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Abstract. In this paper, mixed-mode oscillations and bifurcation mechanism for a Filippov-type system including
two time-scales in the frequency domain are demonstrated. According to classic Chua’s system, we investigate a non-
smooth dynamical system including two time-scales. As there exists an order gap between the exciting frequency
and the natural one, the whole external excitation term can be considered as a slow-changing parameter, which
results in two smooth subsystems divided by the non-smooth boundary. In addition, the critical condition about fold
bifurcation (FB) is studied, and by applying the Hopf bifurcation (HB) theorem, specific formulas for determining
the existence of HBs are presented. By introducing an auxiliary parameter via differential inclusions theory, the non-
smooth bifurcations on the boundary are discussed. Then, the equilibrium branches and the bifurcations are derived,
and two typical cases associated with different bifurcations are considered. In light of the superposition between the
bifurcation curve and the transformed phase portrait, the dynamical behaviours of the mixed-mode oscillations as
well as sliding movement along the non-smooth boundary are obtained, which reveal the corresponding dynamical
mechanism.
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1. Introduction

In recent years, the behaviours of dynamical sys-
tems with different time-scales have attracted much
attention by researchers. Bursting phenomenon rep-
resents mixed-mode oscillations which appear in the
combination of nearly harmonic small-amplitude oscil-
lations, described by quiescent states (QSs) and rela-
tively large-amplitude oscillations, defined as spiking
states (SPs), which have been explored in systems of
diverse disciplines, for instance, describing bursting
phenomenon in neuroscience [1–3], biologic systems
[4–6], chemical systems [7,8], physic systems [9–11],
etc.

To study the mechanism of transition between the
SPs and QSs, Rinzel [12] first put forward a classical
analysis method. He presented an analysis and qualita-
tive viewpoint of bursting for Chay–Keizer theoretical
model by dividing the dynamical system into two sub-
systems, denoted by the fast subsystem and the slow
subsystem. This method is also known as fast–slow

analysis method. In accordance with this work,
Izhikevich [13] showed how the type of bifurcation
determines the neuron-computational properties of the
cells, and how the phenomenon of neural bursting is
depicted. The main idea is that judging by the analysis
of the equilibrium states and bifurcation in fast subsys-
tem, the slow subsystem can be applied to regulate the
dynamical behaviours of the whole system in any period.
Therefore, the corresponding bifurcation mechanism of
mixed-mode oscillations is revealed.

Up to now, the dynamical systems with vector
fields, which have been considered comprehensively,
are almost continuous [14–17]. In fact, there exist many
non-smooth factors. For example, friction may evolve in
mechanical problems [18,19], threshold strategy in eco-
logical economic dynamics [20,21], the discontinuous
functional response in a ratio-dependent predator–prey
model [22], etc. The influence of these factors may
show more complicated and richer dynamics in related
systems [23,24], which remains a challenge for future
researchers.
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In this paper, based on these considerations, and tak-
ing the well-known three-dimensional Chua’s system
as an example, we try to explore the related dynam-
ics of the system with discontinuous vector fields by
adding a voltage-based steering switch and a periodi-
cally changed electrical source, which can also be called
Filippov-type system.

This paper is structured as follows: In §2, a general
description for the Chua’s system is presented. In §3,
the conventional bifurcations and the non-conventional
bifurcations are discussed by analysing different distri-
butions of equilibrium branches and the corresponding
bifurcations. Two different mixed-mode oscillations are
shown which reveal the associated dynamical mecha-
nisms, and the related numerical simulations are pro-
vided to verify the theoretical findings in §4. Finally, in
§5, we give a concise conclusion.

2. Mathematical model

To explore the mixed-mode oscillations in a set of
Fillippov-type systems with two time-scales which is
based on the typical three-dimensional Chua’s system
[25], the mathematical model, by adding a voltage-based
steering switch and a periodically changed electri-
cal source, can be expressed by the following non-
dimensional form:
⎧
⎨

⎩

ẋ = α(y − x − f (x)) + w + δ sign(x),
ẏ = x − y + z,
ż = −βy,

(1)

with w = F cos(�τ), where F and � represent the
amplitude and the frequency of the external periodic
excitation, respectively. The term f (x) =mx + nx3

describes the nonlinear property of resistance. When an
order gap exists between the exciting frequency � and
the natural one, denoted by �N , such as � � �N , the
influence of two time-scales may emerge, which often
behaves in mixed-mode oscillations.

