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Importance of self-shielding in mass measurements using γ -ray
spectroscopy
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Abstract. Due to the exponential attenuation of photons in materials, thick samples will attenuate a large portion
of photons. This is a source of error in methods such as neutron activation analysis, which use gamma spectroscopy
to characterise a radioactive source. A method is developed to quantify the magnitude of self-shielding with the
help of MCNP6. Then the mass of an unknown sample is determined by comparing the known sample mass and
the photopeak counts of the unknown and the known samples following activation. The inclusion of self-shielding
effects is shown to make this comparative mass analysis measurement technique more accurate. Accounting for
the self-shielding effects allows the true source, instead of the shielded source, to be resolved by correcting for the
photons that are attenuated as they try to escape the sample and reach the detector. The γ -ray measurements were
made using several samples of varying shapes.
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1. Introduction

Gamma spectroscopy measures the photon energy spec-
trum emitted from a radioactive source. This mea-
surement relies on a sufficient number of photons
reaching the detector and contributing to the photo-
peak. However, as photons are born within a source they
are exponentially attenuated and scattered within the
source structure [1]. This process is referred to as self-
absorption, self-attenuation, or gamma self-shielding
[2–4]. Here it will be called self-shielding, to empha-
sise that the source is shielding itself from the detector.

A problem arises when measuring thick sources
because many photons are attenuated or scattered before
reaching the detector. These photons do not contribute
to the photopeak and represent lost information about
the source. In order to resolve the characteristics of the
source, these photons must be accounted for. This can
be done by estimating the magnitude of self-shielding
based on the size, composition, and orientation of the
source and the detector used to measure it [3,4]. In this
work, we shall focus on the size and shape of the sample
being irradiated.

Self-shielding is always present to some extent. In
some cases, the loss of information can be neglected.
However, self-shielding effects should be quantified in
large samples to estimate uncertainty any time the quan-
titative information is being measured from the source.
Self-shielding analysis has been applied to nuclear waste
management and decommissioning [2], naturally occur-
ring radioactive material in the oil and gas industry
[5] and prompt γ -ray neutron activation analysis [6].
In those contexts, the focus has been on defining self-
shielding as a function of photon energy for specific
materials, determining analytic solutions for simple
geometries and applying Monte Carlo simulations to
estimate the mass attenuation coefficient of a sample.

This work will focus on an extension of neutron
activation analysis (NAA), measuring the mass of an
unknown sample by comparing it to a known sample [7],
referred to as comparative mass analysis (CMA). There
has been success in this area under the assumptions that
the source is thin in terms of gamma attenuation and
similar geometries are compared [7,8]. This work will
apply to heterogeneous geometries and thick objects
by taking self-shielding of γ -rays in aluminum into
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account. A Monte Carlo simulation using MCNP6 will
be employed to quantify the effects of self-shielding
for specific experiments and it is show that taking self-
shielding into account more accurately measures the
unknown mass.

2. Theory

When exposed to neutron radiation, normally stable
isotopes may undergo radiative capture and become
radioactive. If the newly created radioisotope emits a
measurable photon flux during its decay, subsequent
gamma spectroscopy can be used to determine the
characteristics of the source. By relating the measured
photopeaks and activities of the isotopes within the sam-
ple, NAA can qualitatively or quantitatively determine
the composition of the source. In a similar fashion,
CMA has been used to accurately determine the mass
of unknown samples using neutron irradiation or natural
decay of radioactive elements [7]. This is done using the
relationship

m2 = C2m1eλ2δ2
∫ E

0 σ1(E)φ(E)dEα1εD1εG1	1

C1eλ1δ1
∫ E

0 σ2(E)φ(E)dEα2εD2εG2	2

,

α1 = (1 − e−λ1tirr1 )(1 − e−λ1
1),

α2 = (1 − e−λ2tirr2 )(1 − e−λ2
2), (1)

where m is the mass, C is the counts in the photopeak
of interest, λ is the decay constant,

