feedback method [50], twin-
T notch filter method [51] and backstepping method
[52].

In this section, we outline the feedback method for the
control of chaos in a general dynamical system using
state-space models. Let us consider the observer canon-
ical representation of a single input single output (SISO)
nonlinear chaotic system in state space, refer eq. (A.9)
in Appendix A,

ẋ0 = Ãx0 + BT u,

y = CT
0 x0 + DT u, (16)

where Ã ∈ Rn×n , B ∈ Rn×r , C ∈ Rn×l and D ∈
Rl×r are matrices, u is an r -dimensional vector denot-
ing the control input and y is an l-dimensional vector
representing the output of the system. This system is
often called as the ‘open-loop system’ in control the-
ory.

Being in the observer canonical form, the system
matrix Ã is given as

Ã =

⎛
⎜⎜⎜⎜⎝

−ã1 1 0 · · · 0
−ã2 0 1 · · · 0

...
...

... · · · ...

−ãn−1 0 0 · · · 1
−ãn 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ , (17)

where ãi ’s are the coefficients of the characteristic poly-
nomial {|s I − Ã|}.

If we want the states of the system to approach
zero starting from any arbitrary state, then we have to
design a control input which would regulate the states
of the system to the desired equilibrium conditions.
To achieve this, we assume a ‘state feedback control
law’

u = −K̃ x0, (18)

where K̃ is called the ‘control gain vector’ and can be
designed using pole placement technique, familiar in
control theory.

Substituting this control law, eq. (18) in the state-
space representation of the open-loop system, eq. (16),
the system now becomes a ‘closed-loop system’ repre-
sented as

ẋ0 = ( Ã − BT K̃ )x0,

y = CT
0 x0 + DT u, (19)

where BT is the transpose of the vectorB and the closed-
loop system matrix is given as

( Ã − BT K̃ ) =

⎛
⎜⎜⎜⎜⎜⎝

−(ã1 − k̃n) 1 0 · · · 0
−(ã2 − k̃n−1) 0 1 · · · 0

...
...

... · · · ...

−(ãn−1 − k̃2) 0 0 · · · 1
−(ãn − k̃1) 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

(20)

If the values of K̃ are so chosen that the eigenvalues of
the matrix ( Ã − BTK̃ ) lie within the unit circle in the
complex plane, then the system can be controlled to a
desired stable equilibrium state. The problem of chaos
control thus reduces to just determining a state feedback
control gain vector K̃ such that the control law, eq. (18),
places the poles of the closed-loop system, eq. (19), in
the desired locations. An illustration of this concept is
shown in the block diagram in figure 5.

A necessary and sufficient condition for the successful
pole placement is that the nonlinear system, that is, the
pair of matrices ( Ã, B), must be controllable.

Let the characteristic polynomial {s I − ( Ã − BTK̃ )}
of the closed-loop system, eq. (19), be given as

sn + (ã1 − k̃n)s
n−1 + (ã2 − k̃n−1)s

n−2

+ · · · + (ãn − k̃1) = 0. (21)

Let the characteristic equation of the desired control
state of the system be

(s − s1)(s − s2)(s − s3) · · · (s − sn) = 0,

sn + α1sn−1 + α2sn−2 + · · · + αn−1s + αn = 0,

(22)

where si , i = 1, 2, . . . , n are the desired poles to which
the system should be guided and αi , i = 1, 2, . . . , n are
the coefficients of the desired characteristic equation.
By comparing eqs (21) and (22), we get the elements of
the transformed control gain vector K̃ as

k̃n = α1 − ã1,

k̃n−1 = α2 − ã2,

k̃n−3 = α3 − ã3, . . . ,

k̃1 = αn − ãn.

4. Control of chaos in memristive MLC circuit

In the earlier sections, we have seen that the mem-
ristive MLC circuit is a piecewise-smooth dynamical
system having two discontinuity boundaries causing the
state space of the system to be split up into three sub-
spaces. Consequently, the memristive MLC circuit is
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Controller K Nonlinear System

State Feedback

Input u
Output y

Figure 5. Block diagram illustrating the concept of state feedback control.

represented by a set of smooth ODE’s, refer eqs (6).
Further, we have seen that for the boundary equilibrium
points given by eqs (15), the memristive MLC circuit
becomes a Filippov system.

