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Abstract. The combined influence of heat and mass transfer on the boundary layer flow of Carreau fluid across
a bidirectional stretching surface has many applications such as heat exchangers, transportation, making of paper
plates, fibre coating, and some metal-working procedures in engineering and industrial applications. In this paper, we
present a three-dimensional (3D) numerical study on the magnetohydrodynamic (MHD) Carreau fluid flow driven
by a stretching surface influenced by heat and mass transfer. This examination further sees the impacts of variable
thermal conductivity, Joule heating, irregular heat source/sink and chemical reaction. The improved Fourier’s
model is considered in view of the response of heat transfer. The flow equations are transformed into dimensionless
equations with suitable similarity transformations. The fourth-order Runge–Kutta-based shooting method is used
to resolve the converted nonlinear coupled equations. Influences of various physical aspects on the flow fields are
shown through graphs and friction factor, local Nusselt and Sherwood numbers are presented in a separate table.
The results predict that the fluid temperature is an escalating factor of the thermal relaxation parameter and Eckert
number. Also, the rates of thermal and mass transport and the Weisenberg numbers are proportional to each other.

Keywords. Magnetohydrodynamics; Carreau fluid; Cattaneo–Christov heat flux; variable heat source/sink;
stretching surface.
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1. Introduction

It is known that thermal transfer happens when there
are heat differences among objects or within dissimilar
parts of similar objects. Many researchers proposed heat
conduction law to study heat transport phenomenon in
the flow of fluids. First, Fourier [1] proposed a heat con-
duction theory. But its major drawback is that its energy
equation is of parabolic type. To overcome this, Catta-
neo [2] included relaxation time to the Fourier’s model
and the new model is called the Maxwell–Cattaneo
model. It was extended by Christov [3] by swapping
the derivative with the Oldroyd upper convected model
and then it is recognised as the Cattaneo–Christov tem-
perature flux model. This phenomenon plays a vital
role in various processes such as the sterilisation of
milk, and for making microchips and electronic devises.
Reddy et al [4] analysed the non-turbulent and time-
dependent flow across three different geometries with

an improved Fourier’s model. Ramandevi et al [5] com-
pared the flow characteristics of the dual liquids, Casson
and viscoelastic, by using the modified Fourier’s model.
Irfan et al [6] obtained a numerical explanation for the
three-dimensional (3D) flow of the Carreau fluid by the
impact of homogeneous–heterogeneous reactions with
the generalised Fourier’s model. Anantha Kumar et al
[7] presented a dual solution for a magnetohydrody-
namic (MHD) Cattaneo–Christov flow towards a wedge
and a cone in the presence of thermal stratification. A
numerical solution for the time-dependent motion of the
Williamson fluid over a curved sheet with a modified
Fourier’s law was obtained by Anantha Kumar et al [8].

The fluids which do not fulfil Newton’s law of vis-
cosity are termed non-Newtonian. The Carreau liquid
is a type of non-Newtonian liquid. Nowadays, many
researchers have shown their interest in Carreau fluid
flow due to its significances in various fields. Some
examples of non-Newtonian fluids are sugar solutions,
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face creams, body lotions, chime, honey, glue, tooth
paste, blood, chilli sauce, etc. There are so many
applications of non-Newtonian fluids, motivated by
which, Massoudi and Christie [9] reported a solution
for the non-Newtonian liquid motion across a pipe with
viscous dissipation and variable viscosity. Siddiqui et al
[10] analytically explained the motion of a third-grade
liquid on an inclined plane using a perturbation tech-
nique. Khan et al [11] presented the characteristics of
stagnated motion of a non-Newtonian fluid such as the
Carreau fluid subject to a convective boundary condition
with the Runge–Kutta–Fehlberg method. The heat trans-
fer phenomenon in 3D motion of the Carreau liquid with
nonlinear radiation was observed by Khan et al [12].
Kumar et al [13] made a comparative study of the bound-
ary layer motion due to an exponential stretched sheet.
The flow characteristics of the MHD Carreau fluid with
slip effects in the presence of variable thermal conduc-
tivity and frictional heat was reported by Shah et al [14].

