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Abstract. In this paper, the improved tan(ϕ/2)-expansion method (ITEM) is proposed to obtain more general
exact solutions of the nonlinear evolution equations (NLEEs). This method is applied to the generalised Hirota–
Satsuma coupled KdV (HScKdV) equation and (2+1)-dimensional Nizhnik–Novikov–Veselov (NNV) system. We
have obtained four types of solutions of these equations such as hyperbolic, trigonometric, exponential and rational
functions as an advantage of this method. These solutions include solitons, rational, periodic and kink solutions.
Moreover, modulation instability is used to establish stability of the obtained solutions.

Keywords. Improved tan(ϕ/2)-expansion method; generalised Hirota–Satsuma coupled KdV equation; (2 + 1)-
dimensional Nizhnik–Novikov–Veselov system.

PACS Nos 04.20.Jb; 02.30.Jr

1. Introduction

The nonlinear evolution equations (NLEE) are use-
ful because many ideas in NLEEs are more easily
understood in terms of simpler equations which model
more complicated systems in various aspects. NLEEs
appear not only in applied mathematics but also in the-
oretical physics. The general solutions of these types
of equations in areas such as engineering, biology,
chemistry, finance and mechanics, help scientists to
obtain quite favourable information about the char-
acter of equations. Thus, these equations are critical
in solving real-world problems and it is important to
reach general solutions to make sense of this physical
phenomenon. Following the progress on computer-
aided calculations and the development of non-linear
sciences based on algebraic systems, the application
fields of NLEEs have also expanded. Examples of
these fields include: optical fibres [1], fluid dynam-
ics and condensed matter physics [2], plasma physics
[3] and so on. Due to the efficiency, reliability, and
ease of use of symbolic software packages such as

†Dedicated to Prof. Mehmet Cagliyan on the occasion of his
70th birthday.

Mathematica or Maple, many powerful techniques
such as the (G ′/G)-expansion method [4,5], the sim-
plest equation method [6], the Jacobi elliptic function
method [7,8], the homotopy perturbation method [9,10],
the variational iteration method [11], the sine–cosine
method [12], the tanh–coth method [13,14], the exp-
function method [15], the homogeneous balance method
[16], first integral methods [17,18], the Lie symmetry
method [19], exp(−�(ξ)) expansion method [20], the
Hirota bilinear method [21,22] and so on have been
constructed and developed. All these methods are effec-
tive methods to obtain travelling wave solutions of
NLEEs.

Several important results have emerged for the two-
dimensional (2D) systems obtained over the years and
a wide variety of 2D systems have been available for
the detailed experimental study to assess the suitability
of various experimental theories. In recent years, there
has been great interest in the impact of dimensional-
ity on the behaviour of physical systems in relation to
critical events occurring around phase transitions. The
probable reason for the interest in 2D systems is that,
while they are broadly similar in many respects to the
three-dimensional (3D) systems, the theoretical analy-
sis is somewhat simpler. The simplicity of calculating
the geometry of a plane relative to the geometry of the
volume, the easier evaluation of the integrals, the need
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for fewer particles in some numerical calculations are
some of the advantages of 2D systems [23].

In this work, first we consider a generalised Hirota–
Satsuma coupled KdV (HScKdV) equation. This equa-
tion was introduced by Wu et al [24]. They introduced a
4 × 4 matrix spectral problem with three potentials and
proposed a corresponding hierarchy of nonlinear equa-
tions. One of the typical equations in the hierarchy is
the new generalised HScKdV equation as follows:

ut = 1

2
uxxx − 3uux + 3(vw)x

vt = −vxxx + 3uvx

wt = −wxxx + 3uwx . (1)

This equation has been proposed to explain shallow
water waves whose dispersion is unidirectional. Equa-
tion (1) was first appeared as an interesting equation in
hierarchy which was offered by Wu et al [24]. Substitut-
ing w = v∗ in eq. (1), one can obtain a new complex cou-
pled KdV equation [24] and similarly substituting w =
v in eq. (1), the Hirota–Satsuma equation is reached
[25]. The HScKdV equation has attracted the attention
of many researchers recently, and it has been analysed
using different techniques such as the homotopy pertur-
bation approach [26], Jacobi elliptic function [27], the
projective Riccati equations [28] etc. to find solutions.

Secondly, the (2+1)-dimensional Nizhnik–Novikov–
Veselov (NNV) system discussed in this study is

ut+kuxxx+ruyyy+sux+quy=3k(uv)x+3r(uw)y,

ux = vy, uy = wx , (2)

where x, y and t are the scaled space and time coordi-
nates respectively, and the coefficients s, k, r and q are
some arbitrary constants [29,30]. This equation is the
only known isotropic Lax integrable extension of the
familiar KdV equation [31]. As this system is useful
for examining the degeneration of string configura-
tions, membrane shapes and equilibrium shapes [32],
it is very important in biomathematics and mathemat-
ical physics. Many scientists found solutions of NNV
system with the help of different techniques. Some of
them are (G ′/G)-expansion method [33], the modified
Kudryashov method [34], the extended tanh method
[35], etc.

The study aims to build up exact solutions for the gen-
eralised HScKdV equation (1) and (2 + 1)-dimensional
NNV system (2) by using improved tan(ϕ/2)-expansion
method (ITEM). This technique is one of the most
efficient and powerful methods that helps us to obtain
solutions of these problems and of many other nonlinear
equations. Additionally, this method allows to perform
long-term, boring and confusing algebraic calculations

by computer using symbolic softwares such as Maple,
Matlab, etc.

This paper is arranged as follows: we give the steps
of the ITEM in §2. In the next two sections, as an illus-
tration of this method, we apply ITEM to the HScKdV
equation (1) and to the NNV system (2) in §3 and §4,
respectively. In §5, we discuss the modulation instability
analysis. In the last chapter, we give some conclusions
and discussions about the obtained solutions. Finally,
some references contributing to this paper are given.

2. Algorithm of ITEM for NLEEs

This method was summarised and improved by Man-
afian et al [36] for achieving analytic solutions of
NLEEs. Assume that a nonlinear partial differential
equation is given in general form as follows:

F(q, qx , qt , qxx , qtt , . . .) = 0. (3)

After simple algebraic operations, this equation is trans-
formed into an ordinary differential equation (ODE)
with ξ = kx + vt transformation

Q(q, kq ′, vq ′, k2q ′′, v2q ′′, . . .) = 0. (4)

Then, assume that the searched wave solutions of eq. (4)
have the following representation:

q(ξ) = S(ϕ) =
m∑

s=−m

As[τ + tan(ϕ/2)]s, (5)

where As (0 ≤ s ≤ m) and A−s = Bs (1 ≤ s ≤ m) are
constants to be determined and τ is an arbitrary constant,
such that Am �= 0, Bm �= 0 and ϕ = ϕ(ξ) is the solution
of the following first-order differential equation:

ϕ′(ξ) = a sin(ϕ(ξ)) + b cos(ϕ(ξ)) + c. (6)

If we try to find the solution of (6), then we obtain special
solutions that vary according to the state of the coeffi-
cients:

Family 1. When � = a2 + b2 − c2 < 0 and b − c �= 0,
then

ϕ(ξ) = 2 tan−1

[
a

b − c
−

√−�

b − c
tan

(√−�

2
ξ̄

)]
.