Linearising the vector fields about the equilibrium
points defined by eqs (15), the observer canonical form
of the state-space representation of the memristive MLC
oscillator as a SISO system, refer eq. (A.9) in Appendix
A, can be given as

ẋ0(t) =
{

Ã2x0 + BT u if x ∈ S2,

Ã1,3x0 + BT u if x ∈ S1,3,

y = CT x + DT u, (23)

where the system matrices Ãi ’s are calculated for the
above chosen parameters as

Ã2(x) =
⎛
⎝0.0700 1.0 0.0

0.0190 0.0 1.0
0.0000 0.0 0.0

⎞
⎠ , (24)

while

Ã1,3(x) =
⎛
⎝−0.4000 1.0 0.0

−0.4275 0.0 1.0
−0.0000 0.0 0.0

⎞
⎠ . (25)

Further, the vectors BT , CT and DT are chosen as

BT = (0 1 0), (26)

CT = (1 0 0), (27)

DT = (0 0 0). (28)

We assume here that no disturbance is present in the
system, that is, the vector DT is a null vector D = 0.

The peculiarity of this observer canonical represen-
tation, eqs (23), is that the transformations required
become identical for all the three subregions of the
phase space. This is particularly helpful in studying non-
smooth bifurcations of piecewise-smooth systems [53].

The controllability matrices for the subspaces S1,3 for
the aforementioned parameters are given as

Pc1,3 =
⎛
⎝0.0 1.00 0.5500

1.0 0.55 −0.6475
0.0 −0.95 0.3800

⎞
⎠ . (29)

Similarly, the controllability matrix for the subspace S2
is

Pc2 =
⎛
⎝0.0 1.00 1.0200

1.0 1.02 0.0904
0.0 −0.95 −0.0665

⎞
⎠ . (30)

As the controllability matrices in all the three subspaces
have a full rank of 3, we find that the matrices ( Ãi , B)

form controllable pairs. Hence, the linearised parts of
the memristive MLC circuit are controllable. To achieve
state feedback control, we assume a ‘switched state feed-
back control law’ [50],

u =
{

−K̃2x0 if x ∈ S2,

−K̃1,3x0 if x ∈ S1,3,
(31)

where K̃i ’s are the ‘control gain vectors’ in the three
subregions of the phase space and are found using the
procedure outlined in the previous section as

K̃2 = (−0.2050 0.8290 −1.2300) (32)

and

K̃1,3 = (0.5040 1.4825 2.0000). (33)

The ‘closed-loop system’ for the memristive MLC cir-
cuit upon application of gain is

ẋ0(t) =
{

( Ã2 − BT K̃2)x0 if x ∈ S2,

( Ã1,3 − BT K̃1,3)x0 if x ∈ S1,3,

y = CT
0 x + DT u. (34)

As the eigenvalues of the matrices ( Ãi − BT K̃i ), i =
1, 2, 3 lie within the unit circle, the dynamics of the
controlled closed system settles down to a non-chaotic
equilibrium state. The chaotic attractor of the system
before the application of the state feedback control and
the controlled periodic state after the control has been
applied are shown in figure 6.

The time series of the system which is chaotic before
the application of control becomes periodic after the
control is applied. This regulation of the chaotic time
series to a periodic behaviour for the initial conditions
(x1 = −0.1, x2 = −0.1, x3 = −0.1) is shown in figure
6a(i) while the periodic attractor in the (x1–x2) phase
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Figure 6. The periodic oscillations of the memristive MLC oscillator after the application of the state feedback control are
shown in a(i) and a(ii) time plots and b(i) and b(ii) phase portraits in the (x1–x2) plane. A change in the initial conditions
from x1 = −0.1, x2 = −0.1, x3 = −0.1 to x1 = −0.2, x2 = −0.2, x3 = −0.2 results in the symmetric interchange of the
time plots and attractors about the origin. The step size is assumed as h = 1

1000 (2π/ω), with ω = 0.65 and f = 0.20.

plane in the asymptotic limit is shown in figure 6b(i).
However, if the initial conditions are changed to x1 =
−0.2, x2 = −0.2, x3 = −0.2, we observe an inversion
of the time series for the variable x1 and the periodic
attractor in (x1–x2) phase space as are shown in the
corresponding figures 6a(ii) and 6b(ii).

