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Abstract. A modified version of the typical Chua’s circuit, which possesses a periodic external excitation and
a piecewise nonlinear resistor, is considered to investigate the possible bursting oscillations and the dynamical
mechanism in the Filippov system. Two new symmetric periodic bursting oscillations are observed when the
frequency of external excitation is far less than the natural one. Besides the conventional Hopf bifurcation, two
non-smooth bifurcations, i.e., boundary homoclinic bifurcation and non-smooth fold limit cycle bifurcation, are
discussed when the whole excitation term is regarded as a bifurcation parameter. The sliding solution of the Filippov
system and pseudo-equilibrium bifurcation of the sliding vector field on the switching manifold are analysed
theoretically. Based on the analysis of the bifurcations and the sliding solution, the dynamical mechanism of the
bursting oscillations is revealed. The external excitation plays an important role in generating bursting oscillations.
That is, bursting oscillations may be formed only if the excitation term passes through the boundary homoclinic
bifurcation. Otherwise, they do not occur. In addition, the time intervals between two symmetric adjacent spikes
of the bursting oscillations and the duration of the system staying at the stable pseudonode are dependent on the
excitation frequency.
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1. Introduction

Bursting oscillations belong to the class of
mixed-mode oscillations, which may occur in the slow–
fast dynamical system [1]. This phenomenon is ubiq-
uitous in physics [2], chemistry [3], biochemistry [4]
and neuroscience [5–7]. The generation mechanism
of bursting oscillations of slow–fast system has been
understood thanks to the slow–fast analysis method
introduced by Rinzel [8]. Subsequent to this pioneering
work, Izhikevich [9] summarised the bifurcation mecha-
nism of bursting oscillations and classified almost all the
bursting oscillations in low-dimensional systems. Burst-
ing oscillations may occur in a non-autonomous system
with periodic external excitation under the condition that
the external excitation has a low frequency. Such a sys-
tem can be treated as a slow–fast system by regarding
the whole excitation term as a slow-varying variable.
In this case, a powerful tool, termed ‘transformed

phase diagram’, is introduced to explain the dynamical
mechanism of the bursting oscillations [10]. Up to
now, most of the literatures on bursting oscillations
are confined to smooth or piecewise smooth contin-
uous dynamical systems (e.g. [11–15] and references
therein).

A Filippov system is a piecewise discontinuous sys-
tem. It usually has one or more discontinuity boundaries
(switching manifolds) which may cause qualitative
changes in a system’s dynamics, termed discontinuity-
induced bifurcations or non-smooth bifurcations. They
include boundary equilibrium bifurcations occurring
when an equilibrium meets a switching manifold. They
also include sliding bifurcations occurring when an
attracting periodic orbit meets a switching manifold,
thereby loses or gains a segment of sliding [16]. Burst-
ing behaviours may occur when a Filippov system
involves slow-varying and fast-varying variables. The
existence of non-smooth bifurcations in the Filippov
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Figure 1. The modified Chua’s circuit.

Figure 2. The i–v characteristic curve of the nonlinear resis-
tor NR.

system may lead to complicated bursting patterns. Thus,
investigating the bursting oscillations in the Filippov
system and accounting for the dynamical mechanism
have attracted many scholars’ attention [17,18]. How-
ever, up to now, the effects of boundary homoclinic
bifurcation, non-smooth fold limit cycle bifurcation and
the sliding vector field on the bursting dynamics were
rarely reported in the published papers we have read.

Chua’s circuit, which is a well-known generator of
chaotic oscillations, has not only become one of the
most common examples in research articles on nonlin-
ear oscillation [19], but has also been used in secret
communication [20] and voice encryption [21]. A very
simple modification of a scheme can lead to substantial
new results [22,23].