The fluid motion across a stretched geometry with
Lorentz force is significant in geophysics, medicine,
aeronautics, biotechnology and astrophysics. Also it
has immense significance in the manufacture of rub-
ber dishes, missiles, polymers, strand casting and space
vehicles. Magnetic field creates fluxes in the conducting
fluid flow. MHD has application in droplet fitters, accel-
erators, magnetic drug treatment, flow meters, power
production, plasma studies and MHD pumps. First,
Crane [15] proposed a solution for the Blasius type of
flow across a stretching plate. It was extended by Chiam
[16] by considering the micropolar fluid. Chen and Char
[17] determined the thermal transport characteristics of
the motion across a linearly stretchable continuous sur-
face by using Kummer’s functions. The influence of
heat generation on the MHD motion of viscoelastic and
incompressible liquid over a solid surface was discussed
by Siddheswar and Mahabaleswar [18]. Anantha Kumar
et al [19] studied the nature of the time-dependent flow
of MHD non-Newtonian fluid flow over a curved sur-
face with an irregular heat sink/source and chemical
reaction. Babu and Sandeep [20] examined the effects
of heat and mass transfer on the MHD flow caused by a
coagulated sheet. They concluded that the performance
of heat and mass transfer in Cu–water is higher than that
of CuO–water. As an extension of this, Malik et al [21]
considered the Carreau fluid flow by implementing an
implicit finite-difference scheme. Sandeep [22] exam-
ined the characteristics of a thin film flow of a hybrid
nanofluid across a stretching surface.

The phenomenon of an irregular heat sink/source has
well-known implications in biomedical and many engi-
neering activities like radial diffusers, the purpose of
thrust bearing, crude oil retrieval, etc. Abel et al [23]
studied the MHD boundary layer flow features of an

unsteady non-Newtonian fluid over a stretched geome-
try under the impact of an uneven heat source/sink. It
was extended to the impact of thermal radiation by Pal
[24] with the aid of the Runge–Kutta–Fehlberg method.
The influence of irregular heat parameters on the MHD
Powell–Eyring fluid flow past a wedge was investi-
gated by Reddy et al [25]. Further, Reddy et al [26]
investigated the heat and mass transfer characteristics of
Casson and Maxwell fluid flows with thermodiffusion.

The knowledge of heat and mass transfer has many
applications in the engineering and paramedical fields.
Power creation, heat exchangers, thermal conduction in
tissues and electronic devices are a few industrial and
ecological implications. Animasaun and Sandeep [27]
reported the influence of Lorenz force and an irregular
thermal source on a viscous fluid across a coagulated
surface. A numerical study was conducted by Anan-
tha Kumar et al [28] on the thermal transport features
of MHD oblique stagnation point flow of a micropo-
lar fluid over a stretching surface with the Runge–Kutta
fifth-order method. Khan et al [29] studied the thermal
and mass transport features of the Carreau nanofluid
flow towards an inclined stretched cylinder under the
impact of Joule heating. Ramadevi et al [30] studied the
analytical solution of the effect of mass and heat trans-
fer on Casson liquid motion affected by a wavy channel
with the aid of perturbation technique. Anantha Kumar
et al [31] discussed the effect of mass and thermal trans-
fer on the viscoelastic fluid across a solid sheet with an
exponential heat source.

The Joule heating is a phenomenon where the ther-
mal energy is produced by an electric current on the
conductor. It plays a vital role in huge industrial and
trade applications such as in cuisines, iron manufactur-
ing, electric coffee makers and purification. A study
was conducted by Sulochana et al [32] on the influence
of viscous heating and chemical response on the mixed
convective motion of the Casson nanofluid across an
inclined semi-infinite porous plate. For this study, they
considered TiO2–water and CuO–water. Lakshmi et al
[33] discussed the mass transport characteristics of the
chemically reacting Casson and Walters-B nanofluids
across a nonlinear variable thickness stretching sheet.
Anantha Kumar et al [34] gave a numerical explana-
tion for the MHD motion of a ferrofluid towards a
convective shrinking surface using the Runge–Kutta–
Fehlberg technique. Mixed convective MHD third-grade
liquid flow caused by an infinite sheet with radiation
and convective condition was discussed by Hayat et al
[35]. Furthermore, it was extended by Hayat et al [36]
by considering both convective and diffusive boundary
conditions. Ramadevi et al [37] and Anantha Kumar
et al [38] examined the flow fields on the MHD non-
Newtonian liquid across a stretching surface with a
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heat source/sink. The heat transfer features of particle–
fluid suspension induced by a metachronal wave have
been investigated by Bhatti et al [39] in the presence of
Lorentz force and radiation. Khan et al [40] examined
the 3D time-dependent flow of a Sisko nanofluid due to
a stretching surface in the presence of nonlinear thermal
radiation and chemical reaction.