Family 2. When � = a2 + b2 − c2 > 0 and b − c �= 0,
then

ϕ(ξ) = 2 tan−1

[
a

b − c
+

√
�

b − c
tanh

(√
�

2
ξ̄

)]
.
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Family 3. When � = a2 + b2 − c2 > 0, b �= 0 and
c = 0, then

ϕ(ξ) = 2 tan−1

[
a

b
+

√
b2 + a2

b
tanh

(√
b2 + a2

2
ξ̄

)]
.

Family 4. When � = a2 + b2 − c2 < 0, c �= 0 and
b = 0, then

ϕ(ξ) = 2 tan−1

[
−a

c
+

√
c2−a2

c
tanh

(√
c2−a2

2
ξ̄

)]
.

Family 5. When � = a2 + b2 − c2 > 0, b − c �= 0 and
a = 0, then

ϕ(ξ) = 2 tan−1

[√
b + c

b − c
tanh

(√
b2 − c2

2
ξ̄

)]
.

Family 6. When a = 0 and c = 0, then

ϕ(ξ) = tan−1

[
e2bξ̄ − 1

e2bξ̄ + 1
,

e2bξ̄

e2bξ̄ + 1

]
.

Family 7. When b = 0 and c = 0, then

ϕ(ξ) = tan−1

[
e2aξ̄

e2aξ̄ + 1
,

e2aξ̄ − 1

e2aξ̄ + 1

]
.

Family 8. When a2 + b2 = c2, then

ϕ(ξ) = 2 tan−1
[
aξ̄ + 2

(b − c)ξ̄

]
.

Family 9. When a = b = c = ka, then

ϕ(ξ) = 2 tan−1[ekaξ̄ − 1].
Family 10. When a = c = ka and b = −ka, then

ϕ(ξ) = −2 tan−1

[
ekaξ̄

ekaξ̄ − 1

]
.

Family 11. When c = a, then

ϕ(ξ) = −2 tan−1

[
(a + b)ebξ̄ − 1

(a − b)ebξ̄ − 1

]
.

Family 12. When a = c, then

ϕ(ξ) = 2 tan−1

[
(c + b)ebξ̄ + 1

(b − c)ebξ̄ − 1

]
.

Family 13. When c = −a, then

ϕ(ξ) = 2 tan−1

[
ebξ̄ + b − a

ebξ̄ − b − a

]
.

Family 14. When b = −c, then

ϕ(ξ) = 2 tan−1

[
aeaξ̄

1 − deaξ̄

]
.

Family 15. When b = 0 and a = c, then

ϕ(ξ) = −2 tan−1
[
cξ̄ + 2

cξ̄

]
.

Family 16. When a = 0 and b = c, then

ϕ(ξ) = 2 tan−1[cξ̄ ].
Family 17. When a = 0 and b = −c, then

ϕ(ξ) = −2 tan−1
[

1

cξ̄

]
.

Family 18. When a = 0 and b = 0, then

ϕ(ξ) = cξ + C.

Family 19. When b = c, then

ϕ(ξ) = 2 tan−1

[
eaξ̄ − c

a

]
,

where ξ̄ = ξ +C , p, A0, As, Bs (s = 1, 2, . . . ,m), a, b
and c are constants to be determined later.

As usual, for determiningm, the highest-order deriva-
tive should be balanced with the highest-order nonlinear
terms in eq. (4). However, the positive integer m can
be determined in this way. When m = r/p (where
m = r/p is a fraction in the lowest term), we need
to do a conversion on the unknown function q as
follows:

q(ξ) = (v(ξ))r/p. (7)

Then substitute eq. (7) into eq. (4). By using the new
eq. (4), the value of m can be determined. If m is a
negative integer, similar process can be followed with
the transformation

q(ξ) = (v(ξ))m .

Following these operations, according to the obtained
m value, substitute (5) into eq. (4). Therefore, we obtain
a set of algebraic equations that contain tan(ϕ/2)s ,
cot(ϕ/2)s (s = 0, 1, 2, . . .). Then setting each coef-
ficient of tan(ϕ/2)s , cot(ϕ/2)s to zero, we can get a
set of overdetermined equations for A0, As, Bs (s =
1, 2, . . . ,m), a, b, c and τ . As it is difficult to solve
the obtained algebraic equations manually, symbolic
computation such as Maple can be used at this stage.
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Finally, A0, A1, B1, . . . , Am, Bm, τ are replaced in
eq. (5).

3. Application of ITEM for HScKdV equation

In this section, we apply the ITEM to eq. (1) to obtain the
travelling wave solutions. In this context, let us consider
u(x, t) = u(ξ), v(x, t) = v(ξ), w(x, t) = w(ξ), ξ =
x − kt and therefore eq. (1) becomes

ku′ = −1

2
u′′′ + 3uu′ − 3(vw)′

kv′ = v′′′ − 3uv′

kw′ = w′′′ − 3uw′, (8)

where ‘′’ shows the derivative according to ξ. With bal-
ancing procedure [39], we get the following two ansatze:

u(ξ) = A0 + A1 tan

(
ϕ(ξ)

2

)
+ A2

(
tan

(
ϕ(ξ)

2

))2

+A3

(
tan

(
ϕ(ξ)

2

))−1

+A4

(
tan

(
ϕ(ξ)

2

))−2

v(ξ) = B0 + B1 tan

(
ϕ(ξ)

2

)
+ B2

(
tan

(
ϕ(ξ)

2

))−1

w(ξ) = C0 + C1 tan

(
ϕ(ξ)

2

)
+ C2

(
tan

(
ϕ(ξ)

2

))−1

(9)

and

u(ξ) = A0 + A1 tan

(
ϕ(ξ)

2

)
+ A2

(
tan

(
ϕ(ξ)

2

))2

+A3

(
tan

(
ϕ(ξ)

2

))−1

+A4

(
tan

(
ϕ(ξ)

2

))−2

v(ξ) = B0 + B1 tan

(
ϕ(ξ)

2

)
+ B2

(
tan

(
ϕ(ξ)

2

))2

+B3

(
tan

(
ϕ(ξ)

2

))−1

+B4

(
tan

(
ϕ(ξ)

2

))−2

w(ξ) = C0 + C1 tan

(
ϕ(ξ)

2

)
+ C2

(
tan

(
ϕ(ξ)

2

))2

+C3

(
tan

(
ϕ(ξ)

2

))−1

+C4

(
tan

(
ϕ(ξ)

2

))−2

.

(10)

First, we substitute the expressions of u, v and w in
(9) into (8) and collect all terms with the same order of
tan(ϕ(ξ)/2) together. Then, by equating the coefficient
of each polynomial to zero, we obtain a set of algebraic
equations of a, b, c, Ai , Bj ,C j , i = 0, . . . , 4 and j =
0, . . . , 2 as

3

2
A4b

3 + 9

2
A4b

2c − 3A2
4b + 3

2
A4c

3

−3A2
4c + 9

2
A4bc

2 = 0,

5

2
A4c

3 + k A4c + 3B2bC2 + 3A2
4b − 5

2
A4b

2c

+5

2
A4bc

2 − 3A0A4b + 3B2cC2

+19

2
A4a

2c − 3

2
A2

3b + 3

2
A3ab

2

−3A2
4c + 19

2
A4a

2b − 9A3A4a − 3

2
A2

3c

+3A3abc − 5

2
A4b

3 + 3

2
A3ac

2

+ k A4b − 3A0A4c = 0,

6 B2aC2 + 3

2
B2bC0 + 3

2
B0C2b

+1

2
k A3b − 3

2
A0A3b − 3

2
A1A4b

+9

2
A3A4b + 4 A4a

3 + 1

2
A3c

3

+1

2
k A3c − 3

2
A0A3c + 3

2
B2cC0 + 3

2
B0C2c

−3

2
A1A4c + 1

2
A3bc

2 + 7

4
A3a

2b = 0,

... (11)

