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Linear analysis of the dispersion relation of surface waves of
a magnetic fluid in a square container under an external oblique
magnetic field
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Abstract. In this study, free surface evolution of a magnetic fluid in a finite size tank which is subjected to an
external magnetic field was investigated. The physical problem and equations governing fluid motion and magnetic
field were given with boundary conditions. Using proper selection of variables, dimensionless equation system
governing magnetic fluid sloshing were written. Resolution method based on multiple scale variables was presented
and solution of the linear problem was given. The dispersion relation obtained in the finite depth case was compared
with that corresponding to an infinite depth calculated with the same assumptions. Direction and magnitude of
the external magnetic field, magnetic permeability ratio and surface tension effects on magnetic fluid free surface
stability were analysed and important results were discussed.
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1. Introduction

The free surface of a fluid contained in a tank subjected
to an external excitation exhibits a disordered form. This
phenomenon is called sloshing. If a tank partially filled
with magnetic fluid is subjected to an external magnetic
field, magnetic field acts on the magnetic fluid and influ-
ences the free surface fluid movement. A ferrofluid is a
stable colloidal solution of the magnetic nanoparticles
dispersed in a solvent. Due to the unusual combina-
tion of liquid and magnetic properties, it is possible,
among other things, to make them flow using magnetic
fields.

Magnetic fields are used to control the ferrofluids
flow, giving rise to new phenomena with many technical
applications [1]. Application of variable or non-uniform
magnetic field does not cause any movement of the
ferrofluid completely contained in a hermetic tank. To
cause a fluid displacement, there is initially a magnetisa-
tion heterogeneity. Presence of an interface is a sufficient
condition. Magnetisation discontinuity between two
media with different magnetic susceptibilities produces
a pressure field at the interface which will deform
it.

Deformation of the interface between the magnetic
and the nonmagnetic fluids in the presence of a mag-
netic field, known as Cowley–Rosensweig instability
(CRI), was investigated by Cowley and Rosensweig [2]
and has been widely studied by several others later,
see [3–8]. A normal magnetic field has a destabilising
influence on a flat interface between a magnetic and a
non-magnetic fluid, while interfacial tension and gravity
have stabilising influence. CRI is similar to Rayleigh–
Taylor instabilities (RTI), see [9,10]. Among recent
studies on RTI, the nonlinear Rayleigh–Taylor stabil-
ity of the cylindrical interface between the vapour and
the liquid phases of a fluid was studied by Seadawy and
El-Rashidy [11] and a novel approach was developed
by El-Dib et al [12] to study two rotating superposed
infinite hydromagnetic Darcian flows through porous
media under the influence of a uniform tangential mag-
netic field.

Some experiments on the stability of a flat inter-
face between ferromagnetic and non-magnetic fluids, in
the presence of uniform, normal, magnetic and gravita-
tional fields were discussed by Cowley and Rosensweig
[2]. Viscous effects and contribution of magnetic field
induced by the discontinuity surface deformation on the
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development of infinitesimal waves are presented by
Brancher [3]. Using multiple scales method, Malik and
Singh [4] investigated nonlinear surface instability of
two superposed magnetic fluids. It is shown that insta-
bility exists when the applied magnetic field, which is
normal to the fluid surface, is slightly larger than the
critical magnetic field. Nonlinear analysis shows that
the fluid free-surface form is a combination of waves
with different wave numbers and wavelengths. A fer-
rofluid slab bounded below by a fixed boundary and
above by a vacuum was considered by Twombly and
Thomas [5]. If the fluid is subjected to a vertical mag-
netic field of sufficient strength, surface waves appear.
Equations describing this phenomenon were derived and
a local stability criterion was also obtained and applied
to three periodic structures: rolls, squares and hexagons.

Peak pattern formation on a magnetic fluid-free
surface subjected to a normal magnetic field at the
undisturbed interface was investigated theoretically by
Friedrichs and Engel [6]. Perturbation energy minimisa-
tion procedure was used to study the relative stability of
the ridge, square and hexagon plan forms. Previous stud-
ies were extended to take into account the finite depth
fluid layer. Furthermore, the theoretical analysis showed
that when the wave number changes, the square config-
uration becomes rather susceptible to the increase in
wave number. Results were compared with the previous
investigations and recent experimental findings.

The CRI of the ferrofluid has been the subject of
several recent researches. Rotation and magnetic field
effects on the nonlinear CRI of two superposed ferroflu-
ids were investigated by Devi and Hemamalini [7]. It
was considered that the system was subjected to uniform
parallel rotation and normal magnetic field. Surface ten-
sion acts at the interface. Multiple scales method was
used to obtain solution and dispersion relations for non-
linear problem of the CRI. The stability problem was
discussed afterwards.

