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Abstract. In this paper, the proposed dark energy, Tsallis holographic dark energy (THDE), infrared cut-off with
the Hubble horizon has been investigated in the Bianchi-I (axially symmetric) anisotropic model with a hybrid
expansion law. It has been observed that the THDE is in tune with the accelerating Universe with equation of
state (EoS) parameter (ωT < −1/3) in the k-essence region. We have used the statefinder diagnostic in our model.
In addition, we try to accommodate the perspective of dark energy by the avenue of reconstructing the evolution
of scalar field potential. We have considered the k-essence for the analysis of this reconstruction, showing the
accelerated expansion at present.

Keywords. Tsallis holographic dark energy; Bianchi-I space–time; general relativity; k-essence.

PACS No. 98.80.−k

1. Introduction

The dark sector of the Universe intrigues the scholars
and the most recent observations [1–10] demonstrate
that the dark sector contribution is roughly 95% in com-
parison to substratum, and the rest is radiation and 4–5%
baryonic matter. The baryonic matter comprises elec-
tromagnetic radiation and can be seen directly [11]. The
dark matter, which is around 25% of the matter content
of the Universe, is a pressureless matter, which gives
the velocity of galaxy clusters [12]. It was inferred that
there was more mass in galaxies than observed by the
corroboration of cold dark matter (CDM) with the rota-
tion curves of spiral galaxies [13]. The presence of this
exotic matter is affirmed by the galaxy clusters and grav-
itational lensing on the basis of X-ray emission. In the
context of structure formation, CDM seems to play a
very important role, potentialising the growth of bary-
onic structures after decoupling, until they reach the
nonlinear regimes that is currently observed (δb > 1).

The dark energy (DE) [14,15] is responsible for the
current accelerated stage of the Universe. Under the
cosmological standard description, the cosmological
constant � can be used for the DE component, which
is having a geometric nature in accordance with the

general theory of relativity (GR). Such identification is
analogous to a fluid model with a vacuum equation
of state (EoS) (ω = −1) and constant energy density
[16,17]. The description of DE is in tune with recent
observational data, but it opposes the theoretical pre-
diction for vacuum energy, which has been observed
by quantum field theory [18]. This material description
has a GR, the inflationary paradigm and the Big Bang
nucleosynthesis (BBN), �CDM model. Instead of the
vacuum description, it is also common to consider a
dynamical description for the DE component through
a different EoS, for example, a constant EoS parame-
ter (ω �= −1) or some time-dependent EoS parameter
[19,20]. Other proposed DE components are from the
dynamical approach through a scalar field [21,22] and
modified theories of gravity [23–26].

Dynamical DE models have been constructed under
general relativity and quantum gravity which help in
solving the problem of cosmic expansion. Li [27] gave
the holographic DE (HDE) under the umbrella of quan-
tum mechanics and gravity, which in turn solves the
problem related to quantum properties of black holes,
helping the scholars to explore string theory or quantum
gravity [28]. The HDE model for the expansion of the
Universe [27,29–46], taking the holographic principle
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[28,47,48] by defining the holographic energy density
as ρD = 3c2M2

plL
−2, depends on the entropy–area rela-

tion of black holes [29], where c is a numerical constant.
A new development in terms of the HDE model

Sδ = γ Aδ , with δ being the non-additivity parameter, γ
an unknown constant, has been incorporated (known as
Tsallis HDE (THDE)) [49], taking Tsallis generalised
entropy [50], with the infrared (IR) cut-off as a Hubble
horizon, in connection with the thermodynamic exam-
inations [51,52]. The Bekenstein entropy is obtained
by taking the limit of δ = 1 and γ = 1/4G (where
h = kB = c = 1 in units). In this the power-law
distribution of probability is useless [50]. The quan-
tum gravity also affirms this relation [53], and opens
a plethora of opportunities in terms of results in the
holographic and cosmological scenario [54–57]. This
forms the holographic principle as the base, which states
that the degrees of freedom of a physical system should
be in tune with the bounding area, not with its volume
[28,47] and to be constrained by an infrared cut-off.
Cohen et al [29] formulated an accord among the sys-
tem entropy (S) and the IR (L) and UV (�) cut-offs as
L3�3 ≤ S3/4, which after combining with Sδ = γ Aδ