To the best of our knowledge, it is clear that a few
researchers concentrated on 3D MHD micropolar liq-
uid due to the stretching of a surface. Also, to the
best of our knowledge, no study was conducted on the
influence of variable thermal conductivity on 3D MHD
Carreau fluid flow caused by a stretching surface. Joule
heating, chemical reaction, convective and diffusive
boundary conditions are accounted. Similarity transmu-
tations are applied to alter the flow governing nonlinear
equations into coupled ordinary differential equations
(ODEs). Runge–Kutta and shooting methods are utilised
to obtain the solution. The influence of numerous physi-
cal variables on the distributions of velocity, temperature
and concentration is presented using plots. Along with
them, the rates of heat and mass transport and friction
factors are presented in a separate table.

2. Formulation

Consider the 3D flow of an incompressible MHD Car-
reau fluid across a bidirectional stretching sheet with
Joule heating. Fluid motion is time-independent and
laminar. The improved Fourier’s model is utilised to
study the heat transport performance. We supposed
the magnetic Reynolds number to be very small. We
assumed that the surface is aligned with the xy plane
and the flow is accounted in z > 0. The stretching veloc-
ities of the sheet are uw = bx, vw = by, where b is a
positive constant. A constant magnetic field of strength
B0 is exerted along the z-axis as shown in figure 1.

Based on the assumptions that the Carreau fluid flow
is 3D, we have taken the modified Fourier’s law, variable

Figure 1. Flow geometry.

thermal conductivity, Joule heating, irregular heat/sink
and chemical reaction effects and by applying convec-
tive and diffusive boundary conditions to the boundary,
the flow equations are
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Here (u, v, w), respectively, are the velocity compo-
nents along (x, y, z), υ is the kinematic viscosity, �

is the material constant, n is the velocity power index
parameter, σ is the electrical conductivity, ρ is the Car-
reau fluid density, cp is the heat capacitance, T is the
temperature, λ is the relaxation time, A∗ and B∗ repre-
sent the irregular heat parameters,C is the concentration
of Carreau fluid, Dm is the mass diffusivity and k∗ is the
dimensional chemical reaction variable, h1 and h2 are
the convective components of heat and mass.
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Here W1,W2 are the Weissenberg numbers, M is a
parameter related to the magnetic force, Pr, Ec1, Ec2, Sc,
respectively, are the Prandtl, Eckert and Schmidt num-
bers, β, γ, Kl , respectively, the thermal relaxation,
stretching ratio and chemical reaction parameters and
BiC, BiT are the solutal and thermal Biot numbers,
respectively. These can be defined as
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With regard to engineering, the physical quantities such
as rates of heat and mass transport, friction factors along
x, y directions can be defined as
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where τxz and τyz are shear rates along the x and y
directions, respectively, qw = −k(T )(∂T/∂z)z=0 is the
surface heat flux and qm = −Dm(∂C/∂z)z=0 is the
surface mass flux.

On using eq. (8), eq. (14) takes the following form:
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where Rex = ax2/υ is the local Reynolds number.
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Figure 2. Impact of M on (a) the velocity field in the x direction, (b) the velocity field in the y direction, (c) thermal field
and (d) concentration field.

(a) (b)

Figure 3. Impact of (a) W1 on the velocity field in the x direction and (b) W2 on the velocity field in the y direction.



86 Page 6 of 11 Pramana – J. Phys. (2019) 93:86

3. Discussion of results

Equations (9)–(13) are highly nonlinear and coupled
ODEs. An analytical solution is not possible. Here,
we use a fourth-order Runge–Kutta-based shooting
technique to obtain a solution for the problem. The fig-
ures are plotted to show the behaviour of velocities,
temperature and concentration with various values of
flow-regulating parameters. Along with the skin-friction
coefficients, the rates of heat and mass transfer are
also analysed and presented with the aid of a table.
For the results, we kept the parameters as constants
like Ec = 0.5, n = 1.5, ε = 0.3, Pr = 7, β =
0.2, A∗ = 0.2, B∗ = 0.2, Sc = 0.7,W = 2, Kl =
0.5, γ = 0.3, BiT = 0.5 and BiC = 0.5. In all the plots,
F ′(η),G ′(η), θ(η) andφ(η), respectively, are the curves
of velocities along x and y directions, under constant
temperature and concentration.

Figure 2 presents the plots for the profiles of velocities
in the x and y directions, under constant temperature
and concentration for different values of magnetic field.
Profiles of velocities are diminished and thermal and
solutal curves are enhanced with increasing values of
M . An increase in magnetic field gives Lorentz force,
which has the propensity to oppose the movement
of the liquid atoms and that way, the fluid veloc-
ity drops in both directions. Also, it imparts heat
to the particles of the fluid, so that the temperature
is enhanced as it consequently hikes the concentra-
tion.