It is pertinent to state here that the memristive MLC
system may possess multistability (see figures 3 and
6). This is because we see that in these two cases, a
mere change in the initial conditions forces the system to
exhibit different dynamics. If the system were to possess
multistability, then we strongly believe that by tweaking
the control gain vectors K1 and K2, it can be directed to
take on any of the desired multistable states.

5. Synchronisation of chaos

The feasibility of synchronisation of chaotic systems
and the conditions to be satisfied for the same were
first demonstrated by Pecora and Caroll [54] by intro-
ducing the concept of drive–response systems. Here,
a chaotic system is considered as the ‘drive’ system
and a part of or subsystem of this drive system is
considered as the ‘response’. Under the right condi-
tions (the conditional Lyapunov exponents (CLEs) of
the error dynamics being negative), the signals of the

response part will converge to those of the drive sys-
tem as time elapses. Ever since this ground breaking
work, many researchers have proposed synchronisation
of chaos in different systems based on theoretical analy-
sis and even experimental realisations. For example, this
methodology has been successfully applied to synchro-
nise chaos in Lorenz systems [54–56], Rössler systems
[54], the hysteretic circuits [57], Chua’s circuits [58],
driven Chua’s circuits [59], Chua’s and MLC circuits
[60,61], ADVP oscillators [62,63], phase locked loops
(PLL) [64,65], etc.

Further, the possibility of applying this approach
for secure communication has been demonstrated. The
idea of ‘chaotic masking and modulation’ and ‘chaotic
switching’ for secure communication of information
signals based on Pecora and Caroll method of syn-
chronisation of chaos was demonstrated numerically by
Cuomo and Oppenheim [66–69] and experimentally by
Koracev et al [59] using Chua’s circuit as the chaos
generator. Further, the applicability of chaotic synchro-
nisation to digital secure transmission was demonstrated
in [66] and experimentally in [63,70]. The possibility of
synchronisation of hyperchaotic systems and its appli-
cability for communication purposes was proposed by
Peng et al [71]. All these works make secure communi-
cations more practicable and with improved degree of
security.
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Many alternative schemes of synchronisation based
on modifications of the drive–response concept, such
as the unidirectional coupling scheme [62,63], func-
tion projective synchronisation [72], hybrid function
projective synchronisation [73–77], the arbitrary hybrid
function projective synchronisation [78–80] etc. have
been proposed. The synchronisation of two canonical
Chua’s circuits using resistive unidirectional coupling
has been studied by Thamilmaran and Senthilkumar [81]
and two unidirectional coupled SC-CNN-based canon-
ical Chua’s circuits has been realised experimentally by
Swathi et al [82]. The synchronisation and propagation
of a low-frequency signal in a network of unidirection-
ally coupled Chua’s circuits driven by a biharmonic
external excitation has been studied by Jothimurugan
et al [83]. However, all these methods have drawbacks
such as,

1. they do not give a systematic procedure for deter-
mining the response system and the drive signal.
This means that most of the schemes are dependent
on the drive system and could not be generalised
to an arbitrary drive system.

2. the dynamics of the drive system should be free of
any disturbances.

3. the conditional Lyapunov exponents (CLEs) should
be negative. This condition restricts the signal to
be transmitted to be a small perturbation to the
state variables. As this requirement is not fulfilled
by non-smooth systems, such as in the case of a
two-coupled memristive MLC system, effecting
synchronisation should necessarily be obtained by
other techniques only.

The concept of adaptive synchronisation is applied
in [84–86] and observer-based approaches in [87,88]
to overcome these difficulties of the drive–response
concept.