Bashtovoi et al [13] experimentally studied the mag-
netic fluid stability in the presence of tangential mag-
netic field and instability dynamics. Nonlinear instabil-
ity theory, shape of a flat magnetic fluid surface, solitary
and cnoidal wave theories on the cylindrical surface are
developed. Asymptotic behaviour of weakly nonlinear
dispersive waves at the interface of two semi-infinite
superposed magnetic fluids in the presence of an applied
magnetic field was investigated by Elhefnawy [14]. Sta-
bility was discussed both analytically and numerically,
for tangential and normal magnetic fields, and stability
diagrams were obtained. Comparing the results for the
normal field with results obtained for a tangential field,
they have observed that both fields play a dual role. They
redistribute stable and unstable regions in the stability
chart but with different effects. When the normal field

is stabilising for small wave numbers, tangential field
is destabilising for a range of wave numbers and vice
versa.

Motion of liquid with a free surface is of great concern
in many engineering disciplines such as fuel sloshing of
the rocket propellant, oscillation of oil in large storage
tanks, oscillation of water in a reservoir due to earth-
quake, sloshing of water in pressure-suppression pools
of boiling water reactors and several others. Lateral
sloshing of the magnetic fluid in a rectangular con-
tainer in vertically applied non-uniform magnetic fields
has been investigated by Sawada et al [15]. Assuming
a potential flow and using perturbation method, they
have obtained nonlinear sloshing responses up to the
third-order perturbation in the vicinity of the first res-
onant frequency. Theoretical nonlinear solutions agree
with experimental results. However, nonlinear solutions
are slightly larger than the experimental data in the
lower frequency range because the amplitude of the
free surface oscillation does not vanish with decrease
in frequency. In fact, in this range, linear solutions are
in better agreement with experimental values. Velocity
amplitude decreases when the magnetic field intensity
increases. Also, power spectra were calculated from the
velocity data. The spatial distributions of the dominant
peaks were in good agreement with nonlinear theoreti-
cal results. However, other power spectra deviate from
theoretical lines.

The flat interface between two magnetic fluids can be
parametrically excited by periodically oscillating mag-
netic field oriented in normal direction to the fluids. The
interface stability problem of two magnetic viscous flu-
ids has been studied by Bajaj and Malik [16]. Beyond a
critical value of wave number and excitation amplitude,
the plane interface becomes unstable and standing waves
appear. Standing wave solutions are found to exist for a
given value of external frequency and steady magnetic
field.

Nonlinear parametric instability of three-mode res-
onated standing waves raised at the interface of a
viscous magnetic fluid bounded layer excited by both
alternating magnetic field and longitudinal modulated
gravity force was studied theoretically by Sirwah [17].
The system is assumed to be excited by a paramet-
ric force together with an oscillating magnetic field
along normal direction to the unperturbed flat inter-
face. Using multiple scales technique, non-secularity
conditions considering uniformly convergent analytical
solutions in different cases of resonance were obtained.
Consequently, an autonomous coupled system of non-
linear ordinary differential equations controlling the
amplitudes and phases of the modulated resonant waves
was constructed. Accordingly, steady-state solutions as
well as existence conditions of both stable (periodic)
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and turbulent (chaotic) motions are determined. Some
numerical applications based on the analytical treatment
were given to demonstrate the effects of various param-
eters on the behaviour of the modified amplitudes with
time as well as phase-plane trajectory. Zakaria and Sir-
wah [18] provided an extensive stability analysis of the
surface waves between layers of two immiscible infi-
nite magnetic liquids. This subject seems to have a
long history with relevance to fluid mechanics as well
as technological and industrial applications. Gravita-
tion and uniform oblique magnetic field effects were
taken into account. Analytical solutions of the nonlin-
ear problem were achieved in the perturbation analysis
methods framework, in order to treat finite amplitude
waves and then determine stability criteria of the consid-
ered problem. Various stability criteria of the travelling
waves were investigated. Also, solitary wave solutions
at the liquid–liquid interface were discussed. Influence
of different parameters governing the system stability
behaviour was discussed.

Bae et al [19] have analysed the dynamic behaviour of
the magnetic fluid that sloshes due to the pitching motion
of the container. This analysis shows that the surface of
the magnetic fluid rises towards the location of intensity
of the magnetic field when sloshing does not occur and
when sloshing occurs simultaneously with the applica-
tion of the magnetic field, the elevation of the surface
as a result of the magnetic field is maintained. Further,
the wave motion of the surface is small because the
magnetic body force dominates the effect of sloshing if
the excitation frequency of sloshing is small. Likewise,
the wave motion of the fluid surface is smaller when a
magnetic field is not applied if the excitation frequency
increases. The results also show that when the intensity
of the magnetic field is strong, the fluid surface rises in
that location and if the intensity of the magnetic field is
weak, the height of the fluid surface is lower than the
initial level obtained in the absence of a magnetic field.