∫
σ(E)φ(E)dE , or

the product of the neutron capture microscopic cross-
section and the neutron scalar flux integrated over all
neutron energies, is the production rate of the radioiso-
tope of interest per target nuclide, tirr is the irradiation
time, δ is the time between the end of irradiation and
beginning of measurement, 
 is the measurement time,
εD is the intrinsic detector efficiency, εG is the geo-
metric efficiency of the detector and the sample, 	 is
the branching ratio and the subscripts 1 and 2 denote
the known and unknown samples, respectively [7,8]. In
cases such as those presented here with a single ele-
ment and the same irradiating source for all cases, the
term

∫
σ(E)φ(E)dE is the same in the numerator and

denominator of eq. (1) and cancels out.
Equation (1) has been successfully applied to samples

of thin uniform shapes and single element homoge-
neous compositions, where self-shielding is assumed to
be negligible [7]. The dependence on the production
rate, the intrinsic detector efficiency and the branching
ratio is removed by comparing the photopeak of a single
radioisotope between samples, simplifying eq. (1) to

m2 = C2m1eλδ2(1 − e−λtirr1 )(1 − e−λ
1)εG1

C1eλδ1(1 − e−λtirr2 )(1 − e−λ
2)εG2

. (2)

Any analysis using gamma spectroscopy will suffer
if there is an appreciable amount of self-shielding by
the source. When this is the case, self-shielding can no
longer be ignored. To account for the magnitude of atten-
uated photons, another term fSS is included,

m2

= fSS1C2m1eλ2δ2(1 − e−λ1tirr1 )(1 − e−λ1
1)εD1εG1

fSS2C1eλ1δ1(1 − e−λ2tirr2 )(1 − e−λ2
2)εD2εG2

,

(3)

where fSS1 is the self-shielding factor of the known mass
and fSS2 is the self-shielding factor of the unknown
mass.

This self-shielding factor is determined by character-
ising the escape probability of a photon from the sample,
similar to that of [3,4,9]. The self-shielding factor can be
determined by averaging this photon escape probability
throughout the detector crystal volume. Furthermore,
the photon must contribute to the photopeak. There-
fore, the self-shielding factor for any photon that could
contribute to the photopeak by interacting within the
detector crystal can be defined as

fSS = Ne

Nb
, (4)

where Ne is number of photons exiting the sample with-
out interaction and Nb is number of photons born within
the sample. Here, fSS ≤ 1 and approaches unity as
attenuation from the sample becomes negligible.

Equation (4) is therefore the ratio between the mea-
surable case, where photon interaction occurs within
the sample, and the idealised case, where no photon
interaction occurs within the sample and the maximum
number of photons contributing to the photopeak reach
the detector crystal. This factor is not directly measured
through experimentation, but a Monte Carlo simulation
is utilised to model the sample and the detector, with
a photon source homogeneously distributed throughout
the sample. Then, the photon flux at the energy of the
photopeak with and without the sample is tallied within
the volume of the detector crystal, such that

fSS = photon track lengths with the sample

photon track lengths without the sample
. (5)

This is done by voiding the sample volume while main-
taining the source, in order to model the photon flux in
the detector crystal without any attenuation.
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Figure 1. Aluminum cylindrical bowl set-up at IIT-Kanpur.

3. Method

Four measurements were performed to determine the
effect of this self-shielding factor on CMA. Different
sample geometries were used to change the magni-
tude of self-shielding. The measurements were per-
formed at the Radiation Detection Laboratory, Indian
Institute of Technology-Kanpur. The source was a
239Pu-Be neutron Howitzer manufactured in Novem-
ber 1967 with an alpha-neutron activity of 5Ci [10].
The source has a measured thermal neutron flux of
1.1×105 cm−2 s−1 [7]. Each irradiation lasted approx-
imately 15 min, or seven half-lives of the radioactive
nuclide formed (i.e. 28Al, with T1/2 = 2.2 min), to
reach saturation. The sample was then moved to a
separate location for measurement. This resulted in a
time delay of nearly 2 min, or about one half-life,
between the end of irradiation and start of the measure-
ment.

