
Pramana – J. Phys. (2020) 94:38 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-019-1898-9

Galerkin finite-element numerical analysis of the effects of heat
generation and thermal radiation on MHD SWCNT–water
nanofluid flow with a stretchable plate

SANTOSH CHAUDHARY∗ and K M KANIKA

Department of Mathematics, Malaviya National Institute of Technology, Jaipur 302 017, India
∗Corresponding author. E-mail: d11.santosh@yahoo.com

MS received 14 June 2019; revised 9 October 2019; accepted 4 November 2019;
published online 7 February 2020

Abstract. Fundamental goal of the present communication is to analyse the viscous electrically conducting
nanofluid flow near a stagnation region past a stretching sheet. Investigation of single-wall carbon nanotubes
(SWCNTs) are done and water is employed as the base fluid. Combinations of the effects of heat generation,
thermal radiation, viscous dissipation and Joule heating are considered. Mathematical modelling and examinations
are done in the presence of magnetic field. Similarity variables are introduced to convert nonlinear partial differential
equations into nonlinear ordinary differential equations. Numerical solutions of the governing modelled equations
are collected by applying Galerkin finite-element method. Impacts of distinct influential parameters such as velocity
ratio parameter, solid volume fraction, magnetic parameter, radiation parameter, heat generation parameter and
Brinkmann number on velocity, temperature, surface shear stress and surface heat flux are obtained and discussed.
Furthermore, comparison of the results of the current analysis is made with the earlier published data.
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1. Introduction

In view of numerous physical problems such as
endothermic chemical reactions or fluid undergoing
exothermic reactions, analysis of the effect of heat
generation on the moving fluid is important. Exact
modelling of internal heat generation is very crucial.
Heat generation can be temperature-dependent, space-
dependent and constant. Heat generation can be used
in manufacturing, microelectronics, transportation and
thermal power plants. Patil and Roy [1] studied the effect
of heat generation on the unsteady flow over a moving
vertical sheet. After that, Mahapatra et al [2], Chaudhary
et al [3] and Eid [4] studied the influence of heat gener-
ation on magnetohydrodynamic (MHD) flow. Recently,
some of the associated studies are explored by Sun and
Wu [5] and Hayat et al [6].

Thermal radiation is the key factor of heat transfer,
which is due to the thermal motion of the charged par-
ticles in the material. It is transmitted in the form of
electromagnetic radiations. This type of radiation is

identical to the light speed and there is no need for
any kind of medium for its breeding. The applications
of radiation heat transfer are important in turbid water
bodies, power technology, design of furnace, nuclear
reactor safety and power plants. Moreover, it has several
applications in space technology, where devices should
have high thermal efficiency, as the devices are handled
at high level of temperature. Investigation of thermal
radiation effect on MHD flow is carried out by Raptis
et al [7]. Since then, Jat and Chaudhary [8], Pal and
Mondal [9], Sinha and Shit [10], Bhatti et al [11], Khan
et al [12], Chaudhary and Choudhary [13] and Kumar
et al [14] have published on this topic of thermal radia-
tion heat transfer.

The interaction of electromagnetic forces and elec-
trically conducting liquids is known as MHD. Impacts
of MHD can be seen in numerous man-made and nat-
ural flows. Fluid flows under the influence of magnetic
field have many engineering and industrial
applications, especially in flow-meter, measurement of
blood flow, nuclear reactor, production of polymers,
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hydromagnetic generators and pumping and heating of
fluids. MHD flows have captivated enough attentions
both experimentaly and theoretically. Abdelkhalek [15]
initiated the study on MHD flow with heat and mass
transfer. A computational investigation of MHD flow
in vertical channel was done by Liu and Lo [16]. In
the numerical analysis, some researchers like Pekmen
and Tezer-Sezgin [17], Hayat et al [18], Chen et al [19],
Chaudhary and Choudhary [20] and Khan et al [21] pre-
sented the impact of magnetic field on the flow problems
with various configurations.

Solid nanosized particles with 1–100 nm diameter are
suspended in the engineered colloidal fluids to enhance
heat transfer and thermal transport and this mixture of
nanoparticles and fluid is known as nonofluid.