6. Observer-based adaptive synchronisation of
chaos

Let us consider the state-space representation of a SISO
nonlinear system [42], defined in eq. (A.1) in Appendix
A,

ẋ = Ãx + BT u,

y = CT x + DT u, (35)

where Ã ∈ Rn×n , B ∈ Rn×r , C ∈ Rn×l and D ∈ Rl×r

are matrices, u is an r -dimensional vector denoting the
control input and y is an l-dimensional vector represent-
ing the output of the system. The control input can be
given as

u = d + θT f (x, y), (36)

where d ∈ R is a bounded disturbance, θ ∈ R p

is the constant parameter vector and f (x, y) is a p-
dimensional vector differential function.

When all the state variables of this system are unavail-
able for measurement, then according to the control
theory, the states of the system may be estimated by
designing a parametric model of the original system.
This parametric model is called an ‘observer’ and is con-
sidered as the response system. The concept of observer
design is a well-established branch of control engineer-
ing and is widely used in the state feedback control of
dynamical systems [41,43,44]. In this method, once the
drive system and its related observer are chosen, then
under certain conditions, local or global synchronisation
between the drive and the observer system is guaranteed
[87].

Let us assume that the output y(t) is the only variable
that can be measured for the system (eq. (35)). Then an
observer based on the available signal can be derived to
estimate the state variables. This observer is known in
the literature as the ‘Luenberger observer’ [42] and is
given as

˙̂x = Ãx̂ + LT (y − ŷ) + BT û,

ŷ = CT x̂ + DT û, (37)

where x̂ denotes the dynamic estimate of the state vari-
able x , L ∈ Rn is an n-dimensional vector called the
‘observer gain vector’. It is essential that eq. (37) is in
observer canonical form, refer eq. (A.10) in Appendix
A.

The control law can be derived as

û = d̂ + θ̂T f (x, y), (38)

where d̂ and θ̂ are the estimates of the disturbances and
the parameters of the system and are updated according
to the adaptive algorithm [89] as

˙̂d = (y − ŷ),

˙̂
θ = f (x, y)(y − ŷ). (39)

The Luenberger observer equations (37) have a feedback
term that depends on the output observation error ỹ =
y− ŷ. Then the state observation error x̃ = x−x̂ satisfies
the equation

˙̃x = ( Ã−LT C)x̃+BT [(d − d̂)+(θT −θ̂T ) f (x, y)],
x̃(0) = x0 − x̂0, (40)

where we assume X = ( Ã − LT C) as the augmented
system matrix. The implementation of this observer-
based adaptive synchronisation of nonlinear systems is
illustrated in figure 7.
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Figure 7. Block diagrammatic representation of the observer-based adaptive synchronisation of nonlinear systems.

6.1 Conditions for stability

According to control theory, the system represented by
eq. (37) is stable in the sense of Lyapunov [42], refer
§A.1 of Appendix A, if any of the following conditions
are satisfied:

1. All eigenvalues of the augmented matrix X =
( Ã − LT C) have negative real parts.

2. For every positive definite matrix Q (that is Q =
QT > 0), the following Lyapunov matrix equation

X T P + P X = −Q, (41)

has a unique solution P that is also positive defi-
nite.

3. For any given matrix C , with the pair (C, X) being
observable, the equation

X T P + P X = −CT C, (42)

has a unique solution P , that is also positive defi-
nite.

If (CT, Ã) is an observable pair, then we can choose the
values of the gain vector L such that the matrix ( Ã −
LT C) is stable. In fact, the eigenvalues of the matrix
( Ã − LT C), and therefore the rate of convergence of
x̃(t) to zero can be arbitrarily chosen by designing the
vector L appropriately [41].

The observer-based response system given by eq. (37)
and associated with the control law given by eq. (36)
and the adaptive algorithm given by eq. (39) will now
globally and asymptotically synchronise with the drive
system given by eq. (35), that is

‖x̃(t)‖=‖x(t) − x̂(t)‖→ 0 as t → ∞,

for all initial conditions.
Thus, we find that the adaptive synchronisation

scheme is based on the following:

1. the linear part of the system is observable, that is
the pair (CT, Ã) is observable,

2. design of a suitable observer based on an adaptive
law

3. formulation of a suitable control law.