Because of the term δ sign(x), the non-smooth bound-
ary �, denoted by H = {(x, y, z)|x = 0}, can be
obtained, which divides the phase space into two
smooth regions, described by D+ = {(x, y, z)|x > 0 }
and D− = {(x, y, z)|x < 0} corresponding to the two
different smooth subsystems A+ and A−, respectively.
By changing the parameters, bifurcations may happen
not only in the two regions but also on the non-
smooth boundary, resulting in intricate behaviours of the
systems.

3. Bifurcation analysis

For a nonlinear system, its natural frequency will alter
along with the dynamical behaviours. For example,
when the trajectory of the system tends to a stable focus,
the natural frequency is approximately the imaginary
part of the eigenvalue of the conjugate complex num-
bers, and when the trajectory tends to a limit cycle,
the natural frequency is calculated by the frequency of
periodic oscillation. For non-smooth systems, the natu-
ral frequencies are relatively complex. For instance, the
non-smooth interface H = {(x, y, z)|x = 0} of System
(1) separates the phase space into two smooth regions,
shown by D+ = {(x, y, z)|x > 0} and D− = {(x, y, z)
|x < 0} . For obtaining the value about its natural fre-
quency, we set the system without external periodic
excitation, that is, F = 0. By computation, the equilib-
rium point can be uniformly expressed by (xE , 0, −xE ),
where xE satisfies

−α[(m + 1)xE + nx3
E ] + δ sign(xE ) = 0.

Obviously, there are different numbers of equilib-
rium points for different parameters. When m = −
1.25, n = 0.25 and δ = − 1.0, the non-smooth system
has three different equilibrium points. These points
present the structure of characteristic subspace corre-
sponding to different eigenvalues in the two regions and
on the interface (see table 1).

Table 1. Eigenvalues of different equilibrium points.
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When the trajectory oscillates near the equilibrium
point x0

E (0, 0, 0), the natural frequency is�N0 = 3.2409,
and when the trajectory oscillates around the equilib-
rium point x0±

E (∓1.3978, 0, ±1.3978), the same natural
frequency is �N0± = 3.4483 in the region D±.

Here, taking the exciting frequency �= 0.1, the other
parameters are constants. It is evident that there is
an order gap between the excitation frequency and
the natural one of the system. Therefore, note that
when � � �N , in any intrinsic period t ∈ [t0, t0 +
2π/�N ], the external excitation w may change from
WA = A sin(�t0) toWB = A sin(�t0+2π�/�N) ≈WA,
which indicates that w is almost a constant. Correspond-
ingly, the system is divided into two smooth subsystems,
expressed as:

For x > 0,
⎧
⎨

⎩

ẋ = α(y − x − f (x)) + w + δ,

ẏ = x − y + z,
ż = −βy

(2)

and for x < 0,
⎧
⎨

⎩

ẋ = α(y − x − f (x)) + w − δ,

ẏ = x − y + z,
ż = −βy

(3)

3.1 Conventional bifurcation analysis
of the two subsystems

Note that the whole excitation term w is seen as a
parameter, resulting in two generalised autonomous
subsystems. Now, we concentrate on the equilibria of
two subsystems. By calculation, the equilibrium point
can be written in the form E∗(x0, 0, −x0), where x0
satisfies

− α[(m + 1)x0 + nx3
0 ] + w + δ sign(x0) = 0. (4)

The stability of the equilibrium point E∗ can be deter-
mined by the following characteristic equation:

f (λ) = λ3 + (1 + α + η)λ2 + (β + η)λ + β(α + η),

(5)

where η = 3αnx2
0 + αm.