Nanoparticles are generally composed of oxides, met-
als, carbides or carbon nanotubes, while base fluids
typically used are water and organic fluid particu-
larly, ethylene glycol, ethanol and oil. The size of the
nanoparticles is approximately equal to the size of the
molecules of the base fluid. Particle shape, type and
size affect the thermal conductivity of the nanofluid.
Carbon nanotubes (CNTs) have greater thermal conduc-
tivity than other nanotubes. CNTs have some prominent
features such as torsion capability, superb flexibility and
extremely high resistance. There are two types of CNTs,
namely the single-wall carbon nanotube (SWCNT) and
the multiple-wall carbon nanotube (MWCNT). Conclu-
sively, SWCNT is built by Bethune by adding transition
term. CNTs can be used in frames of helicopters and
veneer of the tennis rackets owing to their resistance
and they can be used in fuselage in transmission industry,
electronics industry and also in the production of athletic
equipments. Nanofluid material concept is elaborated by
Akbarinia and Laur [22]. Further, Moghari et al [23]
addressed the two-phase mixed convection nanofluid
flow in an annulus. In recent years, a few models with
good performance of nanofluid flow for numerous phys-
ical situations are given by Dib et al [24], Wang and Su
[25], Al-Sayegh [26], Chaudhary and Kanika [27] and
Ghosh and Mukhopadhyay [28].

Fluid flow towards a stretching plate with heat and
mass transfer has attracted the attention of researchers
in various areas because of its applications in industries
and engineering processes. Cooling of electronic com-
ponents, designing of buildings, thermal insulation, fibre
spinning, glass blowing and polymer sheets’ aerody-
namic extrusion are the most useful applications of the
stretching sheet flow. Moreover, this type of flow have
promising considerations in the polymer plate extrusion
by a die or in the plastic flows drawing. Mechanical
characteristics of the final product stringently depend on
the cooling and stretching rates in the procedure. Ariel
[29] introduced the three-dimensional flow towards a

stretched sheet. Additionally, Jat and Chaudhary [30],
Turkyilmazoglu and Pop [31] and Weidman [32] studied
the fluid flow due to the stretchable plate. In the last few
decades, many researchers and scientists like Chaud-
hary et al [33] and Mahapatra and Sidui [34] showed the
effects of stretching surface under different conditions.

Main focus of this article is the effect of SWCNT
with water as the base fluid, steady MHD nanofluid flow
past a stretched plate in the existence of heat genera-
tion and thermal radiation. The nanofluid flow is studied
along with the effects of viscous dissipation and Joule
heating. Further, the Galerkin finite-element method
is applied to find numerical solution of the problem.
The confirmation of parameters for the analysis is exe-
cuted and authorised by comparing between previous
and present results. It is elaborated that the results will
award towards better compassionating of CNT–water
nanofluid. At last the effects of specified parameters are
computed and presented in graphical and tabular forms.

2. Modelling

An electrically conducting incompressible, viscous
SWCNT–water nanofluid towards a stretched surface
along with the impacts of heat generation and thermal
radiation is considered. The stretching velocity is taken
as Uw = ax and the velocity of free stream is assumed
to be U∞ = bx , where a is a positive constant, b is
the free stream parameter and x is the coordinate mea-
sured parallel to the sheet. Tw and T∞ are the wall
temperature and the temperature of free stream respec-
tively. In the normal direction of flow, a magnetic field
of strength B0 is applied as shown in figure 1. The
induced magnetic field is negligible because a very small
magnetic Reynolds number is taken. By invoking the
aforementioned assumptions, the governing equations
for the present analysis can be given as (Bansal [35])

Figure 1. Physical sketch of the problem.
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with the corresponding boundary conditions

y = 0 : u = Uw, v = 0, T = Tw

y → ∞ : u → U∞, T → T∞, (4)

where the subscript ‘nf’ stands for the nanofluid, u
and v are the velocity factors parallel to the x- and
y-axes respectively, ν = μ/ρ is the kinematic viscos-
ity, μ is the coefficient of viscosity, ρ is the density,
σe is the electrical conductivity, T is the temperature
of the nanofluid, α = κ/ρCp is the thermal diffusiv-
ity, κ is the thermal conductivity, Cp is the specific
heat at constant pressure, Q0 is the heat generation
coefficient, qr = −(4σ ∗/3k∗)(∂T 4/∂y) is the radia-
tive heat flux by the Rosseland approximation, σ ∗ is the
Stefan–Boltzmann constant and k∗ is the mean absorp-
tion coefficient. The temperature difference in the flow
can be expressed in a Taylor series about T∞ neglecting
higher order terms