Solving eqs (11) with the help of Maple, we have
numerous sets of coefficients for the solutions of (9).
We only choose some of them as follows:

Case I
We have the desired constants as
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a = a, b = b, c = c,

k = 2 b3c + b4 + b2a2 + 2 ba2c + c2a2 − 12C2B2 − 2 c3b − c4

4(2cb + c2 + b2)
,

A0 = −b4 − 2b3c + b2a2 + 2 ba2c + c2a2 + 4C2B2 + 2 c3b + c4

4(2cb + c2 + b2)
,

A1 = 0, A2 = 0, A3 = ab + ac, A4 = b2

2
+ cb + c2

2
,

B0 = (−bC0 − cC0 + 2C2a)B2

C2(b + c)
,

B1 = 0, B2 = B2, C0 = C0, C1 = 0, C2 = C2. (12)

By using Family 1, (9) becomes

u1(x, t) = −

⎡

⎣
2a

(
(b + c)2� + 4B2C2

)√−� tan(
√−�ξ/2)

+(
4B2C2 + (b + c)2(a2 − b2 + c2)

)
�(tan(

√−�ξ/2))2

−4C2B2a2 − (b + c)2�(a2 + 2b2 − 2c2)

⎤

⎦

4(b + c)2(−a + √−� tan(
√−�ξ/2))2

, (13)

v1(x, t) = B2((−bC0 − cC0 + 2C2a)
√−� tan(

√−�ξ/2) + (b + c)C0a − C2(2a2 + b2 − c2))

C2(b + c)(−a + √−� tan(
√−�ξ/2))

, (14)

w1(x, t) = −C0(a − √−� tan(
√−�ξ/2)) − C2(b − c)

−a + √−� tan(
√−�ξ/2)

, (15)

where � = a2 + b2 − c2, ξ = x − kt .
By using Family 2, (9) becomes

u2(x, t) =

⎡

⎣
((b + c)2(a2 − b2 + c2) + 4B2C2)� tanh(

√
�ξ/2)2

+2a((b + c)2� + 4B2C2)
√

� tanh(
√

�ξ/2)

4C2B2a2 + (b + c)2(a2 + 2b2 − 2c2
)
�

⎤

⎦

4(b + c)2(a + √
� tanh(

√
�ξ/2))2

, (16)

v2(x, t) = B2((−(b + c)C0 + 2C2a)
√

� tanh(
√

�ξ/2) − (b + c)C0a + (−c2 + 2 a2 + b2)C2)

C2(b + c)(a + √
� tanh(

√
�ξ/2))

, (17)

w2(x, t) = C0(a + √
� tanh(

√
�ξ/2)) + C2(b − c)

a + √
� tanh(

√
�ξ/2)

, (18)

where � = a2 + b2 − c2, ξ = x − kt .
By using Family 8, (9) becomes

u3(x, t) = (b + c)2a2 + 2C2B2

2(b + c)2 −
√
a2a2(x + Ft). + (b+c)2(b−c)2

2 (x + Ft)2

a(x + Ft) + 2
, (19)

v3(x, t) =
B2

⎡

⎣
−bC0a(x + Ft) − 2bC0 − cC0a(x + Ft)

−2 cC0 + 2C2a2(x + Ft) + 4C2a
+(x + Ft)C2b2 − (x + Ft)C2c2

⎤

⎦

C2(b + c)(a(x + Ft) + 2)
, (20)
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w3(x, t) = (C0a(x + Ft) + 2C0 + (x + Ft)C2b − (x + Ft)C2c)

a(x + Ft) + 2
, (21)

where

F = 3
C2B2

2
√
a2 + b2b + a2 + 2 b2

.

By using Family 12, (9) can be written as

u4(x, t) =

⎡

⎣

(
8B2C2 − 6b2(b + c)2)(b + c)ebξ

+(
4B2C2 + b2(b + c)2)(b + c)2e2 bξ

+b2(b + c)2 + 4C2B2

⎤

⎦

4(b + c)2(1 + (b + c)ebξ
)2 , (22)

v4(x, t) = B2
(
(C2 − C0)(b + c)2ebξ + (−c − b)C0 + C2(c − b)

)

C2(b + c)
(
1 + (b + c)ebξ

) , (23)

w4(x, t) = (C0b + C2b − C2c + C0c)ebξ − C2 + C0

1 + (b + c)ebξ
, (24)

where ξ = x − kt .

Case II
We get the following equations:

a = c(C0B1 + C1B0)

C1B1
, b = −c, c = c, k = c4C2

0 B
2
1 + 2 c4C0B1C1B0 + c4C2

1 B
2
0 − 3C3

1 B
3
1

4C2
1 B

2
1c

2
,

A0 = c4C2
0 B

2
1 + 2 c4C0B1C1B0 + c4C2

1 B
2
0 + C3

1 B
3
1

4C2
1 B

2
1c

2
, A1 = 2c2(C0B1 + C1B0)

C1B1
,

A2 = 2c2, A3 = 0, A4 = 0, B0 = B0, B1 = B1, B2 = 0, C0 = C0, C1 = C1, C2 = 0. (25)

By using Family 1, (9) becomes

u5(x, t) = −((16C0B1C1B0 + 8C2
1 B

2
0 − 8C2

1 B
2
1 + 8C2

0 B
2
1 )c6 + 8 c4C2

1 B
2
1b

2) tan(
√−�ξ/2)2

4c2C2
1 B

2
1 (b − c)2

− 2

√−�c2(C0B1+B0C1)(c+b) tan(
√−�ξ/2)

B1C1(b − c)2 −(C0B1+B0C1)
2(−c6−6bc5 − b2c4)−B3

1C
3
1(b−c)2

4c2C2
1 B

2
1 (b−c)2 ,

v5(x, t) = −
(

−B0b + B0c − c(C0B1 + B0C1)

C1
+ B1

√−� tan

(√−�ξ

2

))
(b − c)−1,

w5(x, t) = −
(

−C0b + C0c − c(C0B1 + B0C1)

B1
+ C1

√−� tan

(√−�ξ

2

))
(b − c)−1,

where � = a2 + b2 − c2, ξ = x − kt .
By using Family 14, (9) can be written as



Pramana – J. Phys. (2020) 94:37 Page 7 of 20 37

u6(x, t) = (6(C0B1 + C1B0)
2c5 − 2C3

1 B
3
1c)e

c(C0B1+C1B0)ξ
C1B1

4C2
1 B

2
1c

2

(
−1 + ce

c(C0B1+C1B0)ξ

C1B1

)2

+(c6(C0B1 + C1B0)
2 + C3

1 B
3
1c

2)e
2 c(C0B1+C1B0)ξ

C1B1 + (C0B1 + C1B0)
2c4 + C3

1 B
3
1

4C2
1 B

2
1c

2

(
−1 + ce

c(C0B1+C1B0)ξ
C1B1

)2 ,

v6(x, t) = −(−B0c + c(C0B1+C1B0)
C1

)e
c(C0B1+C1B0)ξ

C1B1 + B0(
−1 + ce

c(C0B1+C1B0)ξ
C1B1

) ,

w6(x, t) = −(−C0c + c(C0B1+C1B0)
B1

)e
c(C0B1+C1B0)ξ

C1B1 + C0(
−1 + ce

c(C0B1+C1B0)ξ
C1B1

) ,

where ξ = x − kt .