In this paper, we investigate the dynamical mechanism
of bursting oscillations in three-dimensional Filippov
system, focussing on the effects of boundary homoclinic
bifurcation, non-smooth fold limit cycle bifurcation and
the sliding vector field on the bursting dynamics. For this
purpose, the typical Chua’s circuit is modified, which is
shown in figure 1, where iG is a periodically exciting
current and NR is a non-linear resistor whose i–v char-
acteristic curve is piecewise and cubic (see figure 2).

2. Mathematical model and its bursting oscillations

The equations of the circuit are

C1
dV1

dτ
= G(V2 − V1) − g(V1) + IG sin(ωτ),

C2
dV2

dτ
= G(V1 − V2) + iL ,

L
diL
dτ

= −V2, (1)

where

g(V1) =
{−GAV1 + GBV 3

1 + IC , if V1 > 0,

−GAV1 + GBV 3
1 − IC , if V1 < 0,

(2)

corresponding to figure 2, denotes the relationship
between the current and voltage passing across NR,
GA and GB are conductance and IC is a direct current.
We assume G �= GA in this paper. The system is gov-
erned by different differential equations when V1 > 0
or V1 < 0. Therefore, H(V1, V2, iL) = V1 = 0 is a
switching surface.

By applying the following changes of variables: V1 =
(IC/G)x, V2 = (IC/G)y, iL = IC z and τ = (C2/G)t ,
(1) can be normalised and rewritten in the dimensionless
form

ẋ =
{
f +(x, w) = ( f +

1 , f +
2 , f +

3 ), if x > 0,

f −(x, w) = ( f −
1 , f −

2 , f −
3 ), if x < 0,

(3)

where

f +(x, w) = (α(y + (a − 1)x − bx3 − 1)

+w, x − y + z, −βy), (4)
f −(x, w) = (α(y + (a − 1)x − bx3 + 1)

+w, x − y + z, −βy), (5)

with

x = (x, y, z) ∈ R3, α = C2

C1
, β = C2

LG2 ,

a = GA

G
, b = GB I2C

G3 , γ = C2 IG
C1 IC

, � = ωC2

G

and

w = γ sin(�t),

satisfying the conditions α > 0, β > 0, γ > 0, ω >

0, a > 0, b > 0 and a �= 1.
The switching surface is redefined as h(x, y, z) =

x = 0, and the switching manifold is written as � =
{x|x = 0}. � divides the phase space into two subre-
gions, denoted by �± with �+ = {x ∈ R3|x > 0}
and �− = {x ∈ R3|x < 0}, respectively. Obviously,
the dynamics of the system in �± are governed by
ẋ = f ±(x, w), respectively.

If 0 < � � 1, there may exist an order gap between
the excitation frequency � and the natural one �N ,
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Figure 3. Three-dimensional phase portrait of the bursting
oscillations for γ = 3.0, where the blue segments are in
the regions �± and the red segments are on the switching
manifold �.

implying that system (3) is a slow–fast system and �

may satisfy 0 < � � �N , in which w = γ sin (�t)
is the slow subsystem. In this case, during an arbitrary
period 2π/�N , i.e., t ∈ [t0, t0 + (2π/�N )], the exci-
tation term w varies between w0 = γ sin(�t0) and
wN = γ sin(�t0 + 2π(�/�N )), implying w0 ≈ wN .
As state variables may oscillate mainly according to the
natural frequency �N , the analysis above means that
w keeps almost a constant value during any arbitrary
oscillating period [24]. Therefore, w can be regarded as
a bifurcation parameter to explore the bifurcation mech-
anism of bursting oscillations.

When the parameters are fixed at a = 0.95, b =
0.1, α = 1.82, β = 0.23 and � = 0.005, two types
of new bursting oscillations can be observed with the
variation of the excitation amplitude. Here, the initial
values of the state variables are set at x0 = 0.1, y0 = 0.1
and z0 = 0.1.

Numerical simulation shows that bursting oscillations
do not occur if γ is less than some critical value γ0. If
γ > γ0, bursting oscillations appear. For a typical case,
when γ = 3.0, the bursting oscillations are shown in
figures 3–6.