T 4 ∼= 4T 3∞T − 3T 4∞. (5)

Moreover, thermophysical characteristics of SWCNT–
water nanofluid such as coefficient of viscosity, density,
electrical conductivity, thermal conductivity and heat
capacitance given by from Khalid et al [36] are men-
tioned as
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where subscripts ‘f’ and ‘CNT’ indicate the fluid and
carbon nanotubes respectively, and φ is the solid vol-
ume fraction. Moreover, table 1 followed by Khalid et
al [36] shows the values for the above-represented phys-
ical properties of the conventional fluid and CNTs.

3. Similarity variables

The following similarity variables are imported to con-
vert the governing equations into ordinary differential
equations as followed by Valipour et al [37]:

ψ = (aνnf)
1/2x f (η), η =

(
a

νnf

)1/2

y,

T = T∞ + (Tw − T∞)θ(η), (11)

where ψ(x, y) is the stream function, which is used in
the usual manner as u = ∂ψ/∂y and v = −∂ψ/∂x and
symmetrically satisfies the continuity equation (1), f (η)

is the dimensionless stream function, η is the similarity
variable and θ(η) is the dimensionless temperature.

Substituting the dimensionless similarity variables
equation (11) into eqs (2)–(4) gives

f ′′′ + f f ′′ − f ′2

− 1

E1
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2
]

= 0 (13)

with the transformed boundary conditions

η = 0: f = 0, f ′ = 1, θ = 1,

η → ∞: f ′ → λ, θ → 0, (14)

where prime (′) represents the differentiation with
respect to η, E1 = 1−φ+φ(ρCNT/ρf), E2 = (1−φ)5/2,
E3 = 1−φ+φ[(ρCp)CNT/(ρCp)f ], M = (σe)f B2

0/aρf
is the magnetic parameter, λ = b/a is the velocity
ratio parameter, Nr = 16σ ∗T3∞/3k∗κf is the radia-
tion parameter, Pr = νf/αf is the Prandtl number,
S = Q0/a(ρCp)f is the heat generation parameter
and Br = νfU 2

w/[αf(Cp)f(Tw − T∞)] is the Brinkmann
number.
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Table 1. Values of material properties.

Model ρ (kg m−3) σe (S m−1) κ (W m−1 K
−1

) Cp (J kg−1 K
−1

)

SWCNT 2600 106–107 6600 425
Water 997.1 0.05 0.613 4179

4. Physical quantities of primary interest

The local skin friction coefficient (Cf ) and the local Nus-
selt number (Nux ) at the wall are defined as

Cf = μnf(∂u/∂y)y=0

ρfU 2
w/2

,

Nux = x[−κnf(∂T /∂y) + qr]y=0

κf(Tw − T∞)
. (15)

By applying the non-dimensional variable equation
(11), eq. (15) can be given as
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)1/2
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1

Re1/2
x
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1/2
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)
θ ′(0), (16)

where Rex = Uwx/νf is the local Reynolds number.

5. Numerical method for the solution

An authoritative technique like Galerkin finite-element
method is used to solve the ordinary differential equa-
tions (12) and (13) along with boundary condition
equation (14). In this scheme, the whole region is split
into smaller finite-dimensional elements. This numer-
ical technique is the most adaptable in the studies of
diverse analysis of fluid mechanics, electrical system,
solid mechanics and heat transfer. Assuming

f ′ = g (17)

then eqs (12) and (13) are reduced to

g′′ + f g′ − g2

− 1

E1

(σe)nf

(σe)f
M(g − λ) + λ2 = 0 (18)

E1E2

(
κnf

κf
+ Nr

)
θ ′′ + E3Pr f θ ′

+PrSθ + E1Br

[
g′2 + 1

E1

(σe)nf

(σe)f
M(g − λ)2

]
= 0

(19)

and the associated boundary conditions become

η = 0: f = 0, g = 1, θ = 1,

η → ∞: g → λ, θ → 0. (20)

For the computational process, η → ∞ is shifted to
η = 5, without any loss of generalisation and the domain
is split into 1000 linear elements, while every element
has two nodes.