A weakly non-linear approach for small-amplitude
capillary-gravity waves that propagate along the inter-
face of two finite-thickness layers of viscous magnetic
fluids and formed by the interaction of the first and the
second harmonics of the fundamental mode was devel-
oped by Sirwah [20]. The fluids under consideration are
assumed to have constant densities, viscosity and perme-
ability, taking into account a constant surface tension.
Fluids were assumed to be excited by a uniform tan-
gential magnetic field. The influence of each tangential
field and Weber number on the stability of linear waves
has been considered. Numerical simulation results show
that tangential field as well as Weber number have regu-
lar stabilising influence. Furthermore, he has concluded
that the effect of wave number on the stability criteria
depends strongly on tangential field values and Weber

number. A pair of coupled nonlinear partial differential
equations with complex coefficients which model, up to
cubic order, the evolution of the interacting waves has
been derived. Solutions of evolution equations (corre-
sponding to sinusoidal wave trains) were obtained and
then formal series expansion for the wave profile, in
wave steepness powers was derived. The method of
multiple scales was used by Lee [21] to analyse the prop-
agation of nonlinear wave on a liquid and a subsonic
gas interface in the presence of magnetic field taking
into account surface tension. Amplitude evolution was
governed by the nonlinear Schrödinger equation which
is a criterion for modulation instability.

The studies carried out on the evolution of the inter-
face of a magnetic fluid filling a reservoir when the
system is subjected to an external magnetic field are
carried out without taking into account the effects of the
walls. Interface evolution of the magnetic fluid in a finite
size tank which is subjected to external magnetic field is
investigated in this study. Section 2 is devoted to the pre-
sentation of the physical problem. Equations governing
the fluid motion and magnetic field with boundary con-
ditions are given for both magnetic fluid and magnetic
field at the rigid tank walls and at the free surface. By the
appropriate selection of variables, we give dimension-
less equations governing the magnetic fluid sloshing in
§3. Resolution method based on the multiple scale vari-
ables is presented in §4. Linear solution is exposed in
§5. We analyse, in §6, the effects of external magnetic
field on the dispersion relation and magnetic fluid-free
surface evolution. Stable and unstable zones depending
on the wave number and how these are influenced by the
horizontal and vertical components of the external mag-
netic field are presented. In Conclusion, major results of
this study are discussed.

2. Problem formulation

We consider two-dimensional sloshing of an incom-
pressible inviscid magnetic fluid (ferrofluid), with free
surface, in a rectangular tank of length L and depth h.
The free surface is the interface between the magnetic
fluid and air. Cartesian coordinates are considered with
x-axis in the plane of the undisturbed free surface and
y-axis is positive in the direction upward normal to the
undisturbed free surface (see figure 1). The lower region
in the tank (y ≤ 0), labelled 1, is occupied by the mag-
netic fluid of density ρ and magnetic permeability μ1;
the remaining space is occupied by air with magnetic
permeability μ2. Both media are subjected to a uniform
magnetic field, oblique to the interface and is given by

�H0 = H01�ex + H02�ey . (1)
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Figure 1. Problem scheme.

Assuming that the magnetic permeability of air is very
close to that for a vacuum, magnetic inductions in the
magnetic fluid and air are respectively

�B(1)
0 = μ1 �H (1)

0 = μ0( �H0 + �M (1)
0 ) (2)

and

�B(2)
0 = μ2 �H (2)

0 = μ0 �H0, (3)

where

�H ( j)
0 = H ( j)

01 �ex + H ( j)
02 �ey, j = 1, 2 (4)

(see [22–24]) and �M (1)
0 is the magnetic fluid magnetisa-

tion given by

�M (1)
0 = χ1(H0) �H0 (5)

with χ1(H0) representing the magnetic fluid suscepti-
bility.

For a linear magnetisable magnetic fluid, correspond-
ing to low applied magnetic field �H0, the magnetic fluid
susceptibility is assumed to be constant, χ1(H0) = χ1
and the magnetic fluid induction becomes

�B(1)
0 = μ1 �H (1)

0 = μ0(1 + χ) �H0. (6)

When the magnetic fluid interface is in equilibrium and
assuming that there are no free currents at this interface,
the normal magnetic induction component and tangen-
tial magnetic field component are continuous. We write

�n · ( �B(2)
0 − �B(1)

0 ) = 0 (7)

and

�n ∧ ( �H (2)
0 − �H (1)

0 ) = 0 (8)

at the magnetic fluid interface.
In other terms, these conditions give

H (1)
01 = H (2)

01 (9)

and

μ1H
(1)
02 = μ2H

(2)
02 . (10)

Motion of the incompressible inviscid magnetic fluid
in the rectangular tank under capillary-gravity forces is
assumed to be irrotational. It can be described by the
velocity potential (see [7,14,18,25–28]), such that

�xx + �yy = 0, 0 ≤ x ≤ L , − h ≤ y ≤ η(x, t),

(11)

where �(x, y, t) is the velocity potential of the magnetic
fluid.