When γ is larger than γ0 and less than another critical
value γ1, the system keeps similar bursting patterns as
above. If γ > γ1, new bifurcations involve the burst-
ing attractor, forming new bursting oscillations (see the
representative ones in figure 7–10 for γ = 3.8.

Remark 1. According to §3.4, the critical value γ0 =
α = 1.82, and the critical value γ1 ≈ 3.254.

In order to explore the mechanism of the bursting
oscillations, in the following section, we turn to the
bifurcation analysis of the non-smooth vector field.

Figure 4. Phase portrait of the bursting oscillations on the
(z, x) plane for γ = 3.0.

Figure 5. Time history of the bursting oscillations on the
(t, x) plane for γ = 3.0.

Figure 6. Locally enlarged parts of figure 5.
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Figure 7. Three-dimensional phase portrait of the bursting
oscillations for γ = 3.8, where the blue segments are in the
regions �± and the red segments are on the switching mani-
fold �.

Figure 8. Phase portrait of the bursting oscillations on the
(z, x) plane for γ = 3.8.

3. Bifurcation analysis

3.1 Pseudoequilibrium analysis and sliding solution
on the switching manifold

The switching manifold � partitions the phase space
into two subregions �±. The directional Lie derivatives

L f ±h = 〈∇h, f ±(x, w)〉 = f ±
1 (6)

determine the kind of contact of smooth vectors f ±
(x, w) with �, where h = x , ∇h and 〈·, ·〉 denote the
gradient of smooth function h and the canonical inner
product, respectively [25].

If L f ±h = 0, we get two sets of tangential singulari-
ties S± = {x ∈ � | f ±

1 = 0} = {x ∈ � |α(y∓1)+w =
0}, which divide the switching manifold � into three

Figure 9. Time history of the bursting oscillations on the
(t, x) plane for γ = 3.8.

Figure 10. Locally enlarged parts of figure 9.

subregions, denoted by �c± and �s with �c+ = {x ∈
�| f +

1 > 0, f −
1 > 0}, �c− = {x ∈ �| f +

1 < 0, f −
1 <

0} and �s = {x ∈ �| f +
1 < 0, f −

1 > 0}, respectively.
�c± and �s are termed crossing regions and sliding
region, respectively.
S± are a pair of parallel lines with respect to w and y

on� if the parameterα is fixed, and the distance between
S+ and S− is 2. In other words, the shape of the sliding
region �s remains unchanged during the variation of
the parameter w, while their position changes on �. A
diagrammatic sketch of the three subregions and two
sets of tangential singularities are shown in figure11.

When x ∈ �s , following the Filippov convention (see
[26]), the sliding vector field associated with f +(x, w)

and f −(x, w) is the vector field f̂ s(x) which is tangent
to � and expressed in coordinates as

f̂ s(x) = (1 − δ) f +(x, w) + δ f −(x, w), (7)
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Figure 11. Diagrammatic sketch of the three subregions and
the two sets of tangent singularities for α = 1.82.

where

δ = L f +h

L f +h − L f −h
.

A straightforward calculation gives

f̂ s(x) = (0, −y + z, −βy). (8)

Note that, in the region �s , system ẋ = f̂ s(x) is
topologically equivalent [25] to

ẋ s = f s(y, z) = (−y + z, −βy), (9)

where xs = (y, z) ∈ �. We can take advantage of the
invariance of � under the flow determined by f s and
reduce the dimension of the problem by one.

When f̂ s(x) = 0, we get the pseudoequilibrium of
(3) at Es = (0, 0, 0). The stability of Es is equivalent to
that of E0 = (0, 0) which is the equilibrium of (9). The
stability of E0 can be determined by the eigenvalues
of the associated Jacobian matrix (d f s(y, z)/dxs)|E0 ,
which are

λ1,2 = −1 ± √
1 − 4β

2
.