The variational formulation correlated with eqs (17)–
(19) along a typical linear element (ηe, ηe+1) is given
by∫ ηe+1
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where w1, w2 and w3 are weight functions and can be
viewed as the variations in f , g and θ respectively.

The finite-element approximations of the functions f ,
g and θ are considered as

f =
2∑
j=1

f jϕ j , g =
2∑
j=1

g jϕ j , θ =
2∑
j=1

θ jϕ j

with

w1 = w2 = w3 = ϕi (i = 1, 2),

where ϕi are the shape functions for a typical linear
element (ηe, ηe+1) and are summarised as

ϕ
(e)
1 = ηe+1 − η

ηe+1 − ηe
,

ϕ
(e)
2 = η − ηe

ηe+1 − ηe
, ηe � η � ηe+1.



Pramana – J. Phys. (2020) 94:38 Page 5 of 9 38

Table 2. Comparison of values of f ′′(0) and θ ′(0) between the previous studies and the present study for different values of
λ when φ = M = Nr = 0, Pr = 1, S = 0 and Br = 0.

λ − f ′′(0) −θ ′(0)

Mahapatra and Gupta [38] Present results Mahapatra and Gupta [38] Present results

0.1 0.9694 0.969655 0.603 0.604815
0.2 0.9181 0.918165 0.625 0.625633
0.5 0.6673 0.667264 0.692 0.692522
2.0 −2.0175 −2.017504 0.974 0.978727
3.0 −4.7293 −4.729283 1.124 1.132091

The finite-element model of eqs (21)–(23) is given by

⎡
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with
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ḡiϕi .

The entire flow region is partitioned into 1000 linear
elements of equal size. Every element is two-nodded
and three functions can be evaluated at each node. So
a matrix of order 3003 × 3003 is found after assem-
bling all element equations. For solving the system, an
iterative scheme must be applied. After imposing the
boundary conditions, a set of 2998 equations remain,
which are solved by using the Newton–Raphson method
while maintaining an accuracy of 10−7.

6. Validation of computational algorithm

The achieved data of the present investigation are com-
pared with those of Mahapatra and Gupta [38] for
different values of λ in non-magnetic case that can be
observed in table 2. The comparison indicates that the
numerical results in this study are highly accurate and
acceptable.

7. Discussion of physical outcomes

After finding the solutions of the governing equations
of the present study with the Galerkin finite-element
method, effects of λ, φ, M , Nr , S and Br on the velocity
( f ′(η)) and the temperature (θ(η)) distributions for the
SWCNT–water nanofluid are shown in graphical forms.
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Figure 2. Variation of velocity by enhancing λ when
φ = 0.07 and M = 0.1.

Figure 3. Variation of temperature by enhancing λ when
φ = 0.07, M = 0.1, Nr = 1, Pr = 6.2, S = 0.1 and Br = 1.

Also the influences of variable parameters on the surface
shear stress ( f ′′(0)) and the surface heat flux (θ ′(0))
are presented in table form in SWCNT–water nanofluid.
Further, to find the effect of a specified parameter, the
remaining controlling parameters are taken as constants.

Ascending changes in λ on f ′(η) and θ(η) are shown
in figures 2 and 3 respectively. Observations indicate
that the fluid velocity increases by rising λ, whereas
opposite phenomenon can be seen in temperature field.
If the velocity of free stream is greater than the stretch-
ing velocity, then retarding force reduces. So the fluid
velocity increases and the fluid temperature decreases.

Figures 4 and 5 demonstrate the effects of φ on f ′(η)

and θ(η) respectively. An increment in the value of
φ causes negligible change in the momentum bound-
ary layer. Further, thermal boundary layer thickness
increases due to the increase in φ value. It occurs

Figure 4. Variation of velocity by enhancing φ when
λ = 0.2 and M = 0.1.