Here, in accordance with the Routh–Hurwitz criteria,
all roots of eq. (5) possess negative real parts only when
the following conditions hold:

1 + α + η > 0, β(α + η) > 0,

(1 + α + η)(β + η) − β(α + η) > 0.

Hence, the equilibrium point is locally asymptotically
stable.

Next, we obtain two types of co-dimension one bifur-
cations.

1. Fold bifurcation (FB)
When the following conditions hold:

FB : α = −η, (1 + α + η > 0, (β + η) > 0). (6)

In that way, FB may emerge, causing jumping
phenomenon among different equilibria.
2. Hopf bifurcation (HB)

According to the HB theorem [26,27], HB can occur,
which should satisfy the following two conditions:

(i) Bifurcation condition:

HB : (1 + α + η)(β + η) − β(α + η) = 0,

(1 + α + η > 0, β + η > 0). (7)

(ii) Transversality condition:

The corresponding characteristic equation (5) is

f (λ) = λ3 + (1 + α + η)λ2 + (β + η)λ + β(α + η),

where η = 3αnx2
0 + αm.

Differentiating eq. (5) with respect to w, noticing that
λ is a function of w, and applying the derivative of the
composite function, we obtain

3λ2 dλ

dw
+ (1 + α + η) · 2λ

dλ

dw
+ λ2 dη

dx
· dx

dw

+ (β + η)
dλ

dw
+ λ

dη

dx
· dx

dw
+ β

dη

dx
· dx

dw
= 0,

(8)

which leads to
(

dλ

dw

)−1

= [(m + 1) + 3nx2
0 ][3λ2 + 2λ(1 + α + η) + β + η]

−6nx2
0(λ2 + λ + β)

.

(9)

Substituting λ = iω0 into eq. (9), separating the real
part, and we have

Re

(
dλ

dw

)−1

= Re
[(m + 1) + 3nx2

0 ][3(iω0)
2 + 2iω0(1 + α + η) + β + η]

−6nx2
0((iω0)

2 + iω0 + β)

= [(m + 1) + 3nx2
0 ][3ω4

0 + (2 + 2α − 4β + η)ω2
0 + β(β + η)]

−6nx2
0 [ω4

0 + (1 − 2β)ω2
0 + β2] .
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{d(Re λ)/dw}|λ= iω0 and {Re(dλ/dw)−1}|λ= iω0 have
identical signs, implying that

sign

{
d(Re λ)

dw

}∣
∣
∣
∣
λ= iω0

= sign

{

Re

(
dλ

dw

)−1
}∣

∣
∣
∣
λ=iω0

= [(m + 1) + 3nx2
0 ][3ω4

0 + (2 + 2α − 4β + η)ω2
0 + β(β + η)]

−6nx2
0 [ω4

0 + (1 − 2β)ω2
0 + β2] .

Thus, the transversality condition
{

d(Re λ)

dw

}∣
∣
∣
∣
λ= iω0

�= 0

if the following condition is satisfied:

[(m + 1) + 3nx2
0 ][3ω4

0 + (2 + 2α − 4β + η)ω2
0

+β(β + η)] �= 0.

After setting the parameters, it can be determined.
Therefore, the HB appears, resulting in the instability

of the equilibrium point to limit cycle, and the related
frequency

�H = √
β + η. (10)

3.2 Non-smooth bifurcation analysis on the boundary

When the trajectory touches the boundary �, uncon-
ventional bifurcation may occur. As system (1) is of
Filippov-type, we can use differential inclusions theory
[28] and introduce the auxiliary parameter q restricted
in the continuously closed interval [0,1], then system (1)
can be further expressed by

A :=
⎧
⎨

⎩

A−, q = 0,

q A+ + (1 − q)A−, 0 < q < 1,

A−, q = 1.

(11)

When the trajectory is situated in the region D−,
q = 0, while its dynamic evolution entirely depends on
the smooth subsystem A−. When the trajectory is sit-
uated in the region D+, q = 1, while its dynamic
evolution entirely hinges on the smooth subsystem A+.
When 0 < q < 1, by simple calculation, the auxiliary
parameter q is shown as

q = −αys − ws + δ

2δ
, (12)

where ys and ws are values of state variable y and the
slow-changing parameter w when the trajectory begins
to touch the non-smooth boundary �.