This means that Es is a stable pseudonode or a stable
pseudofocus, and so there is no bifurcation associated
with the pseudoequilibrium of the sliding vector field.

The analytical solution of (9) can be written as

y = y(t) = c1 exp (λ1t) + c2 exp (λ2t),

z = z(t) = (λ1/β)c1 exp (λ2t) + (λ2/β)c2 exp (λ1t),

(10)

for β �= 1

4
or

y = y(t) = (c1 + c2t) exp (−1

2
t),

z = z(t) = (−2c1t − c2t
2) exp (−1

2
t), (11)

for β = 1
4 , where c1 and c2 are two constants which

are determined by the initial conditions of (9). Equation
(10) or (11) can describe the route from the point, which
is the intersection of the trajectory and �, to the stable
pseudonode or stable pseudofocus.

3.2 Equilibrium analysis of the fast subsystem

Now we turn to the bifurcation analysis of the fast sub-
systems by regarding the whole excitation term ω =
γ sin(�t) as a bifurcation parameter.

The admissible equilibria of the subsystems ẋ =
f ±(x, w) can be computed at E± = (X±, 0, −X±),
where sign(X±) = ±1 and X± satisfy

α((a − 1)X± − bX3± ∓ 1) + w = 0, (12)

respectively. The stability of the equilibria E± can be
determined by the associated characteristic equations,
written in the form

λ3 + Q1±λ2 + Q2±λ + Q3± = 0, (13)

respectively, where Q1± = 3αbX2±−aα+α+1, Q2± =
3αbX2± − aα + β, Q3± = 3αbβX2± − aαβ + αβ. Fold
bifurcation of the equilibrium point may be observed if

3αbβX2± − aαβ + αβ = 0, (14)

and Q1± > 0, Q1±Q2± − Q3± > 0 while Hopf bifur-
cation may occur if

Q1±Q2± − Q3± = 0, (15)

and Q1± > 0, Q3± > 0. These show that a pair of
pure imaginary eigenvalues may be observed, leading
to possible periodic movement.

3.3 Boundary equilibrium bifurcation

Equation (12) shows that if w = ±α, the admissible
equilibria E± collide with the pseudoequilibrium Es at
the point Es±(0, 0, 0) which are located on S±. Fur-
ther calculation reveals that, f ±(Es±, ±α) = 0, but
f ∓(Es±, ±α) �= 0; h(Es±, ±α) = 0; det( f ±

x (Es±,

±α)) = α(a−1)β �= 0, i.e., f ±
x (Es±, ±α) is invertible;

hw(Es±, ±α) − hx(Es±, ±α) [( f ±
x )−1 f ±

w ](Es±, ±α)

= −(1/α(a − 1)) �= 0. Therefore, by following [27],
system (3) undergoes boundary equilibrium bifurcations
at w = ±α, with respect to fields f + and f −, respec-
tively. The type of the boundary equilibrium bifurcation
will be discussed in §3.4.

3.4 Equilibrium branches and related bifurcations

Now fix the parameters at a = 0.95, b = 0.1, α =
1.82, β = 0.23. We explore the bifurcations of equi-
librium and limit cycle by regarding w as a bifurcation
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Figure 12. One-parameter bifurcation diagram with respect
to w on the (w, x) plane.

Figure 13. Equilibrium branches and the bifurcation points
with respect to w, y and x , in which BH± ∈ S±.

parameter. One-parameter bifurcation diagram of (3) is
computed numerically and projected on the (w, x) plane
(see figure 12). The equilibrium branches as well as the
bifurcation points with respect to w, y, x are plotted in
figure 13. Meanwhile, the stability of the equilibria, the
bifurcation points and the labels in the bifurcation dia-
gram are summarised in tables 1 and 2.