Case III
We acquire the following constants:

a = a, b = b, c = c, k = −2 b3c + b4 + b2a2 − 2ba2c + c2a2 − 12C1B1 + 2 c3b − c4

4(−2 cb + c2 + b2)
,

A0 = 2b3c − b4 + b2a2 − 2 ba2c + c2a2 + 4C1B1 − 2 c3b + c4

4(−2 cb + c2 + b2)
, A1 = −ab + ac, A2 = −cb + b2

2
+ c2

2
,

A3 = 0, A4 = 0, B0 = −(bC0 − cC0 + 2C1a)B1

C1(b − c)
, B1 = B1, B2 = 0, C0 = C0, C1 = C1, C2 = 0.

(26)

By using Family 1, we get

u7(x, t) = −�

2

(
tan

√−�ξ

2

)4

+ C1B1

(b − c)2 − �

4
,

v7(x, t) = − B1
(
bC0−cC0+C1a+C1

√−� tan(
√−�ξ/2)

)

C1(b−c)
,

w7(x, t) = −−bC0 + cC0 − C1a + C1
√−� tan(

√−�ξ/2)

b − c
,

where � = a2 + b2 − c2, ξ = x − kt .
By using Family 2, (9) becomes

u8(x, t) = � tanh(
√

�ξ/2)2

2
+ C1B1

(b − c)2 − �

4
, v8(x, t) = B1(−bC0 + cC0 − C1a + C1

√
� tanh(

√
�ξ/2))

C1(b − c)
,

w8(x, t) = bC0 − cC0 + C1a + C1
√

� tanh(
√

�ξ/2)

b − c
,

where � = a2 + b2 − c2, ξ = x − kt .
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By using Family 8, (9) can be written as follows:

u9(x, t) = C1B1

(b − c)2 + 2ξ−2,

v9(x, t) = − B1(bC0 − cC0 + C1a)

C1(b − c)
+ 2

B1

(b − c)ξ
,

w9(x, t) = bC0 − cC0 + C1a

b − c
+ 2

C1

(b − c)ξ
,

where ξ = x − kt .
By using Family 12, (9) becomes

u10(x, t) = (3b2(b − c)2 − 4C1B1)ebξ

2(b − c)(−1 + (b − c)ebξ )2 + (b2(b − c)2 + 4C1B1)e2bξ

4
(−1 + (b − c)ebξ

)2 + (b − c)2b2 + 4C1B1

4(b − c)2(−1 + (b − c)ebξ
)2 ,

v10(x, t) = − B1((b − c)2(C0 − C1)ebξ + cC0 − C1b − bC0 − C1c)

C1(b − c)(−1 + (b − c)ebξ )
,

w10(x, t) = (C0b + C1b + C1c − C0c)ebξ + C1 − C0

−1 + (b − c)ebξ
,

where ξ = x − kt .

Case IV
We have the following equations:

a = 0, b = b, c = c, k = b2 − c2 − 3A0, A0 = A0, A1 = 0, A2 = −cb + b2

2
+ c2

2
, A3 = 0,

A4 = (b + c)2

2
, B0 = B0, B1 = B2(b − c)

b + c
, B2 = B2, C0 = −(b + c)2B0A0

B2
2

,

C1 = (b + c)A0(b − c)

B2
, C2 = (b + c)2A0

B2
. (27)

By using Family 5, we get

u11(x, t) = (2b2 − 2c2 + 2A0) cosh(
√

�ξ/2)4 + (−2A0 − 2b2 + 2c2) cosh(
√

�ξ/2)2 + b2 − c2

2(cosh(
√

�ξ/2)2 − 1) cosh(
√

�ξ/2)2
,

v11(x, t) = B0 + tanh

(√
�ξ

2

)
B2

1√
(b + c)/(b − c)

+ B2
1√

(b + c)/(b − c)

(
tanh

(√
�ξ

2

))−1

,

w11(x, t) = (b + c)2A0

B2

⎛

⎝tanh

(√
�ξ

2

)
1√

(b + c)/(b − c)
− B0

B2
+ 1√

(b + c)/(b − c)

(
tanh

(√
�ξ

2

))−1
⎞

⎠,

where � = b2 − c2, ξ = x − kt .
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Case V
We get

a = a, b = b, c = c, k = −b2

2
+ a2

4
+ c2

2
, A0 = −b2

2
+ a2

4
+ c2

2
, A1 = −ab + ac,

A2 = −cb + b2

2
+ c2

2
, A3 = a(b + c), A4 = (b + c)2

2
, B0 = −(b + c)(b2 − c2)a

2C2
, B1 = 0, B2 = 0,

C0 = C0, C1 = −C2(b − c)

b + c
, C2 = C2. (28)

By using Family 1, (9) becomes

u12(x, t) = 2�2(tan(
√−�ξ/2))4 + 4

√−�a� (tan (
√−�ξ/2))3 − �(−2b2 + a2 + 2c2)(tan(

√−�ξ/2))2

4(−a + √−�(tan(
√−�ξ/2)))2

+2a3
√−�(tan(

√−�ξ/2)) − a4 + 2b4 − 2c2a2 − 4b2c2 + 2c4 + 2b2a2

4(−a + √−�(tan(
√−�ξ/2)))2

,

v12(x, t) = −(b + c)(−c2 + b2)a

2C2

w12(x, t) = −

[
C2�(tan(

√−�ξ/2))2 + √−�(−C0c − C0b + 2C2a) tan(
√−�ξ/2)

+(b2 − a2 − c2)C2 + C0ab + C0ac

]

(b + c)(−a + √−� tan(
√−�ξ/2))

where � = a2 + b2 − c2, ξ = x − kt .
By using Family 2, (9) can be written as

u13(x, t) =

[
2�2(tanh(

√
�ξ/2))4 + 4 �3/2a(tanh(

√
�ξ/2))3 + �(−2 b2 + a2 + 2 c2)(tanh(

√
�ξ/2))2

−(2a3
√

� tanh(
√

�ξ/2) + 2b2a2 − 2c2a2 − 4b2c2 + 2c4 + 2b4 − a4)

]

4(a + √
� tanh(

√
�ξ/2))2

,

v13(x, t) = −(b + c)(b2 − c2)a

2C2

w13(x, t) = −

[
C2�(tanh(

√
�ξ/2))2 + √

�(−C0c − C0b + 2C2a) tanh(
√

�ξ/2)

−C0ab − C2b2 − C0ac + C2a2 + C2c2

]

(b + c)(a + √
� tanh(

√
�ξ/2))

,

where � = a2 + b2 − c2, ξ = x − kt .
By using Family 8, (9) becomes

u14(x, t) = −−32 + (a2(a2 − 2b2 + 2c2) − 2(b − c)2(b + c)2)ξ4 + 4a3ξ3 + (8b2 − 4a2 − 8c2)ξ2 − 32aξ

4(aξ + 2)2ξ2 ,

v14(x, t) = −(b + c)(b2 − c2)a

2C2
,

w14(x, t) = −(−C0ba + C2a2 − C0ca − C2b2 + C2c2)ξ2 + (−2C0b − 2C0c + 4C2a)ξ + 4C2