In magneto-quasistatic case with negligible displace-
ment current, Maxwell’s equations are reduced to Gauss
law �∇ · �B and Ampere law (no currents) �∇ ∧ �H = �0.
From Ampere law, the magnetic field �H ( j), j = 1, 2 can
be expressed in terms of the magnetic scalar potential
�( j)(x, y, t) in each region occupied by the fluid and
air, i.e.,

�H ( j) = �H ( j)
0 − �∇�( j), j = 1, 2, (12)

where �H ( j)
0 , j = 1, 2 are unperturbed oblique magnetic

fields in regions 1 and 2 respectively.
Taking into account that magnetic fluid susceptibil-

ity is constant and combining eq. (12) with Gauss law,
the magnetic scalar potential �( j), j = 1, 2 must obey
Laplace equations:

�(1)
xx + �(1)

yy = 0, 0 ≤ x ≤ L , −h ≤ y ≤ η(x, t)

(13)

and

�(2)
xx + �(2)

yy = 0, 0 ≤ x ≤ L , η(x, t) ≤ y ≤ +∞,

(14)

where y = η(x, t) is the free surface elevation.
On the rigid boundaries y = −h, x = 0 and x = L ,

normal fluid velocities as well as tangential components
of the magnetic field vanish leading to

�y = 0 at y = −h (15)

�(1)
x = 0 at y = −h (16)

�x = 0 at x = 0, x = L (17)

�(1)
y = 0 at x = 0, x = L . (18)



Pramana – J. Phys. (2020) 94:50 Page 5 of 12 50

The jump in tangential components of the magnetic field
is zero across the free surface, which gives

(�(1)
x − �(2)

x ) − ηx (H
(1)
02 − H (2)

02 + �(1)
y − �(2)

y ) = 0

at y = η(x, t). (19)

Additionally, as no free surface charges are present,
normal component of the magnetic induction must be
continuous at the free interface, which requires

ηx (μ1�
(1)
x − μ2�

(2)
x − μ1H

(1)
01 + μ2H

(2)
01 )

−(μ1�
(1)
y − μ2�

(2)
y ) = 0 at y = η(x, t). (20)

The kinematics condition at the interface is given by

ηt − �y + ηx�x = 0 at y = η(x, t). (21)

The balance of the normal component of total stress
tensor at the interface gives the condition:

ρ�t + 1

2
∇�∇� + ρgη

− σηxx (1 + η2
x )

−3/2 + 1

2

(1 − η2
x )

(1 + η2
x )

×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ1(H
2(1)
02 − H2(1)

01 ) − μ2(H
2(2)
02 − H2(2)

01 )

−2μ1H
(1)
02 �

(1)
y + 2μ1H

(2)
02 �

(2)
y

+2μ1H
(1)
01 �

(1)
x − 2μ2H

(2)
01 �

(2)
x

−μ1(�
2(1)
x − �

2(1)
y ) + μ2(�

2(2)
x − �

2(2)
y )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ 2ηx
(

1 + η2
x

)

×

⎧
⎪⎨

⎪⎩

μ1H
(1)
01 �

(1)
y + μ1H

(1)
02 �

(1)
x − μ2H

(2)
01 �

(2)
y

−μ2H
(2)
02 �

(2)
x − μ1�

(1)
x �

(1)
y + μ2�

(2)
x �

(2)
y

⎫
⎪⎬

⎪⎭

= 0 at y = η(x, t). (22)

Using the dimensionless variables

(x̃, ỹ, L̃, h̃, η̃) = 1

L
(x, y, L , h, η),

t̃ =
√

g

L
t, φ̃ = 1

L
√
gL

φ,

H̃ ( j) =
√

μ1

ρgL
H ( j), ψ̃( j) = 1

L

√
μ1

ρgL
ψ( j)

eqs (11)–(22) gives

�̃x̃ x̃ + �̃ỹ ỹ = 0, 0 ≤ x̃ ≤ L̃, −h̃ ≤ ỹ ≤ η̃(x̃, t̃)

(23)

�̃
(1)

x̃ x̃ + �̃
(1)

ỹ ỹ = 0, 0 ≤ x̃ ≤ L̃, −h̃ ≤ ỹ ≤ η̃(x̃, t̃)

(24)

and

�̃
(2)

x̃ x̃ + �̃
(2)

ỹ ỹ = 0, 0 ≤ x̃ ≤ L̃, η̃(x̃, t̃) ≤ ỹ ≤ +∞
(25)

�̃ỹ = 0 at ỹ = −h̃ (26)

�̃
(1)

x̃ = 0 at ỹ = −h̃ (27)

�̃x̃ = 0 at x̃ = 0, x̃ = L̃ (28)

and

�̃
(1)

ỹ = 0, at x̃ = 0, x̃ = L̃ (29)

(�̃
(1)

x̃ − �̃
(2)

x̃ ) − η̃x̃ (H̃
(1)
02 − H̃ (2)

02

+�̃
(1)

ỹ − �̃
(2)

ỹ ) = 0 at ỹ = η̃(x̃, t̃) (30)

η̃x̃ (�̃
(1)

x̃ − μ�̃
(2)

x̃ − H̃ (1)
01

+ μH̃ (2)
01 ) − (�̃

(1)

ỹ − μ�̃
(2)

ỹ ) = 0 at ỹ = η̃(x̃, t̃)

(31)

η̃t̃ − �̃ỹ + η̃x̃�̃x̃ = 0 at ỹ = η̃(x̃, t̃) (32)

�̃t̃ + 1

2
∇̃�̃∇̃�̃ + η̃ − σ̃ η̃x̃ x̃ (1 + η̃2

x̃ )
−3/2

+1

2

(1−η̃2
x̃ )

(1 + η̃2
x̃ )

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(H̃2(1)
02 −H̃2(1)