In figure 12, a branch of admissible equilibria of sub-
system ẋ = f +(x, w), i.e., EB2+ turns into a branch
of pseudonodes, i.e., PEB on � with the decrease of
w, resulting in a persistence bifurcation at BH+ corre-
sponding to w = 1.82. When w ∈ (1.82, 3.254), there
exist stable limit cycles LC1+ with sliding segments,
seeing the representative limit cycle for w = 2.8 in fig-
ures 14 and 15. The periods of the limit cycles LC1+
drastically increase as w approaches 1.82. When w =
1.82, an admissible saddle collides with the pseudo-
node at P2, resulting in an orbit with infinite period

Table 1. Bifurcations, labels and critical values.

Label Bifurcation Critical value

BH± Boundary homoclinic ±1.82
HB± Subcritical Hopf ±2.92966
LPC± Fold limit cycle ±3.254

Table 2. Stability of the equilibria.

Label Stability

EB1± Stable foci
EB2± Saddles
PEB Stable pseudonodes

Figure 14. Representative stable limit cycle for w = 2.8,
where PN and Sa denote the pseudonode and saddle, respec-
tively.

(see figures 16 and 17). In this case, the boundary equi-
librium bifurcation can be termed boundary homoclinic
bifurcation. Because of the symmetry, another boundary
homoclinic bifurcation occurs at BH− corresponding to
w = −1.82. Depending on the change of direction of w,
the boundary homoclinic bifurcations can explain either
the appearance or the disappearance of the limit cycle
attractors LC1±.

Subcritical Hopf bifurcations at HB±, corresponding
to w = ±2.92966, lead to the appearance of unsta-
ble limit cycles, denoted by LC2± in figure 12. LC2±
are approached by the stable limit cycles LC1± as w

approaches LPC± corresponding to w = ±3.254.
LC1± and LC2± coalesce and annihilate each other at
w = ±3.254, resulting in the occurrence of fold limit
cycle bifurcations. Notice that limit cycles LC1± involve
sliding segments located on � (e.g., see figure 14),
which means such fold limit cycle bifurcations are
somewhat different from that of conventional ones, and
we call them non-smooth fold limit cycle bifurcations.
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Figure 15. Time history of the limit cycle on the (t, x) plane
for w = 2.8.

Figure 16. The boundary homoclinic orbit for w = 1.82.

Figure 17. Time history of the boundary homoclinic orbit
for w = 1.82.

Figure 18. Rest and spiking areas: Ar0 corresponding to a
pseudoequilibrium attractor and Ar± corresponding to two
equilibrium attractors are the rest areas; As± corresponding
to two limit cycle attractors are the spiking areas.

4. Dynamical mechanism of bursting oscillations

In what follows, we study the dynamical mechanism of
the bursting oscillations based on the bifurcation anal-
ysis in §3. In fact, the range of w can be divided into
five areas by w = ±γ0 and w = ±γ1, i.e., rest areas
Ar− = {w|w < −γ1}, Ar0 = {w| − γ0 < w < γ0} and
Ar+ = {w|w > γ1}, spiking areas As− = {w| − γ1 <

w < −γ0} and As+ = {w|γ0 < w < γ1} (see figure 18).
Bursting oscillations in figure 5 are formed as the

external excitation slowly and periodically visits the rest
area Ar0 corresponding to a stable pseudoequilibrium
attractor and the spiking areas As± corresponding to
two limit cycle attractors, while the bursting oscillations
in figure 9 are formed as the external excitation slowly
and periodically visits the rest areas Ar0, Ar± and the
spiking areas As±, where Ar± correspond to two sta-
ble equilibrium attractors (see black and blue curves in
figure 18).

We have revealed the rest and spiking areas in the
range of the bifurcation parameter. Now we present the
dynamical mechanism of the bursting oscillations for
the two typical cases, γ = 3.0 and 3.8.