(b + c)ξ(aξ + 2)
,

where ξ = x − kt .
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Secondly, let us consider the process applied in the
first ansatz and start with substituting (10) into eq.
(8). If we collect all terms with the same order of
tan(ϕ(ξ)/2), the left-hand side of (10) can be trans-
formed into polynomial according to tan(ϕ(ξ)/2). Set-
ting each coefficient of each polynomial to zero, we
achieve a set of algebraic equations for the coefficients
a, b, c, A j , Bj ,C j ( j = 0, 1, 2, 3, 4), as follows:

− 9B4b
2c − 9B4bc

2 − 3B4c
3 − 3B4b

3

+ 3A4B4b + 3A4B4c = 0,

−9

4
B3b

2c − 9

4
B3bc

2 − 27

2
B4ac

2 − 3

4
B3c

3 − 3

4
B3b

3

+ 3A3B4b + 3A3B4c + 3

2
A4B3b − 27

2
B4ab

2

+ 6A4B4a − 27B4abc + 3

2
A4B3c = 0,

− 19B4a
2b + 3

2
A3B3b − 6B3abc − 3B3ab

2 − 5B4bc
2

− 5B4c
3 + 5B4b

3 + kB4c + 3A4B3a − 19B4a
2c

+3

2
A3B3c + kB4b + 5B4b

2c + 3A0B4c + 6A3B4a

− 3B3ac
2 + 3A0B4b + 3A4B4c − 3A4B4b = 0,

... (29)

Solving the above system, we get many sets of coeffi-
cients for the solutions of (10) as given below:

Case I
We have the following equations:

a = A1

2c
, b = −c, c = c, k = −−A2

1 + 12A0c2

4c2 ,

A0 = A0, A1 = A1, A2 = 2c2, A3 = 0, A4 = 0,

B0 = −A3
1C1−16A0A1C1c2−2A2

1C0c2+32C0c4A0

8C2
1c

2
,

B1 = −A2
1 + 16 A0c2

4C1
, B2 = 0, B3 = 0, B4 = 0,

C0 = C0, C1 = C1, C2 = 0, C3 = 0, C4 = 0.

(30)

By the use of Family 14, (9) becomes

u15(x, t) = (A1a − 2A0c)eaξ + (2c2a2 + A0c2 − A1ac)e2 aξ + A0
(−1 + ceaξ

)2 ,

v15(x, t) = −(−A2
1 + 16c2A0)(c(2C0c2 + 2 aC1c − A1C1)eaξ + A1C1 − 2C0c2)

8C2
1c

2
(−1 + ceaξ

) ,

w15(x, t) = −(−C0c + C1a)eaξ + C0

−1 + ceaξ
,

where ξ = x − kt.

By using Family 17, (10) can be written as

u16(x, t) = A0cξ2 − A1ξ + 2c

cξ2 ,

v16(x, t) =
(

−2C0c2 − A1C1

C2
1c

2
− 2

1

cC1ξ

)

×
(

2A0c
2 − A2

1

8

)
,

w16(x, t) = C0cξ − C1

cξ
,

where ξ = x − kt .

Case II

a = a, b= b, c= c, k = − b2

2
+ a2 + c2

2
− 3A0, A0 = A0, A1 = − a(b − c),

A2 = b2

2
− cb + c2

2
, A3 = 0, A4 = 0, B0 = B0, B1 = B1, B2 = 0, B3 = 0, B4 = 0,

C0 = (b − c)(B0b − B0c + 2B1a)(−b2 + a2 − 4A0 + c2)

4B2
1

, C1 = − (b − c)2(−b2 + a2 − 4A0 + c2)

4B1
,

C2 = 0, C3 = 0, C4 = 0. (31)
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By utilising Family 1, we get

u17(x, t) = −�

2

(
tan

√−�ξ

2

)2

+ A0 − a2

2
,

v17(x, t) = −−B0(b − c) + B1(−a + √−� tan(
√−�ξ/2))

b − c
,

w17(x, t) = (b − c)(−b2 − 4A0 + a2 + c2)(B1a + B0b − B0c + B1
√−� tan(

√−�ξ/2))

4B2
1

,

where � = a2 + b2 − c2, ξ = x − kt .
By using Family 2, (10) becomes

u18(x, t) = �

2

(
tanh

(√
�ξ

2

))2

+ A0 − a2

2
,

v18(x, t) = B1
√

� tanh(
√

�ξ/2)

b − c
+ B0b − B0c + B1a

b − c
,

w18(x, t) = −(b − c)(−b2 + c2 + a2 − 4A0)(−B1a − B0b + B0c + B1
√

� tanh(
√

�ξ/2))

4B2
1

,

where � = a2 + b2 − c2, ξ = x − kt .
By using Family 8, (10) becomes

u19(x, t) = −1/2 a2 + A0 + 2ξ−2,

v19(x, t) = B0b − B0c + B1a

b − c
+ 2

B1

(b − c)ξ
,

w19(x, t) = (b − c)(a2 − b2 + c2 − 4A0)

4B1

(
B0b + B1a − B0c

B1
− 2ξ−1

)
,

where ξ = x − kt .
By using Family 12, (10) can be written as

u20(x, t) =

[
2(b − c)(b2 + 2 ac − c2 − 2A0)ebξ − (b − c)2((b + c)(−b + 2a − c) − 2 A0)e2 bξ

+(b − c)(b + 2 a − c) + 2A0

]

2
(−1 + (b − c)ebξ

)2 ,

v20(x, t) = (B0b + B1b + B1c − B0c)ebξ + B1 − B0

−1 + (b − c)ebξ
,

w20(x, t) =
(b − c)(−b2 − 4A0 + a2 + c2)

[
(b − c)(−B1b + bB0 + 2B1a − B0c − B1c)ebξ

+B0c − bB0 − 2B1a − B1b + B1c

]

4B2
1

(−1 + (b − c)ebξ
) ,

where ξ = x − kt .
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By using Family 13, (10) becomes

u21(x, t) =

⎡

⎢⎢⎣

(2(b − c)(b2 − ab − cb + 2a2 + ac) − 4A0a − 4A0b)ebξ

+(−(b − c)(−b + c + 2a) + 2A0)e2 bξ

+(−(b − c)(−b + a)(2a2 + ab + ac − cb + b2) + 2A0(a + b)2)

⎤

⎥⎥⎦

2
(
ebξ − b − a

)2 ,

v21(x, t) = (B1 + B0)ebξ + B1b − B0b − B0a − B1a

ebξ − b − a
,

w21(x, t) =
(a2 − b2 − 4A0 + c2)(b − c)

[
((−b + 2a + c)B1 + B0)ebξ

−((ab − bc + b2 + 2a2 + ac)B1 + ((b + a))B0)

]

4B2
1

(
ebξ − b − a

) ,

where ξ = x − kt .