leads to [29] �4 ≤ (γ (4π)δ)L2δ−4, where �4 is the
vacuum energy density and ρD is the energy density in
the HDE formalism. By the application of this inequal-
ity, we can say the THDE as ρT = CL2δ−4, where C
is the unknown parameter [37,44,51]. The above given
expression gives the standard HDE, where C = 3c2M2

p

and c2 is a dimensionless quantity. Let us consider a flat
Friedmann–Robertson–Walker (FRW) Universe taking
the IR cutoff as the Hubble horizon, which is a suit-
able candidate. In this manner L = H−1. Consider L
as the future horizon as used in HDE, and a consistent
formulation of THDE is given in [58]. The interacting
and non-interacting cases have been investigated from
the perspective of the dynamics of FRW [59]. THDE
and its effects with Hubble horizon as IR cut-off have
been checked under Brans–Dicke gravity theory and
in brane cosmology [60,61]. Tsallis agegraphic dark
energy (ADE) (TADE) models have been proposed by
using the age of the Universe and the conformal time as
the IR cut-offs and their effects on the evolution of the
Universe are studied [62]. Thermal stability of THDE in
the non-flat Universe has been investigated by Zadeh et
al [63]. Sharif and Saba [64] established a reconstruc-
tion scenario for THDE model in the background of
f (G, T ) gravity with the Hubble horizon as well as the
generalised Tsallis entropy conjecture using the power-
law solution of the scale factor.

The Bianchi-type models are the best and simplest
anisotropic models, which completely describe the
anisotropic effects. Even though Bianchi-type Universes

are anisotropic, there is a cosmological view that the
Universe may have been anisotropic in the early period
and that over the span of its development, these char-
acteristics may have been damped out because of
a few procedures or mechanisms, bringing about a
homogeneous and isotropic Universe. Many researchers
have investigated different aspects of these spatially
homogeneous and anisotropic Bianchi-type models in
various modified theories of gravitation [65–76]. Zadeh
et al [77] studied the cosmic evolution of THDE in
Bianchi type-I model filled by DE and dark matter
(DM) interacting with each other throughout a sign-
changeable interaction with various IR cut-offs.

Motivated by the above discussion, in this paper we
have investigated THDE in Bianchi-I Universe con-
sidering the IR cut-off as Hubble horizon with hybrid
expansion law (HEL). The paper follows the following
sequence: The field equations for Bianchi-I Universe
are given in §2. In §3, we investigate the cosmological
parameters, focussing on THDE EoS parameter, energy
density and energy density parameter. In §4, we have
plotted the statefinder evolution trajectory. In §5, the
k-essence scalar field potential has been reconstructed.
In §6, we conclude our results.

2. Metric and basic field equations

The metric for axially symmetric Bianchi-I space–time
is described as

ds2 = dt2 − A2dx2 − B2dy2 − B2dz2, (1)

with A and B, the metric coefficients, as functions of
time. Here the geometric and physical parameters are
taken as: average scale factor (a), the mean generalised
Hubble’s parameter (H ) and volume scale factor (V )
and are defined as: a = (AB2)1/3, H = (1/3)(Hx +
2Hy), V = a3 = AB2, respectively. Hx = Ȧ/A
and Hy = Ḃ/B are the parameters (Hubble) in the x
and y directions, respectively, and the dot signifies the
derivative with respect to cosmic time t . Other physi-
cal parameters, expansion scalar (θ ), average anisotropy
parameter (Am) and shear scalar (σ 2), are defined as

θ = ui;i =
(
Ȧ

A
+ 2

Ḃ

B

)
,

σ 2 = 1

2
σi jσ

i j = 1

2

[
Ȧ2

A2 + 2
Ḃ2

B2

]
− θ2

6
,

Am = 1

3

3∑
i=1

(�Hi

H

)2

,

where �Hi = Hi − H (i = x, y, z).
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The Einstein’s field equations in general relativity can
be determined as