Meanwhile, the sliding region can be calculated as

�s :=
{

(y, z)

∣
∣
∣
∣ y = −w − (2q − 1)δ

α

}

, q ∈ (0, 1).

Additionally, the boundaries of the sliding motion are

∂�s+ :=
{

(y, z)

∣
∣
∣
∣ y = −w − δ

α

}

, q = 1

and

∂�s− :=
{

(y, z)

∣
∣
∣
∣ y = −w + δ

α

}

, q = 0.

The following definitions [29] of the corresponding
equilibrium of Filippov-type system (1) are given which
are essential in this work.

DEFINITION 3.1

A point X is defined as in pseudo-equilibrium if it is an
equilibrium of the sliding motion for system (1), i.e.,

q A+(X, w) + (1 − q)A−(X, w) = 0, H(X, w) = 0

and

0 < q < 1.

DEFINITION 3.2

A point X is known as a boundary-equilibrium point if

A+(X, w) = 0 or A−(X, w) = 0

and

H(X, w) = 0.

Then, two special types equilibrium points can be
obtained, one is restricted in the sliding region, i.e.,
pseudo-equilibrium point, expressed by

Es0 := {(0, 0, 0)|q ∈ (0, 1), −|δ| < w < |δ|},
while the other is situated on the boundary of the slid-
ing region ∂Es±, i.e., the boundary equilibrium points,
shown as

Es+ := {(0, 0, 0)|q = 1, w = |δ|},
Es− := {(0, 0, 0)|q = 0, w = −|δ|}.
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By choosing w as the bifurcation parameter, system (1)
may undergo boundary equilibrium bifurcation at w =
w∗, if there is a point X = X∗ located in the smooth
region D+ such that

(1) A+(X∗, w∗) = 0, but A−(X∗, w∗) = 0;
(2) H(X∗, w∗) = 0;
(3) A non-degeneracy condition which guarantees

that X is an isolated equilibrium to vector field
A+:

det(A+,X ) = −αβ �= 0;
(4) The equilibrium branch to either of the smooth

subsystem must border-collide with the non-
smooth boundary at Es±, i.e., transversality con-
dition:

Hw(X∗, w∗) − HX (X∗, w∗)A−1
+,X (X∗, w∗)

A+,w(X∗, w∗) = 1/α �= 0,

where Hw(X∗, w∗) represents the gradient of
H(X∗, w∗).

In order to obtain more details about the bound-
ary equilibrium bifurcation, the boundary equilibrium
points will be discussed. Firstly, for a sufficiently small
neighbourhood near the boundary equilibrium point
Es+, let X also be an equilibrium point located in the
smooth region D+. Then

A+(X, w) = 0, H(X, w) := h1 > 0. (13)

Let Xs be a pseudo-equilibrium point to system (1),
which means

A+(Xs, w) + (q − 1)(A+ − A−) = 0,

0 < q < 1, H(Xs, w) := 0. (14)

Linearising eqs (13) and (14) at Es+, we obtain

A+,X X + A+,w(w − |δ|) = 0,

HX X + Hw(w − |δ|) = h1 > 0 (15)

and

A+,X Xs + A+,w(w − |δ|) + (q − 1)(A+ − A−) = 0,

0 < q < 1, HX Xs + Hw(w − |δ|) = 0. (16)

From eqs (15) and (16), we have

h1 = (Hw − HX A
−1
+,X A+,w)(w − |δ|),

q − 1 = (Hw − HX A
−1
+,X A+,w)(w − |δ|)/

(HX A
−1
+,X (A+ − A−)),

or, equivalently

q − 1 = h1/(HX A
−1
+,X (A+ − A−)) = h1/(−2δ/α).

(17)

Therefore, with the help of ref. [29] and using eq. (17),
we can state the following theorem.