Case III
We obtain

a = 0, b = b, c = c, k = k,

A0 = −2b2

3
+ 2c2

3
− k

3
, A1 = 0,

A2 = (b − c)2, A3 = 0, A4 = (b + c)2,

B0 = −(b + c)2(3(b + c)2C0 + 4C4(2k + b2 − c2))

12C2
4

,

B1 = 0, B2 = (b − c)2(b + c)2

4C4
,

B3 = 0, B4 = (b + c)4

4C4
,C0 = C0, C1 = 0,

C2 = C4(b − c)2

(b + c)2 ,

C3 = 0, C4 = C4. (32)

By utilising Family 1, (10) becomes

u22(x, t) = −�

(
tan

(√−�ξ

2

))2

− 2b2

3
− k

3

+2c2

3
− �

(tan(
√−�ξ/2))2

, (33)

v22(x, t) = −(b + c)2�(tan(
√−�ξ/2))2

4C4

−((4b2 − 4c2 + 8k)C4 + 3(b + c)2C0)(b + c)2

12C2
4

− (b + c)2�

4C4(tan(
√−�ξ/2))2

, (34)

w22(x, t) = −C4(b − c)2(tan(
√−�ξ/2))2

�

+C0 − C4(b − c)2

�(tan(
√−�ξ/2))2

, (35)

where � = b2 − c2, ξ = x − kt .
By using Family 5, we get

u23(x, t) = (4� − k)(cosh(
√

�ξ/2))4 + (k − 4�)(cosh(
√

�ξ/2))2 + 3�

3((cosh(
√

�ξ/2))2 − 1)(cosh(
√

�ξ/2))2
, (36)

v23(x, t) = −(b + c)2(((8 k − 2�)C4 + 3(b + c)2C0)((cosh(
√

�ξ/2))4 − (cosh(
√

�ξ/2))2) − 3C4�)

12((cosh(
√

�ξ/2))2 − 1)(cosh(
√

�ξ/2))2C2
4

, (37)

w23(x, t) = ((2b − 2c)C4 + (b + c)C0)((cosh(
√

�ξ/2))4 − (cosh(
√

�ξ/2))2) + C4(b − c)

((cosh(
√

�ξ/2))2 − 1)(cosh(
√

�ξ/2))2(b + c)
, (38)
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where � = b2 − c2, ξ = x − kt .
By using Family 16, (10) can be obtained as

u24(x, t) = −kξ2 − 12

3ξ2 ,

v24(x, t) = −4c2(3c2ξ2C0 + 2ξ2kC4 − 3C4)

3C2
4ξ2

,

w24(x, t) = −kξ2 − 12

3ξ2 ,

where ξ = x − kt .

4. Application of ITEM for NNV system

The second example to illustrate ITEM implementation
is the NNV system (2). Let us consider ξ = x + y − dt
as the wave variable to convert this system into a system
of ODEs

(s + q − d)u′ + (k + r)u′′′ = 3k(uv)′ + 3r(uw)′,

u′ = v′, u′ = w′. (39)

If we integrate the second line equations, then we obtain

u = v, u = w. (40)

As the next step, let us substitute (40) into the first equa-
tion in (39) and integrate the obtained equation. Hence
we get

(s + q − d)u + (k + r)u′′ − 3(k + r)u2 = 0. (41)

If the terms u′′ and u2 in (41) are balanced, a simple
algebraic equation M + 2 = 2M is obtained so that
M = 2. Because of (40), determining only the function
u(x, y, t) is sufficient. Therefore, we may assume the
solution of (41) as

u(ξ) = A0 + A1 tan

(
ϕ(ξ)

2

)
+ A2

(
tan

(
ϕ(ξ)

2

))2

+A3

(
tan

(
ϕ(ξ)

2

))−1

+A4

(
tan

(
ϕ(ξ)

2

))−2

. (42)

Substituting (42) into eq. (41) gives an algebraic equa-
tions set for a, b, c, d, A j ( j = 0, 1, 2, 3, 4). These
algebraic equation systems are obtained as

H8: 3

2
k A2c

2 + 3

2
r A2b

2 − 3k A2bc + 3

2
k A2b

2

− 3r A2
2 + 3

2
r A2c

2 − 3k A2
2 − 3r A2bc,

H7: − 6r A1A2 − r A1bc + 5r A2ac + 1

2
k A1b

2

− 5k A2ab − k A1bc + 1

2
k A1c

2 + 1

2
r A1b

2

+ 1

2
r A1c

2 − 6k A1A2 + 5k A2ac − 5r A2ab,

H6: − 2r A2b
2 + s A2 − 6r A0A2 + 2r A2c

2 − d A2

− 6k A0A2 − 3r A2
1 − 3

2
k A1ab + 4r A2a

2

+ 3

2
k A1ac−2k A2b

2−3k A2
1+q A2 + 2k A2c

2

− 3

2
r A1ab + 3

2
r A1ac + 4k A2a

2,

H5: − d A1 + 3r A2ac + 3k A2ab + k A1a
2

+ q A1 + 1

2
r A1c

2 − 1

2
k A1b

2 + 3r A2ab

− 6k A0A1 − 1

2
r A1b

2

+ 3 k A2ac + 1

2
k A1c

2 − 6r A0A1 + r A1a
2

− 6r A2A3 + s A1 − 6k A2A3,

H4: r A2bc + 1

2
k A1ab + 1

2
k A1ac + 1

2
r A1ab

+ 1

2
r A1ac − r A4bc − k A4bc − 1

2
k A3ab

+ 1

2
k A3ac − 1

2
r A3ab + 1

2
r A3ac + 1

2
r A4b

2

+ 1

2
k A4b

2 + 1

2
k A4c

2 + 1

2
r A4c

2 − 6k A1A3

− 6k A2A4 − 6r A1A3 − 6r A2A4 + 1

2
r A2c

2

+ 1

2
k A2b

2 + 1

2
r A2b

2 + 1

2
k A2c

2 + s A0

+ q A0 − d A0 − 3k A2
0 − 3r A2

0 + k A2bc,

H3: s A3 + r A3a
2 − 1

2
, r A3b

2 − 6r A0A3
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+ 1

2
k A3c

2 + k A3a
2 + 1

2
r A3c

2

+ 3k A4ac − 3k A4ab + q A3 − 1

2
k A3b

2

+ 3r A4ac − 3r A4ab − 6r A1A4 − 6k A1A4

− d A3 − 6k A0A3,

H2: 3

2
k A3ab + 4k A4a

2 + 2k A4c
2 + 3

2
r A3ac + s A4

+ 3

2
k A3ac + 2r A4c

2 + 3

2
r A3ab − 6r A0A4

+ q A4 − 3k A2
3 − d A4 + 4r A4a

2 − 2 r A4b
2

− 3r A2
3 − 6k A0A4 − 2k A4b

2,

H1: 1

2
k A3c

2 − 6r A3A4 + 5k A4ac + 5k A4ab

+ 5r A4ab + 1

2
r A3c

2 + k A3bc − 6k A3A4

+ r A3bc + 5r A4ac + 1

2
k A3b

2 + 1

2
r A3b

2,

H0: 3

2
k A4c

2 − 3k A2
4 − 3r A2

4 + 3

2
r A4b

2

+ 3r A4bc + 3

2
r A4c

2 + 3

2
k A4b

2 + 3k A4bc,

where H = tan(ϕ(ξ)/2). Solving the equations corre-
sponding to the coefficients of H , we get the following
sets for the solutions of (42):

Case I
We have the following equations:

a = ±
√

1

2
b2 − 1

2
c2 + 3A0, b = b, c = c,

d = −3

2
kb2 − 3

2
rb2 − 3r A0 + s − 3k A0 + q

+3

2
rc2 + 3

2
kc2, k = k, q = q, r = r, s = s,

A0 = A0, A1 = 0, A2 = 0, A3 = ab + ac,

A4 = 1

2
c2 + 1

2
b2 + bc.

By using Family 1, (42) can be written as

u(ξ)(1) =−2A0�(tan(
√−�ξ/2))2+2

√−�a(−c2+b2+2A0) tan(
√−�ξ/2)−2A0a2 − (b2 − c2)(� + a2)

2(−a + √−� tan(
√−�ξ/2))2

,

where ξ = x + y − dt and � = a2 + b2 − c2.