Ri j − 1

2
gi j R = −(Ti j + T̄i j ), (2)

where Ri j and R represent the Ricci tensor and curvature
scalar, respectively. For physical interpretation, the mat-
ter energy momentum tensor and THDE can be given as
Ti j = ρmuiu j , T̄i j = (ρT + pT)uiu j +gi j pT, where ρT
and ρm illustrate the THDE density and energy density
of matter and pT is the THDE pressure. So, the field
equations for the discussed metric can be written as

2
B̈

B
+

(
Ḃ

B

)2

= −pT, (3)

Ä

A
+ B̈

B
+ Ȧ Ḃ

AB
= −pT, (4)

(
Ḃ

B

)2

+ 2
Ȧ Ḃ

AB
= ρm + ρT. (5)

Under the holographic principle, vacuum energy density
(�4), also described in the introduction, thus represents
the THDE density which reads [37,44] as

ρT = CL2δ−4, (6)

where C is an unknown parameter. The above expres-
sion gives the standard HDE, where C = 3c2M2

p and c2

is a dimensionless constant quantity. We mention here
that the standard HDE is obtained as the subcases δ = 1
and δ = 2 give the standard cosmological constant. In
the formulation of HDE model, one needs to identify
the largest L of the theory [78]. The model proposed in
[49] considers the Hubble horizon H−1 playing the role
of L in eq. (6).

Thus, the THDE density with the identification of IR
cut-off, as Hubble horizon proposed in [49], is defined
as

ρT = CH−2δ+4. (7)

The conservation law of energy T i j
; j = 0 gives ρ̇m+ρ̇T+

3H(ρm +ρT+ pT) = 0. The law of energy conservation
for matter and THDE are shown as ρ̇m +3Hρm = 0 and
ρ̇T + 3H(ρT + pT) = 0, respectively. The barotropic
equation of state (EoS) is pT = wTρT. Using eq. (7),
we find ωT as

ωT = −1 − (−2δ + 4)
Ḣ

3H2 . (8)

3. Solution and physical properties of the THDE
model

It is clear that the right-hand side of eqs (3) and (4) is
the same and so we have 2(B̈/B)+(Ḃ/B)2 = ( Ä/A)+
(B̈/B) + ( Ȧ Ḃ/AB), and using a = (AB2)1/3 into this,
we get (A/B) = F2 exp(F1

∫
a−3 dt). Therefore, the

metric coefficients are obtained as

A = F2
2 a exp

(
2F3

∫
a−3 dt

)
,

B = F−1
2 a exp(−F3

∫
a−3 dt),

where F1, F2 and F3 are constants such that 3F3 =
F1. As mentioned in the Introduction, the deceleration
parameter (DP) must show signature flipping in accel-
erating the Universe of the present time. Hence, the DP
is not constant but is time varying. We consider the cos-
mological scale factor as a hybrid expansion law (HEL)
[79]:

a(t) = a0

(
t

t0

)k
eb((t/t0)−1), (9)

where b and k are constants. Here t0 and a0 indicate the
age of the Universe and scale factor at present, respec-
tively. k = 0 leads to the exponential-law cosmology
and b = 0 leads to the power-law cosmology. These
cosmologies are special cases of the HEL cosmology.
Any other values of k and b will have new direc-
tions to explore cosmology in the context of the HEL
[68,80–83]. Applying appropriate transformation in eq.
(9), it has the form

a = (tkebt ), (10)

where (t/t0) → t , k ≥ 0 and b ≥ 0 are constants.
This is known as HEL which gives time-dependent DP.
Therefore, the metric functions by putting the value of
a(t) in A and B are

A = F2
2 t

ket
(
b−2F3t−3k E3k(3bt)

)
,

B = tket
(
F3t−3k E3k(3bt)+b

)

F2
.