01 )−μ(H̃2(2)
02 −H̃2(2)

01 )

−2H̃ (1)
02 �̃

(1)

ỹ +2μH̃ (2)
02 �̃

(2)

ỹ

+2H̃ (1)
01 �̃

(1)

x̃ −2μH̃ (2)
01 �̃

(2)

x̃

−(�̃
2(1)

x̃ −�̃
2(1)

ỹ )+μ(�̃
2(2)

x̃ −�̃
2(2)

ỹ )

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+ 2η̃x̃

(1 + η̃2
x̃ )

×

⎧
⎪⎨

⎪⎩

H̃ (1)
01 �̃

(1)

ỹ + H̃ (1)
02 �̃

(1)

x̃ − μH̃ (2)
01 �̃

(2)

ỹ

−μH̃ (2)
02 �̃

(2)

x̃ − μ�̃
(1)

x̃ �̃
(1)

ỹ + μ�̃
(2)

x̃ �̃
(2)

ỹ

⎫
⎪⎬

⎪⎭

= 0 at ỹ = η(x̃, t̃), (33)

where σ̃ = σ/ρgL2 is the dimensionless capillary
coefficient.
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3. Solution method

In order to simplify equations, we shall remove the tilde.
To obtain approximate solution of eqs (23)–(33), we
use multiple scales method [29,30] by introducing the
spatial and temporal scales xn = εnx and tn = εnt (n =
1, 2, . . .). ε is a small parameter corresponding to the
steepness ratio of the wave. The following expansions
of the variables are assumed:

η(x, t) =
2∑

n=1

εnηn(x0, x1; t0, t1) + O
(
ε3) (34)

�(x, y, t) =
2∑

n=1

εn�n(x0, x1, y; t0, t1) + O
(
ε3) (35)

�(1)(x, y, t) =
2∑

n=1

εn�(1)
n (x0, x1, y; t0, t1) + O

(
ε3)

(36)

�(2)(x, y, t) =
2∑

n=1

εn�(2)
n (x0, x1, y; t0, t1) + O

(
ε3).

(37)

Substituting expansions (34)–(37) in eqs (23)–(33) and
equating terms with equal powers of ε, we obtain the
following first-order system of equations.

3.1 First-order system of equations

At the first order n = 1, the system of equations is given
by

�1x0x0 + �1yy = 0, 0 ≤ x0 ≤ L ,

− h ≤ y ≤ η1(x0, t0) (38)

�
(1)
1x0x0

+ �
(1)
1yy = 0, 0 ≤ x0 ≤ L ,

− h ≤ y ≤ η1(x0, t0) (39)

and

�
(2)
1x0x0

+ �
(2)
1yy = 0, 0 ≤ x0 ≤ L ,

η1(x0, t0) ≤ y ≤ +∞. (40)

At the bottom of the tank y = −h

�1y = 0 (41)

�
(1)
1x0

= 0. (42)

On the left and right vertical rigid boundaries x0 = 0
and L

�1x0 = 0 (43)

�
(1)
1y = 0 (44)

At the free surface y = η1(x0, t0), we have: Continu-
ity of normal and tangential magnetic field components
given by

(�
(1)
1x0

− �
(2)
1x0

) − η1x0(H
(1)
02 − H (2)

02 ) = 0 (45)

(�
(1)
1y − μ�

(2)
1y ) + η1x0(H

(1)
01 − μH (2)

01 ) = 0. (46)

Kinematics and dynamical conditions are

η1t0 = �1y (47)

�1t0 + η1 − ση1x0x0 − H (1)
02 �

(1)
1y + μH (2)

02 �
(2)
1y

+ H (1)
01 �

(1)
1x0

− μH (2)
01 �

(2)
1x0

= 0. (48)

The second-order system of equations is given in
Appendix.

4. Linear solutions

In this section, we developed first-order solution. This
solution satisfies the velocity and magnetic potentials
Laplace eqs (38)–(40) and conditions (41)–(46).

Solution of the first-order problem is given in the form
of progressive waves with respect to the lower scales by

η1(x0, t0) =
∞∑

n=1

An cos(knx0) sin(ωnt0) (49)

�1(x0, y, t0) =
∞∑

n=1

Anωn

kn tanh(knh)

cosh[kn(y + h)]
cosh(knh)

× cos(knx0) cos(ωnt0) (50)

�
(1)
1 (x0, y, t0) =

∞∑

n=1

Bn[H (1)
01 sin(knx0)

−H (1)
02 cos(knx0)]

×sinh[kn(y + h)]
cosh(knh)

sin(ωnt0) (51)

�
(2)
1 (x0, y, t0) =

∞∑

n=1

Bn[H (2)
01 tanh(knh) sin(knx0)

+H (2)
02 cos(knx0)]e−kn y sin(ωnt0),

(52)
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where An is an unknown function denoting the
amplitude of the propagating wave mode n. ωn and kn
are frequency and wave number of mode n and

Bn = An(1 − μ)

(1 + μ tanh(knh))
.