The measurements were performed using a high-
purity germanium detector (HPGe). Figure 1 shows
an example of the HPGe measuring a sample. The
samples were placed close to the face of the detec-
tor in order to improve the counting statistics by
increasing the solid angle of the sample in relation
to the detector. This was necessary due to the rela-
tively small neutron capture cross-section of 27Al and
the low thermal neutron flux of the 239Pu-Be neu-
tron Howitzer. The measurement was then modelled
in MCNP6 to quantify the self-shielding factor and
geometric efficiency. The process was repeated under
similar conditions for the known comparator. Finally,
eqs (2) and (3) were used to determine the mass of the
unknown sample with and without accounting for self-
shielding.

3.1 Samples

Three samples were used in the four experiments. All
the samples were assumed to be natural aluminum with
a density of 2.7 g/cm3, consisting entirely of 27Al. Alu-
minum does not have perfect characteristics for neutron
activation, and has a thermal neutron capture cross-
section of only 0.231 b [11]. However, the 2.24 min
half-life of its daughter, 28Al, and 100% emission proba-
bility of the 1.779 MeV photon with every decay help to
complete measurements with acceptable counting statis-
tics in a short amount of time [12].

The three sample geometries tested are: cylindri-
cal bowl, rectangular cuboid comprising five uniformly
sized slabs and a hollow sphere. The cylindrical bowl
was fabricated from an aluminum ingot different from
the sphere and slabs. Figure 2 shows the diagram of the
three geometries. Table 1 shows the dimensions of the
samples in terms of the mean free path (MFP) of a 1.779-
MeV photon in natural aluminum (8.08 cm) [13].

3.2 Simulations

The general radiation transport code MCNP6 was cho-
sen to determine the self-shielding factor due to its
extensive verification and validation [14]. Careful mea-
surements were recorded during the experiments to
accurately model the position and orientation of the sam-
ples and the detector. The sample was modelled with a
1.779 MeV photon source homogeneously distributed
throughout its volume.

A Canberra GC2018 Coaxial HPGe detector was used
for the measurements. This detector has a cylindrical
crystal of 61.9 mm diameter and 32.8 mm thickness with
a window distance of 4.84 mm. Figure 3 shows the
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Figure 2. Samples used for mass comparison. Left to right: cylindrical bowl, rectangular cuboid and hollow sphere.

Table 1. Sample dimensions in figure 2.

Sample A B C D

Dimension (cm)
Cylindrical bowl 5.5 1.25 11.5 1.5
Rectangular cuboid 9.9 4.95 4.95 0.95
Hollow sphere 0.4 10.95 – –

Fraction of MFP
Cylindrical bowl 0.681 0.155 1.42 0.186
Rectangular cuboid 1.23 0.613 0.613 0.118
Hollow sphere 0.05 1.36 – –

Figure 3. HPGe detector dimensions: the shaded portion
corresponds to the HPGe detector crystal and the larger
cylinder corresponds to the outer aluminum housing, seen
in figure 1.

diagram of the crystal size and dimensions within its
aluminum casing. The detector was modelled with a
volume, equivalent in size and position, to its crystal
within MCNP6.

Two simulations are needed to determine the self-
shielding factor. First with the sample present, resulting
in self-attenuation of the photons. Then again with the
sample voided, resulting in no self-attenuation of the

photons. Both simulations use the cell-averaged photon
flux tally (F4 tally in MCNP) within the detector crys-
tal volume. Taking the ratio of these two fluxes yields
the self-shielding factor ( fSS) for the experiment, as
defined in eq. (5). Included in these simulations is a
surface current tally (F1 tally in MCNP) for photons of
the photopeak energy. This tally is used to determine the
geometric efficiency (εG) of the sample with respect to
the detector.

This combination of F4 tally and F1 tally to deter-
mine the self-shielding factor and geometric efficiency,
respectively, was chosen for its simplicity. A pulse
height tally (F8 tally in MCNP) could also measure
the energy deposition within the detector crystal vol-
ume while taking the geometric efficiency into account.

Fundamentally, the simulations need to determine
the fraction of photons that are removed due to self-
attenuation by the sample. All other interactions (i.e.
incidence and interaction within the detector crystal),
with respect to the unattenuated photons leaving the
sample, will be consistent between both simulations and
cancel out in the ratio of eq. (5). This allows everything
but the sample, when present, to be voided. Any inter-
action of a photon at energy E after the photon escapes
the sample is independent of the presence of the sample.