The DP is determined by the relation q = −aä/ȧ2

and is obtained as

q = k

(bt + k)2 − 1. (11)

From eq. (11), we see that q is time-dependent.
Whether the model inflates or not, it will depend on
the sign of q. The negative sign of q indicates accel-
eration whereas the positive sign of q corresponds
to ‘standard’ decelerating model. It is exceptional to
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Figure 1. (a) The behaviour of DP (q) with respect to time t for b = 0.4 and k = 2.15041, b = 0.5 and k = 2.14456, b = 0.6
and k = 2.13871, b = 0.7 and k = 2.13287. (b) The behaviour of DP (q) with redshift for b = 0.4 and k = 2.15041, b = 0.5
and k = 2.14456, b = 0.6 and k = 2.13871, b = 0.7 and k = 2.13287.

make the reference here that, however, the recent
observations of cosmic microwave background (CMBR)
and supernovae Ia (SNe Ia) are supportive to accel-
erating models (q < 0) [14,15]. From eq. (11), we
notice that q > 0 for k(1 − k) > 2kbt + b2t2 and
q = −1 for k = 0. It is observed that for b = 0,
q = (1/k) − 1. In this case, q > 0 or q < 0 accord-
ing to k < 1 or k > 1, respectively. Figures 1a and
1b depict the variation of DP vs. cosmic time (t) and
redshift (z), respectively. Moreover, it is obvious from
these figures that our THDE model is in an accelerat-
ing stage. The redshift parameter (z) for our model is
defined as z = −1 + (a0/a) = −1 + (a0/tkebt ), where
a0 is the present value of the scale factor at z = 0.

For this particular form of scale factor, the Hubble
parameter H , shear scalar σ 2 and the average anisotropy
parameter Am are given as

H = b + k

t
,

σ 2 = 3

2
F3e−6bt t−6k−1(F3t − 2e3bt t3k(bt + k)),

Am = 2

3

(
F3e−6bt t1−6k(3F3t − e3bt t3k(bt + k))

(bt + k)2 +1

)
.

(12)

The scalar expansion and volume are given as θ =
3(b + (k/t)) and V = t3ke3bt , respectively. We
observe that at t = 0, the spatial volume is zero
and the other parameters H , θ and σ diverge at
this stage and H , θ and σ approach zero while vol-
ume becomes infinite when t ∼ ∞. Hence, the
Universe starts with zero volume by infinite rate of
expansion. The anisotropy parameter Am is constant

at t ∼ ∞ and the evolution of the Universe is
anisotropic.

The EoS parameter for THDE is obtained as

ωT = −1 − 2(δ − 2)k

3(bt + k)2 . (13)

From eq. (13), we find that the EoS parameter (ωT)
of THDE is a function of time and approaches −1
as t ∼ ∞. Figure 2 shows the behaviour of THDE
EoS parameter ωT with redshift z. We observe from
this figure that ωT of the derived THDE demonstrates
the changes in the k-essence locale (ωT < −1/3) all
through its advancement for each of the four values of
δ, e.g. δ = 0.05, 0.15, 0.25 and 0.35. In such a case,
the EoS parameter (THDE) acts as k-essence. Besides,
we can see that for each of the four values of δ, the
EoS parameter approaches �CDM model (ωT = −1)

in future. This proposes for smaller estimations of red-
shift (z) and the Universe has a bigger acceleration
impact.

The THDE energy density and energy density of mat-
ter are given by

ρT = C(bt + k)4(b + (k/t))−2δ

t4 , (14)

ρm(t) = C1e−3bt t−3k, (15)

where C1 is a constant of integration. From eqs (14)
and (15), it is clear that the energy density of THDE
and matter decrease with time. The energy density
of matter (ρm) and THDE density (ρT) vs. time are
plotted in figures 3a and 3b. Both the graphs show a
decrease in ρT and ρm with time. It, in turn, shows
that the decrease of the energy density of THDE
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Figure 2. Analysis of EoS parameter ωT when k = 2.15041, b = 0.4 for different values of δ.
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Figure 3. (a) Variation of matter energy density with time t , for C1 = 0.15 and for b = 0.4 and k = 2.15041, b = 0.5
and k = 2.14456, b = 0.6 and k = 2.13871, b = 0.7 and k = 2.13287. (b) Graph of energy density of DE vs. time t , for
k = 2.15041, C = 7 and b = 0.4 and for different values of δ.

with time t leads to the volumetric expansion of the
Universe.