To verify the normal velocity conditions at the vertical
tank boundaries, we set

kn = nπ. (53)

Introduction of solutions given by (49)–(52) in the
dynamic condition at the interface (48) and taking into
account kinematics condition (47) leads to the following
dispersion relation:

ω2
n = kn(1 + σk2

n) tanh(knh) − (1 − μ)2k2
n tanh(knh)

μ(1 + μ tanh(knh))

× [(H (1)
02 )2 − μ tanh(knh)(H (1)

01 )2]. (54)

Considering the case of infinite depth, tanh(knh) → 1,
see Browaeys [31], with the same considerations and
hypotheses, we obtain the following dispersion relation:

ω2
n = kn(1 + σk2

n)

−(1 − μ)2k2
n

μ(1 + μ)
[(H (1)

02 )2 − μ(H (1)
01 )2]. (55)

The second member of the dispersion relation contains
two terms. The first term is related to gravito-capillary
effects (see Lamb [32]). The second term results from
the magnetic field components. Term related to the ver-
tical component of the magnetic field is negative, while
the term related to the horizontal component is positive.
All the parameters composing this dispersion relation
are analysed to determine the sign of the eigenfrequen-
cies when the wave number increases.

5. Results and discussion

Orientation of the magnetic field applied to a magnetic
fluid in a reservoir influences the nature of the move-
ment of the free surface. The motion of the free surface is
progressive, representing the superposition of the eigen-
modes and is not always possible as manifestation of
the eigenmode is a consequence of the existence of
eigenfrequencies. Gravito-capillary effects on the eigen-
frequencies and eigenmodes were studied by Meziani
and Ourrad [33].

Relations (54) and (55), which give the square of the
eigenfrequencies vs. wave numbers contain, in addi-
tion to gravity, four parameters which are: magnetic
fluid depth, horizontal and vertical components of the
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Figure 2. Square eigenfrequencies vs. wave number values
for σ = 0.01, μ = 0.001 and H (1)

01 = 0.1. Infinite depth at
the top figure and finite depth at bottom figure. (� � �) Without
magnetic field, (+++) with vertical magnetic field H (1)

02 and

(−−−) with horizontal and vertical magnetic fields H (1)
01 and

H (1)
02 . (a) H (1)

02 = 0.1, (b) H (1)
02 = 0.2 and (c) H (1)

02 = 0.3.
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external applied magnetic field, magnetic permeability
ratio between the outside medium and the magnetic fluid
and finally surface tension. In the following, we study
the effects of all parameters on the eigenfrequencies and
free surface eigenmodes.

5.1 Effects of infinite and finite depths

Analysis of dispersion relations obtained in finite and
infinite depths shows clearly that fluid depth does not
have a significant influence on the evolution of eigen-
frequencies.

Figures 2a–2c show the evolution of the square of the
eigenfrequencies with the wave number. These curves
show evolution when the horizontal component of the
magnetic field is fixed and vertical component of the
magnetic field increases. In all the figures, the horizontal
component of the magnetic field is fixed at H (1)

01 = 0.1.
In each case, we present curves for the cases of finite

depth as well as for the infinite depth. For each curve,
we show that the simple lines indicate the square of the
eigenfrequency evolution when we take into account
only the gravito-capillary effects. The solid lines with
the squares indicate the square of the eigenfrequency
evolution by taking into account, in addition to gravito-
capillary effects, the influence of the vertical component
of the applied magnetic field. The third curve indicates
the square of the eigenfrequencies by taking into account
all the terms, namely, the gravito-capillary effect and
the vertical and horizontal components of the magnetic
field.

In figure 2a, square of the eigenfrequencies are repre-
sented for vertical magnetic field component value equal
to H (1)

02 = 0.1. We find that the square of the eigenfre-
quencies remain always positive when the wave number
increases. In this case, the magnetic fluid-free surface
remains stable.

Moreover, as the vertical component of the magnetic
field increases, figure 2b shows that the square of the
eigenfrequencies have two thresholds k1c and k2c which
are given in tables 1 and 2. We note that the threshold
values remain constant as well in both finite depth and
infinite depth cases.

For k � k1c and k � k2c, square of the eigenfre-
quencies are real and positive, implying that magnetic
fluid-free interface remains stable. For k1c < k < k2c,
eigenfrequencies are imaginary corresponding to the
interface of the unstable magnetic field. The instabil-
ity region grows further as the vertical magnetic field
component increases (see tables 3 and 4).

Beyond a critical value of the vertical component
of the magnetic field, the magnetic fluid-free surface
becomes unstable (see figure 2c).

Table 1. Threshold values k1c and k2c limiting unstable zone
for σ = 0.01, μ = 0.001, with vertical and no horizontal
magnetic field components in infinite depth case.

H (1)
02 k1c k2c

0.02 2.6888 37.1914
0.03 1.1286 88.6017

Table 2. Threshold values k1c and k2c limiting unstable zone
for σ = 0.01, μ = 0.001, with vertical and no horizontal
magnetic field components in finite depth case.

H (1)
02 k1c k2c

0.02 2.6888 37.1914
0.03 1.1284 88.6017

Table 3. Threshold values k1c and k2c limiting unstable zone
for σ = 0.01, μ = 0.001, with vertical and horizontal mag-
netic field components in infinite depth case.