Figure 5. Variation of temperature by enhancing φ when
λ = 0.2, M = 0.1, Nr = 1, Pr = 6.2, S = 0.1 and Br = 1.

because an enhancement in volume fraction of solids
leads to enhancement in κ of the nanofluid. But as
SWCNTs are suspended as nanoparticles in the base
fluid, there is no effect in fluid velocity.

f ′(η) and θ(η) fields are sketched in figures 6 and
7 respectively for several values of M . It can be noted
from these figures that an increment in M reduces f ′(η)

and enhances θ(η) because the increase in M generates
Lorentz force which gives resistance to the flow. This
causes fall in f ′(η). This in turn causes enlargement of
θ(η).

Figure 8 plots the behaviour of θ(η) distribution under
the influence of Nr . This figure shows that the thermal
boundary layer enlarges as Nr increases. This is due to
the fact that huge heat transformation in the occupied
fluid causes increase in temperature of the fluid.
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Figure 6. Variation of velocity by enhancing M when
λ = 0.2 and φ = 0.07.

Figure 7. Variation of temperature by enhancing M when
λ = 0.2, φ = 0.07, Nr = 1, Pr = 6.2, S = 0.1 and Br = 1.

Figure 8. Variation of temperature by enhancing Nr when
λ = 0.2, φ = 0.07, M = 0.1, Pr= 6.2, S = 0.1 and Br= 1.

Figure 9. Variation of temperature by enhancing S when
λ = 0.2, φ = 0.07, M = 0.1, Nr = 1, Pr= 6.2 and Br= 1.

Figure 10. Variation of temperature by enhancing Br when
λ = 0.2, φ = 0.07, M = 0.1, Nr = 1, Pr= 6.2 and S = 0.1.

Behavior of θ(η) for various values of S is demon-
strated in figure 9. This figure shows that as S increases,
the temperature of the fluid increases. This is because
there is greater flow towards the surface due to the ther-
mal buoyancy effect.

Figure 10 presents the variation in θ(η) under the
influence of Br. This figure shows that the thermal
boundary layer increases with the enhancement in Br,
because viscous dissipation influences the flow area to
increase the energy, thereby causing higher temperature
of the fluid and higher buoyancy force.

The roles of λ, φ, M , Nr , S and Br on f ′′(0) and
θ ′(0) are addressed in table 3. Accordingly,Cf increases
and Nux decreases with a step-up of λ, while reversed
scenario is found for φ and M . Subsequently, the surface
heat flux evolves over to the increasing values of Nr , S
and Br. From the practical point of view, the negative
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Table 3. Numerical values of f ′′(0) and θ ′(0) for various values of the specified parameters
for SWCNT–water nanofluid when Pr = 6.2.

λ φ M Nr S Br − f ′′(0) −θ ′(0)

0.1 0.07 0.1 1 0.10 1 1.014105 0.624820
0.2 0.955272 0.677476
0.3 0.880166 0.730787
0.4 0.790416 0.783015
0.5 0.687269 0.833005
0.2 0.01 0.952364 0.876412

0.03 0.953309 0.798217
0.05 0.954277 0.732960
0.09 0.956296 0.629605
0.07 1.0 1.242030 0.524383

2.0 1.498651 0.396397
3.0 1.717615 0.293020
4.0 1.911758 0.205280
0.1 2 0.955272 0.580489

3 0.512594
4 0.462447
5 0.424144
1 0.01 0.785324

0.20 0.541770
0.30 0.382080
0.40 0.184530
0.10 2 0.551529

3 0.425582
4 0.299635
5 0.173688

values of the shear stress and the heat transfer rate for all
values of the associated parameters are the reason that
fluid utilises a drag force from the surface and heat flow
on the surface respectively.

8. Conclusions

In the present investigation, radiation heat transfer
and MHD flow of SWCNT–water nanofluid along a
stretched surface under the influence of heat generation
have been examined by Galerkin finite-element scheme.
Some main consequences are noted as follows:

• It is observed that speed of the flow as well as Cf
increase when λ increases, although θ(η) as well as
the rate of heat transfer decline due to increment in
λ. However, reversal impact is found in the velocity,
temperature, f ′′(0) and θ ′(0) for increasing values
of M .

• Negligible effect is found in the momentum bound-
ary layer due to the rising values of φ. Further,
increasing φ tends to reduce f ′′(0) and increase the
thermal boundary layer thickness and θ ′(0).

• On the other hand, θ(η) and Nux increase with the
increase in Nr , S and Br.
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