Theorem 3.1. For system (1),assumingHX A
−1
+,X (A+−

A−) = − 2δ/α �= 0, persistence can be obtained at the
boundary equilibrium bifurcation point when −2δ/α

< 0. Instead, a non-smooth FB can be obtained if
−2δ/α > 0.

For example, for the parameters fixed at m = −
1.25, n = 0.25, F = 3.0, δ = −1.0 and β = 13.5,
figure 1 shows the typical equilibrium branches as well
as the bifurcations of the two generalised autonomous
subsystems and non-smooth boundary as the change
about the parameter w. The solid lines denote the stable
equilibrium branches, and the red dotted lines corre-
spond to the unstable equilibrium branches.

As shown in figure 1, EBi(i = 1, 2) represent the
typical equilibrium branches of the two subsystems
A±, while � denotes the non-smooth boundary. The
EBi(i = 1, 2) exist practically, while black dotted lines
exist theoretically in accordance with the related
subsystems’ conditions. They cannot be actually
obtained because of the non-smooth boundary. We cal-
culate the corresponding conventional bifurcation and
non-smooth bifurcation points by the theoretical anal-
ysis above. We can observe the FB LP1, 2(w, x) =
(∓0.7113, ∓0.5774) and non-smooth FB points A3,

6(w, x) = (±1, 0) on the boundary � in figure 1a, and
FB LP1, 2(w, x) = (∓0.3264, ∓0.5774), supercritical
HB points H1, 2(w, x) = (∓0.4610, ∓0.7769), subcrit-
ical HB points SH1, 2(w, x) = (∓1.3958, ∓1.0981) as
well as non-smooth FB points A3, 6(w, x) = (±1, 0)

in figure 1b. As α increases, the dynamical behaviours
of system (1) may change.

4. Bursting phenomena

As two scales are involved in the system, diverse forms
of mixed-mode oscillations may appear. For discussing
the mechanism of dynamical behaviours, we provide
here the concept of transformed phase portrait.

The traditional phase portraits of a dynamical system
can be acquired on the phase space of state variables.
For example, the portrait on the plane (x, y, z) indi-
cates the relationship between different state variables
with the variation of time t . To describe the rela-
tionship between state variables and the slow-varying
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(a)

(b)

Figure 1. Equilibrium branches and the related bifurcations
of the two generalised autonomous subsystems and non-
smooth boundary: (a) α = 3.0 and (b) α = 7.0.

parameter w, we give the transformed phase portrait,
denoted by 
T : {[x(t), y(t), z(t), w(t)], t ∈ R} with
w(t) = F cos(�t), to study the effect of bifurcations in
the wake of the change of the slow-varying parameter
on the dynamical behaviours of the system.

In this section, we take α as a regulating parameter,
exploring the evolution laws of dynamical behaviours
for the system about α with different values. Two
representative cases will be analysed in the following
sections.

4.1 Symmetric point-point type fold/fold-sliding
bursting

Now, we choose α = 3.0. The phase portraits on the
(x, y), (x, y, z) planes and the time history diagram
about the state variable y are presented in figure 2. The
red arrows on the trajectory express the direction of the
flow.

−2
−1

0
1

2 −0.1
−0.05

0
0.05

0.1
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0

1
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y

x

z

(a)

(b)

(c)

Figure 2. Movement for α = 3.0. (a) Phase portrait on the
(x, y) plane, (b) time history and (c) phase portrait on the
(x, y, z) plane.

To consider the mechanism of the mixed-mode oscil-
lations, the superposition of the associated bifurcation
figure (see figure 1a) and the transformed phase portrait
is plotted in figure 3b.
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(a)

(b)

Figure 3. (a) Transformed phase portrait of system (1) on the
(w, x) plane and (b) superposition of the bifurcation figure
and the transformed phase portrait.

Remarks. Red arrows on the trajectory show the direc-
tion of the flow, and the lines and dots are shown as in
§3.2.