In addition, another simulation was performed to
determine the geometric efficiency of the sample using
a surface current tally with respect to the detector
volume.
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Figure 4. Spatial variation of the self-shielding factor.

Table 2. Self-shielding factors at the five positions in
figure 4.

Point 1 2 3 4 5

fSS 0.91 0.88 0.72 0.78 0.84

Table 3. Summary of experiments.

Case Comparator Unknown

1 Three slabs Single slab
2 Three slabs Five slabs
3 Five slabs Cylindrical bowl
4 Five slabs Hollow sphere

4. Results and analysis

An example of the spatial variation in the self-shielding
factor of the cylindrical aluminum bowl was calcu-
lated using the MCNP6 cell-average photon flux mesh
tally, shown in figure 4. The figure shows a cross-
section directly through the centre of the bowl. The
self-shielding factors at the five positions noted in this
figure are included in table 2.

The self-shielding factor around the bowl can vary
by as much as 20% just by rotating the sample to 90◦.
Further, the factor could vary significantly throughout
the detector crystal. By utilising the cell-averaged flux
tally within the crystal volume, this potentially large
spatial variation is accounted for.

The four experiments are summarised in table 3. The
first and second use a varying number of slabs with
the rectangular cuboid in figure 2. The third and fourth
experiments use the full rectangular cuboid as the com-
parator to measure the cylindrical bowl and the hollow
sphere.

For cases 1 and 2, the slab samples were placed
axially symmetric and 5 cm away from the detector.
These three measurements were preformed sequentially.
Table 4 summarises the values from cases 1 and 2. For
cases 3 and 4, the samples were again placed axially
symmetric and 3.5 cm away from the detector. How-
ever, the hollow sphere had to be placed 3 cm away from
the detector to prevent it from rolling around. Table 5
summarises the values from cases 3 and 4.

All the values in tables 4 and 5 were calculated by
using a cell-averaged flux tally for fSS or a current tally
for εG on the HPGe crystal volume. Their uncertainty
represents the statistical uncertainty from the Monte
Carlo method, but not the potential systematic uncer-
tainties in the model. The uncertainty in the counts, by
far the largest contribution to statistical uncertainty, is
from the stochastic process of decay.

Figures 5 and 6 present the unknown mass approxi-
mation using eqs (2) and (3) to show that the addition
of the self-shielding factor more accurately predicts
the unknown mass. Table 6 summarises the measured
mass and associate uncertainty with and without tak-
ing self-shielding into account. Cases 1 and 4 capture
the true mass within one standard deviation after apply-
ing the self-shielding factor. Case 2 captures the true
mass within two standard deviations. Case 3, using the
cylindrical aluminum bowl, is greater than three stan-
dard deviations away after applying the self-shielding
factor, potential reasons are discussed next. For all cases,
the systematic error in mass approximation after apply-
ing the self-shielding factor improves and decreased by
a factor 2 or more. This is because the attenuated gamma
rays or the lost information is accounted for in the calcu-
lation. This can also be verified by the columns labelled

mSS% and 
m% giving the percent deviation from
the actual measured masses given in the second col-
umn for each case. For case 1, the best improvement is
seen where the deviation reduces from −7.992 to just
0.498%. For case 3, a much lower improvement is seen
where the deviation from the actual mass is reduced from
34.17 to 17.53%.

Largest deviation seen in case 3 could be due to a few
reasons. First, the cylindrical bowl was made from a dif-
ferent ingot than the comparator (in all other cases the
sample in question and the comparator were made from
the same ingot). Thus, the assumption that the density
and percent abundance of Al in the sample are the same
in the numerator and denominator of eq. (3) and will
cancel is not accurate for case 3, that of the cylindri-
cal bowl. Second, a prominent manganese photopeak
at 846 keV is visible in the energy spectrum of the
cylindrical bowl, emanating from the first observation
and validating the dissimilarities in the compositions
of cylindrical bowl and the comparator, which have not
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Table 4. Self-shielding factors and geometric efficiencies for all samples used in
the experiments.