4.1 ‘Boundary homoclinic/boundary homoclinic’
bursting

To get a clear idea of the dynamical mechanism of the
bursting oscillations shown in figure 5, the transformed
phase diagram of the bursting oscillations and the bifur-
cation diagram are overlapped with each other, which
are shown in figures 19–23.
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Figure 19. The overlap of the transformed phase diagram
and the bifurcation diagram on the (w, x) plane for γ = 3.0.

Figure 20. Locally enlarged part of figure 19.

Figure 21. Locally enlarged part one of figure 20.

Figure 22. Locally enlarged part two of figure 20.

Figure 23. The transformed phase diagram and the equilib-
rium branch with respect to w, y and x for γ = 3.0.

Assume that the trajectory starts at the point BH+
with w = 1.82, at which a boundary homoclinic bifur-
cation occurs (see figure 19). The system stays at the
neighbourhood of the stable pseudonode of the sliding
vector field in rest state until the slow-varying param-
eter w decreases to w = −1.82, corresponding to the
point BH−. Another boundary homoclinic bifurcation
occurring at BH− results in the disappearance of the
rest state (see figure 20). Driven by the excitation term
w, the trajectory jumps to the spiking attractor LC1−
and oscillates along LC1− until it arrives at the mini-
mum value of w with w = −3.0 (see figures 21–22).
With the increase of the slow-varying variable w, the
trajectory moves backward along LC− until it arrives
at the neighbourhood of the point BH− (see figure 21).
Now half period of the bursting oscillations is finished.
Further increase of w leads to the other half period of
the symmetric movement, which is omitted here for
simplicity.
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Figure 24. The overlap of the transformed phase diagram
and the bifurcation diagram on the (w, x) plane for γ = 3.8.

Figure 25. Locally enlarged part one of figure 24.

From the above analysis, one may find that, boundary
homoclinic bifurcations lead to the transitions between
the rest states and the spiking states. Therefore, this
type of bursting oscillations can be called ‘boundary
homoclinic/boundary homoclinic’ bursting.

4.2 ‘Boundary homoclinic/non-smooth fold
cycle/sub-Hopf/boundary homoclinic’ bursting

When γ = 3.8, the subcritical Hopf and non-smooth
fold limit cycle bifurcations involve the bursting attrac-
tor. The transformed phase diagram and the bifurcation
diagram are overlapped in figure 24.

Assume that the trajectory starts at point P+ corre-
sponding to the maximum value of the slow-varying
variable w with w = 3.8 (see figure 24). With the
decrease of w, the trajectory moves along the stable
focus-type equilibrium branch EB1+ until it arrives at

Figure 26. Locally enlarged part two of figure 24.

Figure 27. Locally enlarged part three of figure 24.

the neighbourhood of the point HB+, at which a sub-
critical Hopf bifurcation occurs (see figure 25). The
instability of the saddle points on the equilibrium branch
EB2+ causes the trajectory to leave EB2+ gradually.
Then the trajectory is captured by the basin of attrac-
tion of the limit cycle LC1+, forming a spiking state
with only one peak (see figure 26). When the trajec-
tory arrives at the neighbourhood of the point BH+
corresponding to w = 1.82, a boundary homoclinic
bifurcation occurs. The spiking state disappears and the
system resides at the stable pseudonode of the sliding
vector field in rest state until w = −1.82, corresponding
to the point BH−, at which another boundary homo-
climic bifurcation occurs (see figure 24). The trajectory
jumps to the limit cycle LC1− and oscillates along
LC1−, until it arrives at the dash line LPC−, corre-
sponding to w = −3.254, at which a fold limit cycle
bifurcation occurs (see figure 27). Attracted by the sta-
ble foci, the trajectory settles down to EB1− abruptly
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Figure 28. The transformed phase diagram and the equilib-
rium branch with respect to w, y and x for γ = 3.8.

and then moves along EB1− until it arrives at point
P−, corresponding to the minimum value of w with
w = −3.8 (see figure 27). Now half period of the burst-
ing oscillations is finished. Further increase of w leads
to the other half period of the symmetric movement,
which is omitted here. This type of bursting oscillations
can be called ‘boundary homoclinic/non-smooth fold
cycle/sub-Hopf/boundary homoclinic’ bursting.