By using Family 2, (42) becomes

u(ξ)(2) =
2A0�

(
tanh

(√
�ξ
2

))2 + 2
√

�a(−c2 + b2 + 2 A0) tanh
(√

�ξ
2

)
+ 2A0a2 + (

b2 − c2
)(

� + a2
)

2
(
a + √

� tanh
(√

�ξ
2

))2 ,

where ξ = x + y − dt and � = a2 + b2 − c2.

By utilising Family 5, (42) becomes

u(ξ)(3) = A0 + �

2

(
tanh

(√
�ξ

2

))−2

,

where ξ = x + y − dt and � = b2 − c2.
By using Family 8, we get

u(ξ)(4) = 2
a2

(aξ + 2)2 ,

where ξ = x + y − dt .

Case II
We obtain another set of coefficients as

a = a, b = b, c = c,

d = kb2 + rb2 + ka2 + q + ra2 + s − rc2 − kc2,

k = k, q = q, r = r, s = s,

A0 = −b2

2
+ c2

2
, A1 = 0, A2 = 0,

A3 = ab + ac, A4 = c2

2
+ b2

2
+ bc.
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By using Family 1, (42) becomes

u(ξ)(5)

= (b−c)(b+c)�(tan(
√−�ξ/2))2+(b−c)(b+c)�

2(−a+√−� tan(
√−�ξ/2))2

,

(43)

where ξ = x + y − dt and � = a2 + b2 − c2.

By utilising Family 3, (42) becomes

u(ξ)(6)

= −b2�(tanh(
√

�ξ/2) − 1)(tanh(
√

�ξ/2) + 1)

2(a + √
� tanh(

√
�ξ/2))2

,

(44)

where ξ = x + y − dt and � = a2 + b2 − c2.

By using Family 5, (42) can be written as follows:

u(ξ)(7)

= −�(tanh(
√

�ξ/2) − 1)(tanh(
√

�ξ/2) + 1)

2(tanh(
√

�ξ/2))2
,

(45)

where ξ = x + y − dt and � = a2 + b2 − c2.
By using Family 8, (42) becomes

u(ξ)(8) = 4
a2

(aξ + 2)2 , (46)

where ξ = x + y − dt .
By using Family 11, (42) can be written as

u(ξ)(9) = 2
b2ebξ (b + a)

(
ebξb + ebξa − 1

)2 , (47)

where ξ = x + y − dt .

Case III
We have the following equations:

a = 0, b = b, c = c,

d = −4 rc2 − 4 kc2 + 4 kb2 + q + 4 rb2 + s,

k = k, q = q,

r = r, s = s, A0 = c2 − b2,

A1 = 0, A2 = −bc + 1

2
c2 + 1

2
b2,

A3 = 0, A4 = 1

2
c2 + 1

2
b2 + bc.

By using Family 1, (42) becomes

u(ξ)(10)

= �

2(cos(
√−�ξ/2))2(−1 + (cos(

√−�ξ/2))2)
,

where ξ = x + y − dt and � = a2 + b2 − c2.
By using Family 2, (42) becomes

u(ξ)(11)

= �(tanh(
√

�ξ/2) − 1)2(tanh(
√

�ξ/2) + 1)2

2(tanh(
√

�ξ/2))2
,

where ξ = x + y − dt and � = a2 + b2 − c2.
By using Family 5, (42) becomes

u(ξ)(12) = �

2((cosh(
√

�ξ/2))2 − 1)(cosh(
√

�ξ/2))2
,

where ξ = x + y − dt and � = a2 + b2 − c2.
By using Family 8, (42) becomes

u(ξ)(13) = 2 ξ−2,

where ξ = x + y − dt .

Remark 1. All results obtained in this study have been
rewritten in the original equation and these results are
verified by using Maple 13.

5. Stability analysis

In the previous two section, we presented some soliton
solutions for eqs (1) and (2) with the help of ITEM.
As a result of the instability in steady-state modulation,
non-linear and dispersion effects occur in numerous
nonlinear PDEs. The modulation instability of HScKdV
and NNV are examined by using linear stability analysis
in the following subsections respectively [37,38].

5.1 Modulation instability of HScKdV

Assume that the perturbed steady-state solution of
eq. (1) has the following form:

u(x, t) = √
P0 + σ1(x, t)e

θ(t),

v(x, t) = √
P0 + σ2(x, t)e

θ(t),

w(x, t) = √
P0 + σ3(x, t)e

θ(t), (48)

where θ(t) = P0(γ1 + P0γ2ε)t, P0 is the normalised
optical power and ε is a sufficiently small parameter.
We investigate the evolution of the perturbation σ(x, t)
by utilising the linear stability analysis. Let us plug
eq. (48) into eq. (1). If we linearise the expressions that
we obtain, we reach the following equations:
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∂σ1

∂t
+ P0(γ1 + P0γ2ε)σ1 = 1

2

∂3σ1

∂x3

−3
√
P0

∂

∂x
(σ1 − σ2 − σ3),

∂σ2

∂t
+ P0(γ1 + P0γ2ε)σ2 = −∂3σ2

∂x3 + 3
√
P0

∂σ2

∂x
,

∂σ3

∂t
+ P0(γ1 + P0γ2ε)σ3 = −∂3σ3

∂x3 + 3
√
P0

∂σ3

∂x
.

(49)

We consider the solution of (49) in the form

σ1(x, t) = μ1e(νx−kt), σ2(x, t) = μ2e(νx−kt),

σ3(x, t) = μ3e(νx−kt). (50)

Here k is the frequency of perturbation and ν is the
normalised wave number. Substituting eq. (50) into
eq. (49), we get the following dispersion relation:

k = γ1P0 + εγ2P
2
0 + ν3 − 3ν

√
P0,

μ2 = −μ1ν
2 + (4μ1 − 2μ3)

√
P0√

P0
. (51)

The relations obtained above show that steady-state
stability depends on the wave number. As the veloc-
ity dispersion k is real for all of wave numbers ν, steady
state is stable against minor perturbations.

5.2 Modulation instability of NNV

The steady-state solution of eq. (2) is of the following
form:

u(x, t) = √
P0 + φ1(x, y, t)e

θ(t),

v(x, t) = √
P0 + φ2(x, y, t)e

θ(t),

w(x, t) = √
P0 + φ3(x, y, t)e

θ(t), (52)

where θ(t) = P0(γ1 + P0γ2ε)t and P0 is the normalised
optical power. Here we shall use the linear stability anal-
ysis to examine evolution of perturbations φ(x, y, t).
Putting eq. (52) into eq. (2) and linearising, we get

∂φ1

∂t
+ P0(γ1 + P0γ2ε)φ1 + k

∂3φ1

∂x3 + r
∂3φ1

∂y3 + s
∂φ1

∂x

+q
∂φ1

∂y
=3

√
P0

(
k

∂

∂x
(φ1+φ2)+r

∂

∂y
(φ1 + φ3)

)
,

∂φ1

∂x
= ∂φ2

∂y
,

∂φ1

∂y
= ∂φ3

∂x
. (53)

We suppose the solution of (53) as

φ1(x, y, t) = β1e(νx+μy−dt),

φ2(x, y, t) = β2e(νx+μy−dt),

φ3(x, y, t) = β3e(νx+μy−dt). (54)

Here d is the frequency of perturbation and ν, μ are
the normalised wave numbers. Substituting eq. (54) into
eq. (53), we get the following dispersion relation:

d = P0(γ1 + γ2εP0) − 3(μ + ν)(rμ2 + kν2)

μν

√
P0

+ kν3 + sν + qμ + rμ3,

β1 = β3ν

μ
, β2 = β3ν

2

μ2 .