As shown in figure 3b, without loss of generality, we
assume that the trajectory starts at the point A1 with
minimum value of w, i.e., w = −3.0. The movement
of trajectory is governed by the subsystem A−, and so
the trajectory moves nearly along the stable equilibrium
branch EB1 with the increase of time t , signifying that
the system stays in the quiescent state (QS). Till the
value of external excitation increases through the FB
point LP1(w, x) = (−0.7113, −0.5774), jumping phe-
nomenon appears, leading to a fast transition towards
the upper branch in an S-shaped curve.

When the trajectory arrives at A2(w2, x2) =
(−0.1207, 0) on the boundary �, shown in figure 3b,
corresponding to the point As2(xs2, ys2) = (0, 0.0380),
the transition is finished. According to eq. (12), we
obtainq = (−ys2−w2+δ)/2δ ≈ 0.4966 ∈ (0, 1), imply-
ing that the trajectory may tend to pseudo-equilibrium

and show sliding motion on the boundary, and indicat-
ing the QS for the system. When it reaches the boundary
equilibrium point A3(w3, x3) = (1, 0), and the corre-
sponding point As3(xs3, ys3) = (0, 0) is obtained, the
parameter q may pass through the maximum value of the
interval [0, 1] as there is a further increase in the slow-
varying parameter w. At the same time, non-smooth FB
A3 occurs as per Theorem 3.1, so that the trajectory devi-
ates from boundary � to enter into the smooth region
D+, as there exists a stable equilibrium branch EB2 in
D+.

After that, the behaviours of the system are gov-
erned by subsystem A+, the trajectory jumps to the
stable attractor which is laid on EB2. With the evolu-
tion of time, the amplitude of the oscillation gradually
decreases, and then the trajectory tends to the stable
branch EB2. The trajectory moves almost strict along
EB2, till it gets to the point A4, implying that w arrives
at its maximum value, i.e., w = 3.0. The first half period
of the movement is completed.

According to the symmetry of system (1), the remain-
ing evolution process of the trajectory A4 → A5 →
A6 → A1 is similar to the mechanism from A1 →
A2 → A3 → A4. When the trajectory goes back to the
starting point A1 at last, then one period mixed-mode
oscillation is finished.

It is noted that the bifurcation which involves the
generation of limit cycle is not presented in the above
analysis, which means that in this case these is no
oscillation related to the cycle. Since the lower QS in
region D− switches to the upper QS in region D+ via
FB, non-smooth FB and slide motion, the mixed-mode
oscillations can be called symmetric point-point type
fold/fold-sliding bursting.

4.2 Symmetric point-cycle-cycle type
Hopf/Hopf/fold-sliding bursting

When we increase the parameter to α = 7.0, the FB
points, the HB points and non-smooth FB can be
observed, corresponding to figure 1b. Figure 4 shows the
phase portrait on the (x, y) plane and the corresponding
time history of state variable y, respectively. The three-
dimensional phase portrait on the (x, y, z) phase space
is given also in figure 4c, for demonstrating the relation-
ship between the x, y, z state variables. The red arrows
on the trajectory indicates the direction of the flow.

By comparing with the case α = 3.0, the distinct dif-
ference about the structure of bursting oscillation is
found.

To reveal the mechanism of the periodic mixed-
mode oscillations, the superposition of the transformed
phase portrait and the bifurcation figure (see figure 1b)
is described in one period, in figure 5b.
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Figure 4. Movement for α = 7.0. (a) Phase portrait on the
(x, y) plane, (b) time history and (c) phase portrait on the
(x, y, z) plane.

Remarks. Red arrows indicate the direction of the flow,
the green solid dots denote the stable limit cycle, which
is labelled by LC±

s and caused by the supercritical HB.
The green hollow dots represent unstable limit cycle,
which is labelled by LC±

s and caused by the subcritical
HB. The LPCi (i = 1, 2, 3, 4) can be interpreted as the

(a)

(b)

Figure 5. (a) Transformed phase portrait of system (1) on the
(w, x) plane and (b) superposition of the bifurcation figure
and the transformed phase portrait.

FB points of limit cycles, the lines and other dots are as
described in §3.2.