7. Observer-based adaptive synchronisation
of chaos in coupled memristive MLC oscillators

In this section, we report the synchronisation of chaos
via an observer-based design, with appropriate control
law and adaptive algorithm in a system of two-coupled
memristive MLC circuits. As in the case of control of
chaos, we assume that under appropriate choice of the
boundary equilibrium points, the memristive MLC cir-
cuit becomes a Filippov system. Further, we assume
the same parameter values as were fixed for effecting
control in a single memristive MLC circuit, namely
a1,3 = −0.55, a2 = −1.02 and β = 0.95, f = 0.20
and ω = 0.65. Also we assume the observer canonical
form of the state-space representation of the memristive
MLC circuit as given in eq. (23), namely

ẋ0(t) =
{

Ã2x0 + BT u if x ∈ S2,

Ã1,3x0 + BT u if x ∈ S1,3,

y = CT x + DT u, (43)

where the system matrices Ãi ’s and the vectors BT, CT

and DT are the same as given in eqs (24)–(28). Then the
observability matrices for the suspaces S1,3 are

P01,3 =
⎛
⎝1.00 0.00 0.00

0.00 1.00 0.00
0.00 0.55 1.00

⎞
⎠ . (44)

Similarly, the observability matrix for the subspace S2
is

P02 =
⎛
⎝1.00 0.00 0.00

0.00 1.00 0.00
0.00 1.02 1.00

⎞
⎠ . (45)
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As these observability matrices in all the three subspaces
have a full rank of 3, we find that the matrices (CT, Ai )

form an observable pair. Hence, the linearised parts of
the memristive MLC circuit are observable. Under this
condition, the Luenberger observer for the memristive
MLC circuit can be derived as

˙̂x(t) =
⎧⎨
⎩

Ã2 x̂ + LT
2 (y − ŷ) + BT û if x̂ ∈ S2,

Ã1,3 x̂ + LT
1,3(y − ŷ) + BT û if x̂ ∈ S1,3,

ŷ = CT x̂ + DT û, (46)

where the control law is

û = θ̂Tf (x, y), (47)

with the vector f (x, y) given as

f1(x, y) = y,

f2(x, y) = |y + 1| − |y − 1|, (48)

is the differential function and θ̂ are the estimates of the
parameters of the system and are updated according to
the adaptive algorithm

˙̂
θ1 = −(y − ŷ) f1(x, y),

˙̂
θ2 = −(y − ŷ) f2(x, y). (49)

The state error x̃ = ẋ − ˙̂x dynamics is represented by

˙̃x =
{

( Ã2 − LT
2 C)x̃ + BT (θ − θ̂T ) f (x, y),

( Ã1,3 − LT
1,3C)x̃ + BT (θ − θ̂T ) f (x, y).

(50)

The augmented matrices for the system can be defined
as

Xi = ( Ãi − LT
i C) for i = 1, 2, 3. (51)

For the choice of parameters of the system mentioned
above, the observer gain vectors Li for each of the
subspaces Si are chosen so as to have the augmented
matrices Xi to be exponentially stable.

For the subspaces S1,3, the gain vectors are chosen as

L1,3 = (0.8000 3.1000 −3.2870)T . (52)

Due to this choice of the observer gain vectors Li , the
augmented matrices X1,3 in these subspaces S1,3 will
have poles at {0.0000, −0.6000±i1.86748}. Similarly,
for the subspace S2, the gain vector is chosen as

L2 = (0.0000 15.2212 13.6508)T . (53)

This will cause the augmented matrix X2 to have poles
at {−1.5788, 0.824398 ± i4.13832}.

The Lyapunov equation for stability, eq. (41), may be
written separately for the three subspaces as

X T
i Pi + Pi Xi = −Q for i = 1, 2, 3, (54)

where we assume matrix Q to be a three-dimensional
unit matrix. The solutions of the above Lyapunov equa-
tion for stability for the subspaces S1,3 are positive
definite matrices P1,3 given as

P1,3 =
⎛
⎝ 1.7778 −0.4220 −0.7308

−0.4220 2.7528 −0.1558
−0.7308 −0.1558 0.6020

⎞
⎠ . (55)

The matrix P2 for the subspace S2 is given as

P2 =
⎛
⎝−0.0012 −0.0615 −0.0647

−0.0615 −3.0924 −3.2555
−0.0647 −3.2555 −3.4268

⎞
⎠ × 106.