H (1)
02 k1c k2c

0.02 2.7690 36.1142
0.03 1.1417 87.5917

Table 4. Threshold values k1c and k2c limiting unstable zone
for σ = 0.01, μ = 0.001, with vertical and horizontal mag-
netic field components in finite depth case.

H (1)
02 k1c k2c

0.02 2.7683 36.1142
0.03 1.1390 87.5917

5.2 Effect of the horizontal magnetic field

Application of horizontal external magnetic field allows
us to give magnetic fluid-free interface from unstable to
stable situation. Magnetic fluid interface stabilisation
process is shown in figures 3a–3d. In figure 3a curves
show that despite the application of the horizontal mag-
netic field component, beyond a critical wave number
value, magnetic fluid-free interface becomes unstable.
This resulted from the negative value of the square of
eigenfrequencies. When the horizontal component of
the magnetic field increases, it is found (see figure 3b)
that the negative values of the square of the eigenfre-
quencies become low for greater wave numbers.

This process continues as the amplitude of the hori-
zontal component gradually increases. We then go back
to values where the magnetic fluid-free interface insta-
bility zone is circumscribed between the critical values
of two wave numbers (figure 3c) and reach a stable



Pramana – J. Phys. (2020) 94:50 Page 9 of 12 50

0 10 20 30 40 50 60 70 80 90 100
−5000

0

5000

wave number k

ω2

Square eigenfrequencies versus wave number k in infinite depth

without H
with H

2

with H
1
 and H

2

0 10 20 30 40 50 60 70 80 90 100
−5000

0

5000

wave number k

ω2

Square eigenfrequencies versus wave number k in finite depth

without H
with H2

with H
1
 and H

2

(a)

0 10 20 30 40 50 60 70 80 90 100
−5000

0

5000

wave number k

ω2

Square eigenfrequencies versus wave number k in infinite depth

without H
with H

2

with H1 and H2

0 10 20 30 40 50 60 70 80 90 100
−5000

0

5000

wave number k

ω2

Square eigenfrequencies versus wave number k in finite depth

without H
with H

2

with H1 and H2

(b)

0 10 20 30 40 50 60 70 80 90 100
−5000

0

5000

wave number k

ω2

Square eigenfrequencies versus wave number k in infinite depth

without H
with  H

2

with H1 and H2

0 10 20 30 40 50 60 70 80 90 100
−5000

0

5000

wave number k

ω2

Square eigenfrequencies versus wave number k in finite depth

without H
with  H

2

with H
1
 and H

2

(c)

0 10 20 30 40 50 60 70 80 90 100
−5000

0

5000

wave number k

ω2

Square eigenfrequencies versus wave number k in infinite depth

without H
with H

2

with H1 and H2

0 10 20 30 40 50 60 70 80 90 100
−5000

0

5000

wave number k

ω2

Square eigenfrequencies versus wave number k in finite depth

without H
with H2

with H
1
 and H

2

(d)

Figure 3. Effect of horizontal magnetic field on system eigenfrequencies values for σ = 0.1, μ = 0.05 and H (1)
02 = 0.3.

Infinite depth at the top figure and finite depth at bottom figure. (◦ ◦ ◦) Without magnetic field, (+ + +) with vertical
magnetic field H (1)

02 and (− − −) with horizontal and vertical magnetic fields H (1)
01 and H (1)

02 . (a) H (1)
01 = 0.7, (b) H (1)

01 = 0.8,

(c) H (1)
01 = 1.1 and (d) H (1)

01 = 1.2.

situation (figure 3d), for even higher components of the
horizontal magnetic field.

The magnetic fluid-free interface is destabilised by
applying a vertical magnetic field of small amplitude.
To restore this interface stability, we must apply a hor-
izontal magnetic field whose amplitude is significantly
greater than that of the vertical magnetic field.

5.3 Effect of the magnetic permeability ratio

In this section, we have investigated the magnetic fluid
interface stability based on the magnetic permeability
rate.

This parameter, noted μ, is the ratio of the mag-
netic permeability of the surrounding space to that of
themagnetic fluid. Figures 4a and 4b show the square
of the eigenfrequencies vs. wave numbers in infinite

and finite depth cases for five permeability ratios.
Eigenfrequencies vs. waves numbers are shown by tak-
ing into account all terms in the dispersion relation.

For low values of magnetic permeability ratio, solid
lines with empty circles, eigenfrequencies become
imaginary beyond a critical value of wave number.
The magnetic fluid-free interface becomes rapidly
unstable.

The free surface shows limited instability zone when
permeability ratio increases and becomes completely
stable for higher ratios. Therefore, when the magnetic
fluid is subjected to an external magnetic field, free inter-
face instability does not depend only on the orientation
and amplitudes of the external magnetic field, but also on
permeability ratio. In other words, interface instability
is closely related not only to the nature of the magnetic
fluid but also to the medium that contains it.
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Figure 4. Effect of the magnetic permeability ratio on sys-
tem eigenfrequency values for σ = 0.1, H (1)

01 = 0.3

and H (1)
02 = 0.3. (◦ ◦ ◦) μ = 0.05, (���) μ = 0.1,

(×××) μ = 0.12, (���) μ = 0.2 and (  ) μ = 0.5. (a)
Infinite depth case and (b) finite depth case.