Remark 2. Once the trajectory arrives at the discontinu-
ity boundary �, it will be governed by (10) and moves
along the sliding region �s , forming sliding solution
of system (3) (see the red segments in figures 3 and
7). The sliding solution terminates at one of the sliding
boundaries S± or at the neighbourhood of E0, which
is determined by the initial point where the trajectory
intersects with �s (see figures 23 and 28).

5. Effects of excitation amplitude and frequency on
bursting oscillations

We have investigated the dynamical mechanism of
bursting oscillations. In this section, we focus on the
effects of external excitation amplitude and frequency
on such bursting oscillations.

First, the effect of external excitation amplitude on
bursting oscillations is considered. As described ear-
lier, bursting oscillations are formed because external
excitation term passes through boundary homoclinic
bifurcation values w = γ0 periodically. So, when the
excitation amplitude γ satisfies γ < γ0, bursting oscil-
lations do not occur because the external excitation term
is not able to pass through the boundary homoclinic

1.27 1.275 1.28 1.285 1.29 1.295 1.3 1.305
t 105
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0
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T1 260.7

T 628.3

T 1256.6

T 314.2

T1 521.5

Figure 29. Numerical results of time interval between two adjacent spikes of bursting dynamics and the duration of the system
staying at the stable pseudonode corresponding to figure 5 for the external excitation frequency ω = 0.0025, 0.005, 0.01,
respectively.
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bifurcation. If γ > γ0, bursting oscillations may be
formed. When γ is between γ0 and γ1, the dynami-
cal mechanism of the bursting oscillations are similar
to that in figures 3–5. If γ > γ1, the dynamical mech-
anism of the bursting oscillations are similar to that in
figures 7–9.

Secondly, the effect of external excitation frequency
on bursting oscillations is considered. As a kind of cou-
pling oscillator, the bursting dynamics of the whole
slow–fast coupling system has the frequency of �. The
time intervals between two symmetric adjacent spikes
of bursting oscillations can be calculated, which is
�T = π/�. Furthermore, the duration of the system
staying at the stable pseudonode is concluded at �T1 =
(2/�) arcsin(α/γ ). When� = 0.0025, 0.005 and 0.01,
we have �T = 400π, 200π and 100π , respectively.
Take the waveforms in figure 5 as an example, when� =
0.0025, 0.005 and 0.01 respectively, the corresponding
time intervals �T1 and �T are measured and shown in
figure 29, where the numerical results agree well with
the analytical ones.

6. Conclusion

Because of non-smoothness, a Chua’s circuit of
Filippov-type may exhibit bursting oscillations with
new patterns under certain external excitation condi-
tions. Uncovering the essence of the bursting oscil-
lations is an important issue in non-smooth bursting
dynamics. We first consider the external excitation term
as a bifurcation parameter and study its influence on
the generalised autonomous system, and at the same
time, we explore the sliding solution of the Filip-
pov system and pseudoequilibrium bifurcation of the
sliding vector field on the switching manifold. Then
employ the transformed phase diagram to account for
the bursting oscillations. Boundary homoclinic bifur-
cation, non-smooth fold limit cycle bifurcation and
subcritical Hopf bifurcation may result in the sys-
tem’s switching between different attractors, forming
complicated bursting oscillations, which shows that
the transitions between rest states and spiking states
may be caused by not only the conventional bifurca-
tions but also the non-smooth bifurcations. Here, we
would like to suggest that the dynamical behaviours of
the system on the switching manifold should be con-
sidered, as the sliding vector field on the switching
manifold may influence the bursting attractor of a Fil-
ippov systems. Our research enriches the non-smooth
dynamics of the bursting oscillations in the Filippov
system.
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