Now the THDE density parameter (
T) and the matter
density parameter (
m) are defined as


T = ρT

3H2 , 
m = ρm

3H2 . (16)

From eqs (14) and (15) we obtain


T+
m=C1e−3bt t4−3k+C(bt+k)4(b+(k/t))−2δ

3t2(bt + k)2 .

(17)

Equation (17) shows that at late times the sum of the
energy density parameters tends towards one. It shows
that at late times the Universe tends to be flat, which
in turn predicts that the anisotropy of the Universe will
end and the Universe will proceed towards the isotropic
state. This outcome also affirms that the early Universe

was anisotropic and it tends to isotropy as DE starts to
dominate the energy density of the Universe. Figure 4
depicts the graph.

4. Statefinder diagnostic

As we know, DE [84] has properties that can be
very model-dependent. In order to be able to dif-
ferentiate between the very distinct and competing
cosmological scenarios involving DE, a sensitive and
robust diagnostic (of DE) is a must. Although the rate
of acceleration/deceleration of the Universe can be
described by a single parameter q = −ä/aH2, a more
sensitive discriminator of the expansion rate and hence
DE can be constructed by considering the general form
for the expansion factor of the Universe:
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Figure 4. Evolution of energy density parameters with time t for C = 7, C1 = 0.15, k = 2.15041, δ = 0.05 and b = 0.4.

a(t) = a(t0) + ȧ(t0)(t − t0) + ä(t0)

2
(t − t0)

2

+
...
a (t0)

6
(t − t0)

3 + · · · . (18)

In general, DE models such as quiessence, quintessence,
k-essence, brane-world models, Chaplygin gas, etc. give
rise to families of curves a(t) having vastly different
properties. As we know that the acceleration of the Uni-
verse is a fairly recent phenomenon [14,15], we can, in
principle, confine our attention to small values of |t− t0|
in eq. (18). It has been shown by Sahni et al [85] that
a new diagnostic of DE called statefinder can be con-
structed using both the second and third derivatives of
the expansion factor. The second derivative is encoded
in the DP.

The acceleration of the Universe is being shown by
numerous DE models, and with the end goal of hav-
ing the capacity to separate the DE models, a powerful
indicator for DE models is the need of the hour. A
useful diagnostic, for this purpose, that impacts the
usage of parameter pair (r, s), called ‘statefinder’, was
proposed by Alam et al [86]. Recently, Sharma and
Pradhan [87] and Varshney et al [88] have diagnosed
the geometric behaviour of non-interacting and inter-
acting THDE in terms of statefinder parameters and
ω − ω′ pair in detail. As the models, in addition to
DE, represent different evaluation trajectories in the r–s
plane, the statefinder parameters can act as a panacea for
DE models. For �CDM, the statefinder parameters are
r = 1, s = 0. The statefinder indicative pair r, s is taken
as (for the geometric idea of the models):

r =
...
a

aH3 = k(−3bt − 3k + 2)

(bt + k)3 + 1, (19)

s = r − 1

3(q − (1/2))
= 2

3(bt + k)

− 2bt

3b2t2 + 6bkt + k(3k − 2)
. (20)

We can find the difference in different DE models by
statefinder analysis. The distinctive DE cosmological
models tell about various subjective directions of their
advancement. From eqs (19) and (20), we see different
qualitative trajectories of evaluation, which ultimately
give s = 0 and r = 1 as t → ∞. The behaviour of
statefinder pair (s − r) is shown in figure 5. From this
figure, it has been inferred that the THDE model will
occur simultaneously with the �CDM flat model.

5. Correspondence of THDE with k-essence

The late-time acceleration of the Universe can be
explained by k-essence scalar field with negative pres-
sure which has attractor-type dynamics. The fundamen-
tal motivation to have k-essence as one of the candidate
of DE is that it does not require initial conditions fine
tuning of the scalar field [89]. The classification of such
models is done by kinetic energy terms (non-standard)
and defined by the generalised action as the scalar field
φ function and kinetic term P = φ̇2/2 and is given as
[90]

S =
∫

d4x
√−gp(φ, P), (21)

where p(φ, P) represents the pressure density con-
fined normally to the Lagrangian density of the form
p(φ, P) = f (φ)g(P) and it can be transferred to the
action of string theory based on the analysis of low
energy (see [90] for details):