5.4 Effects of surface tension

The last aspect of this investigation is the influence of
surface tension on magnetic fluid-free interface stability
when the magnetic fluid is subjected to oblique external
magnetic field.

Figures 5a–5c include the evolution of square eigen-
frequencies with the wave number for five surface
tension values when vertical component of the exter-
nal magnetic field increases and horizontal component
is constant.

For the weak vertical magnetic field component, mag-
netic fluid-free interface is unstable for weak surface
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Figure 5. Effect of the surface tension on system eigen-
frequency values for μ = 0.001 and H (1)

01 = 0.3.
(◦ ◦ ◦) σ = 0.01, (���) σ = 0.05, (× × ×) σ = 0.1,
(���) σ = 0.5 and (  ) σ = 1. (a) H (1)
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02 = 0.6.
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tension values, while for great values of the surface
tension, magnetic fluid-free interface is stable (figure 5a).

By increasing the vertical component of the exter-
nal magnetic field, the magnetic fluid interface becomes
unstable even for large surface tension values. See
change in evolution of the curve in solid lines with
inverted triangles between figures 5a and 5b. Also, for
high surface tension, unstable zone appears (curve with
square in figure 5b).

For a large value of the external magnetic field verti-
cal component, the stability disappears for any surface
tension value. The surface tension plays a stabilising
role. The stabilising effect is quickly influenced by the
applied vertical magnetic field.

6. Conclusion

In this study, we have developed a linear solution of
the magnetic fluid-free surface evolution when it is sub-
jected to an oblique external magnetic field. The method
adopted to construct the linear solution is well explained.
The dispersion relation obtained in the case of finite
depth is similar to that obtained for the infinite depth
case. A detailed analysis of all the parameters involved
in this relationship is performed. Stability of the free sur-
face depends not only on the applied external magnetic
field, but also on the ratio of magnetic permeability and
surface tension.
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Appendix A. Second-order system of equations

Substituting expansions (34)–(37) in the system of equa-
tions (23)–(33) and equating terms with equal powers of
ε, we obtain at the second order ε2 the following system
of equations:

�2x0x0 + �2yy = −2�1x0x1 (A.1)

�
(1)
2x0x0

+ �
(1)
2yy = −2�

(1)
1x0x1

(A.2)

�
(2)
2x0x0

+ �
(2)
2yy = −2�

(2)
1x0x1

. (A.3)

At the rigid bottom of the tank, we have

�2y = 0 (A.4)

�
(1)
2x0

+ �
(1)
1x1

= 0. (A.5)

At the vertical boundaries of the tank

�2x0 + �1x1 = 0 (A.6)

�
(1)
2y = 0. (A.7)

Continuity of the normal and tangential magnetic fields
at the interface is given as

�
(1)
2y − μ�

(2)
2y + η2x0(H

(1)
01 − μH (2)

01 )

− η1x0(�
(1)
1x0

− μ�
(2)
1x0

) + η1(�
(1)
1yy − μ�

(2)
1yy)

+ η1x1(H
(1)
01 − μH (2)

01 ) = 0 (A.8)

�
(1)
2x0

− �
(2)
2x0

+ η2x0(H
(1)
02 − H (2)

02 )

+ (�
(1)
1x1

− �
(2)
1x1

) + η1(�
(1)
1x0y

− �
(2)
1x0y

)

+ η1x0(�
(1)
1y − �

(2)
1y ) − η1x1(H

(1)
02 − H (2)

02 ) = 0.

(A.9)

Kinematics and dynamics conditions at the interface are

�2y − η2t0 = η1x0�1x0 − η1�1yy + η1t1 (A.10)

�2t0 + �1t1 + η1�1t0y + η2 − σ(η2x0x0 + 2η1x0x1)

+ 1

2
[(φ1x0)

2 + (φ1y)
2] − H (1)

02 (ψ
(1)
2y + η1ψ

(1)
1yy)

+ μH (2)
02 (ψ

(2)
2y + η1ψ

(2)
1yy) + H (1)

01 (η1ψ
(1)
1x0y

+ ψ
(1)
2x0

+ ψ
(1)
1x1

) − μH (2)
01 (η1ψ

(2)
1x0y

+ ψ
(2)
2x0

+ ψ
(2)
1x1

)

− 1

2
[(ψ(1)

1x0
)2 − (ψ

(1)
1y )2] + μ

2
[(ψ(2)

1x0
)2 − (ψ

(2)
1y )2]

+ 2η1x0(H
(1)
01 ψ

(1)
1y + H (1)

02 ψ
(1)
1x0

− μH (2)
01 ψ

(2)
1y

− μH (2)
02 ψ

(2)
1x0

) − η2
1x0

((H2(1)

02 − H2(1)

01 )

− μ(H2(2)

02 − H2(2)

01 )) = 0. (A.11)
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