Figure 3 is depicted to discern the influence of F ′(η)

and G ′(η) on the Weissenberg numbers W1 and W2. The
curves of velocity are enhanced in the x and y direc-
tions with increasing values of W1 and W2. Actually,
Weissenberg number is proportional to the time persis-
tent and inversely proportional to the viscosity of the
liquid. For a large Weissenberg number, the fluid has
less viscosity. Therefore, it causes a boost in velocity
profiles.

The influence of the temperature-dependent thermal
conductivity parameter (ε), Pr and thermal relaxation
time (β) on the distribution of heat is shown in fig-
ure 4. Increasing values of ε yield an enhancement in
the heat function (see figure 4a). Figure 4b shows the
effect of temperature on Pr and that fluid temperature is
a reducing function of Pr. The effect of thermal relax-
ation variable on the temperature profile can be seen in
figure 4c. Here, we see that the heat function is an
increasing factor of β. Generally, relaxation time is
nothing but the time taken by the elements of the
fluid to transmit thermal energy to the neighbour-
ing ones. So we observe a decrement in θ(η) but it
shows an opposite behaviour due to the impact of other
parameters.

(a)

(b)

(c)

Figure 4. Impact of (a) ε, (b) Pr and (c) β on thermal fields.

Figure 5 is designed for profiles of velocities along
with the velocity power index parameter (n). Boosting
values of n raise the velocities in both directions. For
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(a) (b) 

Figure 5. Impact of n on (a) the velocity field in the x directiion and (b) the velocity field in the y direction.

(a) (b)

Figure 6. Impact of (a) A∗ on the thermal field and (b) B∗ on the thermal field.

accelerating values of n, the elongating velocity sur-
passes the unrestricted velocity. This result shows an
improvement in velocity profiles.

The impacts of temperature and irregular heat param-
eters are portrayed in figure 6. The heat function and
irregular heat factors are proportional to each other.
The positive values of irregular heat parameters act as
heat generators. So the the boundary layer releases a
big amount of thermal energy to the flow from which,
we observe an enhancement in the temperature of
the fluid. Hence temperature profiles are uplifted with
temperature- and space-dependent heat source/sink
parameters.

Figure 7 is sketched to see the impact of temperature-
dependent Biot number on temperature profiles. An

elevating value of Biot number raises the temperature
profiles (see figure 7a). The impact on concentra-
tion profiles with concentration-dependent Biot num-
ber can be seen in figure 7b. From this figure, it is
clear that an increasing value of this number enhances
the concentration profiles. Generally, temperature- and
concentration-dependent Biot numbers are directly cor-
related with the convective solutal and thermal coeffi-
cients h1 and h2, respectively, and, as a result, we found
an improvement in the temperature and concentration
fields.

Figure 8 shows a variation in the concentration field
for numerous values of Sc and the chemical reaction
parameter (Kl). The curves of concentration are dimin-
ished with enhancing values of Sc and Kl . Physically,
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(a) (b)

Figure 7. Impact of (a) BiT on the thermal field and (b) BiC on the concentration field.

(a) (b)

Figure 8. Impact of (a) Sc on the concentration field and (b) Kl on the concentration field.

Sc is a quotient of rate of viscous diffusion to the rate
of molecular diffusion. Hence, a large Sc improves the
rate of viscous diffusion. For increasing values of chem-
ical reaction parameter, we see that there is a hike in the
interfacial mass transfer. Therefore, the concentration
profiles decrease with these parameters.

The influence of Ec on the curves of temperature can
be seen in figure 9. It is interesting to note that heat
function is a growing factor of Ec1 and Ec2. The ratio
of the kinetic energy and enthalpy change is known as
Ec. So, kinetic energy improved with advanced values
of the viscous heating parameter. Hence, the thermal
boundary layer and its thickness are increasing factors
of Ec1 and Ec2.

Figure 10 shows the consequence of the constraint
related to the stretching ratio on the flow fields of
the Carreau fluid. All the profiles are enhanced with

higher values of γ with the exception of mass function.
Actually, an enlargement in the velocity ratio param-
eter developed more compression on the stretching
sheet and, consequently, we found that the tempera-
ture decreases and the velocity profiles improve in both
directions. As a result, concentration also decreases.
But, here in the case of temperature profiles we have
seen an opposite outcome, which is due to the impact of
other parameters.