One slab Three slabs Five slabs

Value σ Value σ Value σ

Mass (g) 127.5 – 402.3 – 683.2 –
Counts 636 27 1317 38 1733 45
fSS 0.943 1.05 × 10−3 0.840 1.43 × 10−3 0.769 1.74 × 10−3

εG 0.0448 5.66 × 10−5 0.0366 5.11 × 10−5 0.0309 4.69 × 10−5

Table 5. Self-shielding factors and geometric efficiencies for all samples used in
the experiments.

Five slabs Cylindrical bowl Hollow sphere

Value σ Value σ Value σ

Mass (g) 683.2 – 888.3 – 376 –
Counts 1925 48 2214 51 765 34
fSS 0.775 1.01 × 10−3 0.885 1.04 × 10−3 0.893 2.47 × 10−3

εG 0.0430 1.93 × 10−4 0.0289 1.74 × 10−4 0.0285 2.68 × 10−4

Figure 5. Mass determination with NAA measurements using the rectangular cuboid slabs as the unknown and three slabs
as the comparator.

been accounted for within the scope of the current work.
These factors lead to a large model error, resulting in the
error between the true mass and approximated mass.
Neutron self-shielding is another factor that was con-
sidered. However, it was out-ruled because it was noted
that thicker sample cases, such as case 1 which had a
thickness D three time that of case 1, had very good
agreement with the actual measurement after the inclu-
sion of the self-shielding factor.

The uncertainty of the approximated masses resulted
from the stochastic uncertainty in the counts and the
systematic uncertainty due to varying material compo-
sition between the sample and the comparator. This was

partly due to the short half-life of 28Al. In the time it
took to transport the sample from the neutron source
to the detector and begin measurement, 40% to 50%
of the source would decay away. Removing this delay
alone could decrease the uncertainty by a factor of 2.
The remaining sources of uncertainty are computational,
from the self-shielding factor and geometric efficiency.
As the uncertainty in counts decreases it is important
to account for model error in the self-shielding fac-
tor and geometric efficiency calculation. This type of
error would include incorrect dimensions in the MCNP6
model, non-uniform source distribution from the neu-
tron activation and non-uniform sample composition.
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Figure 6. Mass determination with NAA measurements using cylindrical bowl and hollow sphere as the unknown and
rectangular prism as the comparator.

Table 6. Calculated masses with and without self-shielding factor.

With fSS Without fSS
Case Sample mass (g) Comparator mass (g) mSS (g) σmSS 
mSS (%) m (g) σm 
m(%)

1 683.2 402.3 686.6 26.8 0.498 628.6 24.5 −7.992
2 127.5 402.3 143.0 7.4 12.16 159.5 8.3 25.10
3 888.3 683.2 1044.0 36.3 17.53 1191.8 41.5 34.17
4 376.0 683.2 361.7 19.0 −3.803 417.0 21.9 10.90

5. Conclusions

A method for improving non-destructive mass mea-
surements using neutron activation analysis (NAA) by
including the self-shielding factor for samples with a
single element homogeneous composition but varying
shapes was developed. By utilising MCNP6 simula-
tions, as opposed to analytic methods, more complex
geometries were modelled. Taking the magnitude of
self-shielding into account, the mass of an unknown
sample was experimentally determined by comparing
it to the mass of a known sample using NAA and
subsequent gamma spectroscopy. The experiments, per-
formed at the Indian Institute of Technology-Kanpur,
included the comparison of aluminum samples with var-
ious geometries and mass.

The inclusion of a self-shielding factor to this CMA
has been shown to more accurately measure the mass
of thick objects using NAA by reducing deviation from
actual masses by a factor of 2 or more. Furthermore,
CMA has been shown to work for heterogeneous geome-
tries of a single element homogeneous composition by
taking the self-shielding factor and geometric efficiency
into account.

The next step in this work is to extend this work to
samples comprising different materials and composi-
tions, as motivated by the results of case 3 in this work.
To do this, the production rate, the intrinsic detector
efficiency and the branching ratios may no longer be
assumed constant between samples of different compo-
sition because the photopeaks being compared are likely
to be at different energies from varying radioisotopes.
Therefore, there must be some method of measuring
the detector efficiency. Furthermore, ways to decrease
the uncertainty in the measurements need to be devel-
oped. Methods that extend the application to samples
with mixed compositions will greatly broaden the use-
fulness of CMA.
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