(56)

We find that the matrix P2 for the subspace S2 is not a
solution of the Lyapunov equation, eq. (54). Therefore,
the trajectories in this subspace should be, as per Lya-
punov theory, unstable. Hence, the augmented matrix
X2 in region S2 is also unstable. However, the com-
bined effect of the dynamics in the outer two subspaces
S1,3 represented by the augmented matrices X1,3 and
the positive definite matrices P1,3 will impress upon the
system as a whole to become asymptotically stable and
exhibit a bounded behaviour asymptotically. Further, as
the conditions for the Lyapunov asymptotic stability, eq.
(54), are satisfied by the system as a whole, we find that
under the action of the control law, eq. (47), and the
adaptive algorithm, eq. (49), the estimated values of the
unknown parameters of the observer system âi ’s con-
verge finally to the true values of the parameters ai ’s
as time progresses. These are shown in figure 8, where
we find that in figure 8a the value of the parameter â2
converges to its true value of −1.02, while in figure 8b
the value of the parameter â1 converges to its true value
of −0.55.

Mathematically we have the error between the drive
and the response, converging to zero for all initial values,
as time progresses, that is

‖ x̃(t)‖=‖ x(t) − x̂(t)‖→ 0 as t → ∞.

The convergence of the error dynamics x̃ to zero is
shown in figure 9. Here the convergence of the errors
x̃1, x̃2 and x̃3 are shown in plots (a), (b) and (c) of figure
9 respectively.

These convergences of the parameters to their true
values and that of the error dynamics to zero, cause the
observer system dynamics to converge to the original
system dynamics as time elapses. This means that the
response system dynamics evolves as time proceeds to
that of the drive system dynamics. Hence, if the drive
system is in a chaotic state, then the response system
should also exhibit identical chaotic state. This is shown
in figure 10.
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Figure 8. The estimation of (a) the parameter a2 and (b)
the parameter a1 of the response system of the two-coupled
memristive MLC circuit in the synchronised state using the
adaptive observer scheme. It is to be noted that the asymptotic
values of a2 = −1.02 and a1 = −0.55 are exactly equal to
those of the drive system which were known a priori.

Had the drive system been in a periodic state, then
one would expect the response system also to take on
asymptotically the periodic state by virtue of the adap-
tive synchronisation. As both the drive and the response
systems exhibit identical behaviour, they are said to be
in complete synchronisation (CS) with each other. This
is shown by the diagonal lines for the variables in the
(x1–x ′

1), (x2–x ′
2) and (x3–x ′

3) phase planes in plots (a),
(b) and (c) respectively in figure 11.

For effecting this, it is essential that the gain vectors Li
for all the subspaces Si ’s are properly chosen. Due to the
differences in the gain vectors in the three subregions of
the phase space, this observer-based adaptive synchro-
nisation is also referred to in literature as ‘switched state
feedback’ method of adaptive synchronisation [50].

8. Conclusion

In this work, we have studied the control of chaos in
an individual memristive MLC circuit as well as the
synchronisation behaviour in a system of two-coupled
memristive MLC circuits using state feedback control
and observer-based adaptive control techniques respec-
tively. To realise these objectives, we have considered
the memristive MLC circuit as a Filippov system, a non-
smooth system having the order of discontinuity one
and have derived the discontinuity mapping corrections
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Figure 9. The convergences of the errors in the variables,
(a) e1 = x1 − x ′

1, (b) e2 = x2 − x ′
2 and (c) e3 = x3 − x ′

3 of
the two-coupled memristive MLC circuit in the synchronised
state under adaptive observer scheme.
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Figure 10. The phase portraits (a) in the (x1–x2) plane and
(b) in the (x̂1–x̂2) plane showing identical chaos.
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such as ZDM and PDM. Further, we have derived the
canonical state-space representations for the memristive
MLC circuit. Also the stability theory of Lyapunov and
pole-placement methods, concepts which are very much
familiar in control theory, were applied.