The variation in friction factors and measure of ther-
mal plus mass transport with various non-dimensional
parameters is observed in table 1. All the four physical
quantities are reduced due to the Lorentz force. Weis-
senberg number and the physical quantities (friction
factors, heat and mass transfer rates) are proportional
to each other. All the physical quantities are enhanced
with the power law index parameter except the heat
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(a) (b)

Figure 9. Impact of (a) Ec1 and (b) Ec2 on the thermal field.

(a)

(b)

(c) 

(d)

Figure 10. Impact of γ on (a) the velocity field in the x direction, (b) the velocity field in the y direction, (c) the thermal
field and (d) the concentration field.
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Table 1. Numerical values of friction factors, heat and mass transfer coefficients with the flow-regulating parameters.

M W1 β A∗ B∗ Sc Kl BiC BiT γ F ′′(0) G ′′(0) − θ ′(0) −φ′(0)

1 −0.3554 −0.3554 0.2616 0.2789
2 −0.4649 −0.4649 0.2136 0.2766
3 −0.5532 −0.5532 0.1692 0.2751
4 −0.6293 −0.6293 0.1260 0.2741

1 −0.2319 −0.2319 0.2287 0.3552
3 −0.2204 −0.2204 0.2303 0.3554
5 −0.2075 −0.2075 0.2322 0.3556
7 −0.1972 −0.1972 0.2339 0.3559

0 −0.2754 −0.2754 0.2925 0.2908
0.5 −0.2754 −0.2754 0.2821 0.2908
1 −0.2754 −0.2754 0.2717 0.2908
1.5 −0.2754 −0.2754 0.2617 0.2908

0 −0.4917 −0.4917 0.2042 0.2863
0.5 −0.4917 −0.4917 0.1827 0.2863
1.0 −0.4917 −0.4917 0.1608 0.2863
1.5 −0.4917 −0.4917 0.1387 0.2863

0 −0.2728 −0.2728 0.3239 0.2913
0.5 −0.2728 −0.2728 0.2984 0.2913
1.0 −0.2728 −0.2728 0.2566 0.2913
1.5 −0.2728 −0.2728 0.1614 0.2913

0.2 −0.2086 −0.2086 0.3420 0.2120
0.4 −0.2086 −0.2086 0.3420 0.2563
0.6 −0.2086 −0.2086 0.3420 0.2830
0.8 −0.2086 −0.2086 0.3420 0.3015

0.1 −0.2086 −0.2086 0.3420 0.2383
0.3 −0.2086 −0.2086 0.3420 0.2719
0.5 −0.2086 −0.2086 0.3420 0.2930
0.7 −0.2086 −0.2086 0.3420 0.3081

0.5 −0.2754 −0.2754 0.3136 0.2909
1.0 −0.2754 −0.2754 0.3136 0.4102
1.5 −0.2754 −0.2754 0.3136 0.4752
2.0 −0.2754 −0.2754 0.3136 0.5161

0.5 −0.2755 −0.2755 0.3137 0.2912
1.0 −0.2755 −0.2755 0.4799 0.2912
1.5 −0.2755 −0.2755 0.5801 0.2912
2.0 −0.2755 −0.2755 0.6464 0.2912

0.3 −0.2728 −0.2728 0.2497 0.2913
0.6 −0.5958 −0.5958 0.2532 0.3069
0.9 −0.9365 −0.9365 0.2666 0.3200
1.2 −1.2931 −1.2931 0.2778 0.3311

transfer coefficient. The heat transfer coefficient is
inversely proportional to both the thermal relaxation
parameter and irregular heat parameters. Also, it is
directly proportional to the temperature-dependent Biot
number. The mass transfer coefficient is proportional to
Sc, Kl, BiC. The mass transfer rates enhance with the
stretching ratio parameter and a reverse trend is noticed
in all other quantities.

4. Conclusions

In this study, a numerical solution for the 3D MHD flow
of the Carreau fluid over a stretching sheet with the heat

and mass transfer phenomenon has been investigated.
An improved heat flux model is utilised to deliberate the
concept of heat transfer. The influence of an irregular
heat sink/source, chemical reaction and Joule heating
is considered. The converted equations are solved using
shooting and fourth-order Runge–Kutta methods. The
main points are given below:

• Accelerating values of W1 and W2 decrease the fluid
velocity in both directions.

• The nature of the velocity profiles and friction factors
is similar in both x and y directions.

• The local Nusselt and Sherwood numbers are directly
proportional to the chemical reaction parameter, Sc,
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power index parameter and stretching ratio parame-
ter.

• All the physical quantities are decelerating factors
of the magnetic field parameter.

• The irregular heat parameters play a vital role in the
thermal and mass transport performance.

• Fluid temperature is an escalating function of Ec and
thermal relaxation parameter.
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