One revolution of the oscillation is represented in
details and it can be noted that w is a slow-varying
parameter in this paper. The trajectory starts from the
point A1 corresponding to the minimum value w = −
3.0. Thus, it is governed by the subsystem A−. As w

increases, the trajectory turns to the right till it gets to
the point SH1(w, x) = (−1.3958, −1.0981), subcritical
HB occurs, leading to the equilibrium losing its sta-
bility. Owing to the slow passage effect [13,30], the
trajectory still moves along the equilibrium branch EB1,
until the trajectory arrives at the point H1(w, x) =
(−0.4610, −0.7769), supercritical HB can be found,
and thus the stable limit cycle disappears, causing the
branch EB1 to be stable which means the delay phe-
nomenon is over.
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With the value of w increasing to wLP1 = −0.3264,
FB appears, causing the trajectory to reach the point
A2(w2, x2) = (0.1357, 0) which is located on the
boundary via jumping phenomenon. The correspond-
ing point As2(xs2, ys2) = (0, −0.0209) is observed in
figure 4. From eq. (12), we obtain the auxiliary parame-
ter q = (−ys2 − w2 + δ)/2δ ≈ 0.5365 ∈ (0, 1), which
is located in the closed interval [0,1], signifying that the
trajectory may tend to pseudo-equilibrium and keep on
sliding on the non-smooth boundary � indicating that
the trajectory may exist in the QS. When it arrives at
the boundary equilibrium point A3(w3, x3) = (1, 0), the
corresponding point As3(xs3, ys3) = (0, 0) is derived.
By calculation, the parameter q = 1, and the non-smooth
FB A3 occurs, resulting in the trajectory deviating from
the boundary � to enter into the region D+. This implies
that the behaviours of the system are governed by sub-
system A+.

Due to the existence of stable limit cycle LC+
s caused

by supercritical HB H2, the trajectory starts to converge
to the stable limit cycle LC+

s , while before this process
is done, the FB of limit cycles LPC1 leads to the disap-
pearance of LC+

s , and so the trajectory has no choice
but to converge to the stable branches EB2. When the
trajectory gets to the point A4, at which w arrives at
its maximum value w = 3.0, the first half period of the
movement is finished.

Then, as t increases, the slow-varying parameter
decreases, leading the trajectory to return to the other
half period of the motion. Because of the symmetrical
property of the system, here we omit the process in the
second half period of the movement.

Comparing to the case α = 3.0, the SP can be
described with the parameter α = 7.0. From the above
analysis, the HB causes the alternation between QS
and SP in the mixed-mode oscillations in figure 5b,
while the FB and non-smooth FB connect the QS along
the stable branches and it shows sliding motion on
the boundary. Thus, this mixed-mode oscillation can
be known as symmetric Hopf/Hopf/fold-silding burst-
ing.

5. Conclusion

In this paper, we have studied the mixed-mode oscilla-
tions for the modified Chua’s system with two scales.
When the excitation frequency is much less than the
natural one of the system, the whole external excitation
term can be considered as a slow-varying parameter,
and by taking a suitable value for parameter α, two dif-
ferent types of bursting are obtained. By combining the
transformed phase portraits and the corresponding bifur-
cation analysis, the mechanism of bursting oscillations

can be derived. One type is the symmetric point-point
type fold/fold-sliding bursting and the other is the sym-
metric point-cycle-cycle type Hopf/Hopf/fold-sliding
bursting. As discussed already, two different QSs can
be observed in this paper, one is the QS induced by the
trajectory almost moving along with the stable equi-
librium branches and the other is the QS caused by
the trajectory showing sliding movement on the bound-
ary.

In addition, the non-smooth factor for a voltage-
based steering switch is considered in this paper. By
analysing the unconventional bifurcation when the tra-
jectory touches the non-smooth boundary, we find that
the trajectory shows sliding movement on the bound-
ary and non-smooth FB at the boundary equilibrium
occurs. The numerical results are consistent with theo-
retical analysis. If the system is a Filippov-type system
possessing two or more parallel non-smooth boundaries,
what will be the dynamical behaviour of the system? We
shall leave it for the future.
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