We wish to state here that we have derived analytical
conditions for effecting control and adaptive synchroni-
sation using state feedback and implemented the results
using numerical simulations. The fact that the results of
simulations agree with the predictions of the analytical
conditions point to the validity of our derivations.

From a different point of view, it has been shown by
many researchers, that in general any two coupled sys-
tems, be they smooth or discontinuous, can be directed
towards amplitude death or oscillation death, irrespec-
tive of their being in periodic, chaotic, hyperchaotic or
time-delay systems, by the application of proper feed-
back coupling, for example see [90]. The same can be
applied to the two-coupled system under study, by calcu-
lating proper observer gain vectors and choosing proper
initial conditions and parametric values. However, we
have not proceeded along these lines because it falls

beyond the realm of this present work. We hope to pur-
sue this possibility in future studies.

The phenomenon of control of chaos may be further
studied to understand and effectively prevent incidences
of nonlinear catastrophic phenomena such as blackouts
in transmission lines and power grids, cardiac arryth-
mias, etc. The synchronisation of chaos which we have
demonstrated using observer-based adaptive scheme in
memristive MLC circuits can be used to effect digi-
tal modulation schemes for secure communication. For
example, the modulation characteristics of the memris-
tor can be used to implement amplitude shift keying
(ASK), a key technique in digital signal processing and
transmission of digitised information. Also the switch-
ing characteristics of the memristor can be utilised to
implement digital protocols for secure transmission of
data.
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AppendixA. Space representations of dynamical sys-
tems

The state-space representation refers to the modelling of
dynamical systems in terms of state vectors and matrices
so that the analyses of such systems are made conve-
niently in the time domain, using the basic knowledge
of matrix algebra. The main advantage of this approach
is that it presents a uniform platform for representing
time-varying as well as time-invariant systems, linear
as well as piece-wise nonlinear systems. The theoretical
details presented here are essentially from the available
literature on control systems [41,42].

The generic state-space representation of an nth-order
dynamical system is given as

ẋ = Ax + Bu,

y = CTx + Du, (A.1)

where x is an n-dimensional vector representing the
state variables, A ∈ Rn×n , B ∈ Rn×r , C ∈ Rn×l and
D ∈ Rl×r are matrices, u is an r -dimensional vector
denoting the control input and y is an l-dimensional
vector representing the output of the system.

The first of eq. (A.1) is referred to as the ‘state equa-
tion’ while the second is referred to as the ‘output
equation’. The solution of the state equation is given
by
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x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bu(τ ) dτ, (A.2)

where eAt ≡ (t) is the state transition matrix and x(t0)
is the initial state of the system.

1. Open-loop system: If the output of the system is
neither fedback to the input nor is it used to mod-
ulate the behaviour of the system, then the system
is called as an open-loop system.

2. Closed-loop system: If the output of the system
is used to modulate the system and manipulate the
control action on the system through some suitable
feed-back mechanism, then the system is known
as closed-loop system.

3. Exponential stability: An equilibrium state xe is
said to be exponentially stable, if there exists a
constant α > 0, and for every small constant ε > 0
there exists a small neighbourhood |x0 − xe| <

δ(ε) such that

|x(t; t0, x0) − xe| ≤ εe−α(t−t0). (A.3)

Here α is called as the rate of convergence.
4. Asymptotic stability: An equilibrium state xe is

said to be asymptotically stable in the sense of
Lyapunov [42] if any of the following conditions
are satisfied:

(a) All eigenvalues of the matrix A have negative
real parts.

(b) For every positive definite matrix Q (that is
Q = QT > 0), the following Lyapunov
matrix equation

ATP+P A=−Q, (A.4)

has a unique solution P that is also positive
definite.

(c) For any given matrix C , with the pair (CT, A)

being observable, the equation

ATP+P A=−CT C, (A.5)

has a unique solution P , that is also positive
definite.