The velocity dispersion d is real for all of wave numbers
ν, μ if μν �= 0. Hence the steady state is stable against
minor perturbations.

6. Concluding remarks

In this paper, we considered the generalised HScKdV
equation and (2 + 1)-dimensional NNV system. To
achieve exact solutions including exponential, ratio-
nal, trigonometric and hyperbolic functions, we applied
the ITEM to these equations. Various types of solu-
tions play important roles in engineering and physical
fields. These solutions may be useful to explain the
physical phenomena in dynamical systems that are
described by the system of equations HScKdV and
NNV and to help for a deeper understanding of these
systems. The type of solutions obtained is a guide
to the interpretation of the physical properties and
behaviour of the solutions. In this study, we have
obtained different types of solutions (e.g. soliton, kink-
type, bell-type, rational, trigonometric) each of which
has its own features. For example, it is known that
solitons appear as a result of a balance between weak
nonlinearity and dispersion. A notable feature of soli-
tons is that it can retain its identity when interacting
with other solitons. Kink waves, which are travelling
waves rising or descending from one asymptotic state to
another, approaches a constant at infinity. Bell-shaped
soliton solution is characterised by infinite wings or
infinite tails [45].

The implemented method has been demonstrated to
be more comprehensive and effective than the extended
tanh-function method [39], the extended Jacobi ellip-
tic function method [40] for HScKdV and the rational
exp-function method [34], sine–cosine method [41] for
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Figure 1. Profiles of u, v and w solutions (13), (14) and (15) for (1) with a = 1, b = 2, c = 3, B2 = 1,C0 = 1,C2 = 1,
0 ≤ t ≤ 25π/14 and 0 ≤ x ≤ 2π .

Figure 2. Profiles of u, v and w solutions (16), (17) and (18) for (1) with a = 1, b = 2, c = 1, B2 = 1,C0 = 1,C2 = 1 and
−10 ≤ t, x ≤ 10.

NNV, because it allows us to obtain many different
solutions. Therefore, using of the ITEM in seeking solu-
tions of NLEEs which occur in real-world problems is
beneficial too. Moreover, we examined the modulation
instability analysis for the HScKdV and NNV via the lin-
ear stability analysis and determined the requirements
for the stability of the solutions. Many nonlinear systems
exhibit instability leading to modulation of the steady
state as a result of the interaction between nonlinear and
dispersive effects. The stability of solutions is important
in physical problems because if slight deviations from
the mathematical model caused by unavoidable errors
in measurement do not have a slight effect on the solu-
tion accordingly, the mathematical equations defining
the problem will not accurately predict the future out-
come [37].

Gencoglu and Akgul [42] and Feng and Li [43] used
ITEM and Fan sub-equation method respectively to
obtain exact solutions of HScKdV. Comparing their spe-
cial solutions with our solutions, we see that there are
some structural similarities between these solutions. For
example, eqs (13)–(15) in [42] and eq. (21) in [43]
are structurally equivalent to the hyperbolic form of
the solutions u8, v8, w8 in this paper. Ali [44] used
the modified extended tanh-function method for solving
eq. (1) and eqs (35)–(37) have the same mathemat-
ical structure as our solutions u22, v22, w22. On the

other hand, Wazwaz in [35] investigated the system
NNV by using several methods. If we compare solu-
tion (26) in [35] with our solution u(5) in the case of
a = 0, structural similarities can be seen between these
solutions. It is seen that we omitted some family classi-
fication solutions in all ansatze. The reason for this is the
inconsistency between the coefficient obtained in Maple
calculations and the coefficient conditions of the family
classification in §2 (for instance Case 1, eq. (30)).

In figures 1–8, we depict the 3D plots of some exact
solutions of eqs (1) and (2). These solutions have very
important physical meanings. The reported results in
this study may be useful in explaining the physical
meaning of some nonlinear models arising in nonlinear
sciences (solid-state physics, nonlinear optics, chemi-
cal kinetics, hydrodynamics, biological membranes, etc.
[32,46,47]) and the mechanism of the nonlinear physical
phenomena in a wave interaction. For instance, eqs (13)–
(15) are periodic solutions which are presented in figure
1. Equation (16) is bell-type solution and eqs (17) and
(18) are kink-type solutions. They are portrayed in figure
2. Equations (46) and (47) are rational and exponential
function solutions respectively and they are plotted in
figure 8.

In our study, we have not investigated the blow-
up conditions of the aforementioned solutions. We
have broadly tried to extract the physical structure of
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Figure 3. Profiles of u, v and w solutions (19), (20) and (21) for (1) with a = 3, b = 4, c = 5, B2 = 3,C0 = 1,C2 = 1,
−3.4 ≤ t and x ≤ 3.4.

Figure 4. Profiles of u, v and w solutions (22), (23) and (24) for (1) with a = 1, b = 2, c = 1, B2 = 1,C0 = 1,C2 = 1,
−4.4 ≤ t and x ≤ 4.4.

Figure 5. Profiles of u, v and w solutions (33), (34) and (35) for (1) with a = 0, b = 1, c = 3, k = 1,C0 = 1,C4 = 1,
−√

2π ≤ t and x ≤ √
2π .

Figure 6. Profiles of u, v and w solutions (36), (37) and (38) for (1) with a = 0, b = 3, c = 1, k = 1,C0 = 1,C4 = 1,
−0.71 ≤ t and x ≤ 0.71.
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Figure 7. Profiles of u solutions (43) and (44) for eq. (2) with a = 1, b = 2, c = 3, r = k = q = s = 1 at y = 1,
0 ≤ x ≤ π/3 and 0 ≤ t ≤ 2π .

Figure 8. Profiles of u solutions (45), (46) and (47) for eq. (2) with {a = 0, b = 3, c = 2, r = k = q = s = 1},
{a = 1, b = 1, c = √

2, r = k = q = s = 1} and {a = 0.5, b = 1, c = 0.5, r = k = q = s = 1} respectively at y = 1,
0 ≤ x ≤ π/3 and 0 ≤ t ≤ 2π .

the solutions (containing the discontinuous point) and
demonstrated some numerical simulations of the physi-
cal phenomena. We note that some of the solutions have
singularity. For instance, the denominator of (13) should
be non-zero, i.e.,

4(b + c)2

(
−a + √−� tan

(√−�(x − kt)

2

))2

�= 0.

Therefore, we have

b + c �= 0

and

−a + √−� tan

(√−�(x − kt)

2

)
�= 0

from which

b �= c, x − kt �= 2√−�
arctan

(
a√−�

)
+ nπ,

n ∈ Z

are obtained. For example, for a = 1, b = 2, c = 3,

B2 = 1,C0 = 1,C2 = 1 and n = 2, if x − kt =
arctan(1/2) + 2π is considered, the 0.4139710795 ≤

t ≤ 6.023957962 interval for t is obtained correspond-
ing to 0 ≤ x ≤ 2π . Accordingly, if t is selected outside
this interval, such as x = 1 and t = 7, the singularity
of the solution is eliminated. However, as it is not easy
to see it with the help of graphics, it can be interpreted
intuitively.
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