5. Observability: It refers to the determination of the
state of a system by observing or measuring its
output. Mathematically, it is determined by finding
the rank of the observability matrix

P0 =

⎛
⎜⎜⎜⎜⎝

CT

CTA
CTA2

...

CTAn−1

⎞
⎟⎟⎟⎟⎠ . (A.6)

The observability matrix is of dimension n ×nl. If
this observability matrix has a full rank, equal to
n, then the dynamical system or the pair (CT,A) is
said to be observable. However, if P0 is an n × n
square matrix, then the system is observable if P0
is non-singular.

6. Detectability: A dynamical system may not be
completely observable. However, if the unobserv-
able parts of the system become asymptotically
stable under the action of some control law, then
the system is called as ‘detectable’ [41].

7. Controllability: It refers to the transferring of a
system from any given initial state x(t0) to any
given desired final state x(t f ) over a finite interval
of time (t f − t0). Mathematically, it is determined
by the rank of the controllability matrix

Pc =

⎛
⎜⎜⎜⎜⎝

B
AB
A2 B

...

An−1 B

⎞
⎟⎟⎟⎟⎠ .

The controllability matrix is of dimension n × nr .
If this controllability matrix has a full rank, equal
to n, then the dynamical system or the pair (A, B)

is said to be controllable. However, if Pc is an n×n
square matrix, then the system is controllable if Pc
is non-singular.

8. Stabilizability: A dynamical system may not be
completely controllable. However, if the uncon-
trollable parts of the system become asymptoti-
cally stable under the action of some control law,
then the system is called as ‘stabilisable’ [41].

A.1 Forms of state-space representations

For any given dynamical system, there are essentially an
infinite number of possible state-space models that give
identical input/output dynamics. However, it is often
desirable to have certain standardised state-space model
structures called the canonical forms or canonical state-
space representations. Using similarity transformations,
it is possible to convert the state-space model from one
canonical form to another [41]. Two of the most impor-
tant canonical forms in control theory are the observer
canonical form and the controller canonical form.

A.1.1 Observer canonical form: Let us consider the
coordinate transformation x0 = W x , where W = T P0
is a transformation matrix, P0 is the observability matrix
and the matrix T is constructed using the coefficients of
the characteristic polynomial of the state matrix A.
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T =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
ã1 1 0 · · · 0
ã2 ã1 1 · · · 0
...

...
... · · · ...

ãn−1 ãn−2 · · · · · · 1

⎞
⎟⎟⎟⎟⎠ . (A.7)

The characteristic polynomial {|s I − A|} itself is given
as

p(s) = sn + ã1s(n−1)+ã2s(n−2)+ · · · +ã(n−1)s+ãn.

(A.8)

Using the inverse coordinate transformation x =
W −1x0, eq. (A.1) can be transformed to the observer
canonical form as

ẋ0 = Ã0x0 + BT u,

y = CT
0 x0 + DT u, (A.9)

where the state matrix A0 is obtained by the similarity
transformation A0 = W AW −1 and is given as

Ã0 =

⎛
⎜⎜⎜⎜⎝

−ã1 1 0 · · · 0
−ã2 0 1 · · · 0

...
...

... · · · ...

−ãn−1 0 0 · · · 1
−ãn 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ (A.10)

and

CT
0 = CT W −1. (A.11)

A.1.2 Controller canonical form: In this case, let us
consider an alternate coordinate transformation xc =
Mx , where M = TPc is a transformation matrix, Pc is
the controllability matrix and the matrix T is constructed
using the coefficients of the characteristic polynomial of
the state matrix A and is given in eq. (A.7).

Using the inverse coordinate transformation x =
M−1xc, eq. (A.1) can now be transformed alternatively
to the controller canonical form as

ẋc = Ãcxc + BTu,

y = CT
c xc + DTu, (A.12)

where the state matrix Ac is obtained by the similarity
transformation Ac = M AM−1 and is given as

Ãc =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
−ã1 −ã2 −ã3 −ãn−1 −ãn

⎞
⎟⎟⎟⎟⎠ (A.13)

and

CT
c = CTM−1. (A.14)
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