Pramana – J. Phys. (2019) 93:78 Page 7 of 10 78

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

s

r

Figure 5. The statefinder evolution trajectory in the s–r plane.
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Figure 6. (a) Variation of kinetic term (P) vs. time t , when b = 0.4 and k = 2.15041 for different values of δ. (b) The
behaviour of scalar potential vs. time t , when k = 2.15041, C = 7, b = 0.4 for different values of δ.

pk = f (φ)(−P + P2). (22)

The energy density can be expressed for this Lagrangian
as (see [90])

ρk = f (φ)(−P + 3P2). (23)

EoS parameter for k-essence using eqs (22) and (23) is
given as

ωk = −P + P2

−P + 3P2 . (24)

Equating this parameter with the THDE EoS parameter
(13), ωk = ωT, we find the solution for P as

P = 3b2t2 + 2k(3bt + δ − 2) + 3k2 + 3(bt + k)2

3(bt + k)2 + 9b2t2 + 6k(3bt + δ − 2) + 9k2 ,

(25)

where P is the function of time and the condition P <

2/3 provides the accelerated expansion phase.
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Using eq. (25), the scalar field is found to be

φ=√
2

∫ √
3b2t2+2k(3bt+δ−2)+3k2+3(bt + k)2

3(bt + k)2+9b2t2+6k(3bt+δ−2)+9k2 dt .

(26)

Now, by the correspondence between k-essence and
THDE from eqs (26) and (7) (ρT = ρk) and putting
the value of P from eq. (25) and H by (12), we have

f (φ) =
(
C · (b + (k/t))(−2δ+4)

P(−1 + 3P)

)
. (27)

The behaviour of kinetic term P and the potential, which
is given by eqs (25) and (27), are shown in figures 6a
and 6b. It is clear from these figures that both are
decreasing functions of time. The important point of this
reconstruction for THDE model is that EoS (ωT) is
decreasing and approaches ωT = −1 at the present
epoch.

The statefinder analysis and the correspondence bet-
ween the HDE models with the quintessence DE models
are established in the Bianchi types I and III Universe
filled with matter and HDE [71,82,91]. Quintessence
potential and the dynamics of the quintessence scalar
field are reconstructed, which describe the acceler-
ated expansion of the Universe. Recently, Srivastava
et al [33] investigated statefinder diagnostic and the
correspondence between the NHDE models with the
k-essence DE models in Bianchi type-III Universe. In
this work, we have shown the geometric behaviour of
the THDE through statefinder and the correspondence
is obtained between the THDE model with k-essence
to describe the late-time accelerated expansion of the
Universe.

6. Conclusion

We have investigated the THDE in the axially symmetric
Bianchi-I Universe within the framework of general rel-
ativity filled with matter and THDE using HEL. We have
acquired different parameters of cosmology to compre-
hend the accelerated evolution of the Universe in our
described model. Spatially homogeneous cosmological
models play important roles to understand the structure
and properties of the space of all cosmological solutions
of Einstein field equations. We observe that the DP of our
model under certain conditions represents the accelerat-
ing phases of the Universe which is in good agreement
with the current observations.

Also, in the proposed THDE model, the EoS param-
eter deviates in k-essence scenario and remains inside,
ωT = −1, the phantom divide line for all four values
of Tsallis parameter δ. The model shows affirmity to
�CDM model for all four values of δ. So, this model

shows the accelerated expansion of the Universe. From
figure 4, we see that the overall density parameter (
)
tends to 1 as time t → ∞. Hence, for sufficiently large
time, our THDE model predicts that the anisotropic
nature of the model vanishes and it will become isotropic
in future. This implies that our THDE model becomes
isotropic at late times even though the space–time is
anisotropic.

Both energy densities, matter and THDE, decrease
with time. The underlying physical consequence is that
the decrease of HDE and matter energy density with
increase of cosmic time leads to the expanding Universe.
It is also clear from the statefinder diagnosis that our
proposed model of THDE would occur simultaneously
with the �CDM flat model in the future [33].

The correspondence is obtained between the derived
THDE model with k-essence [89,92,93]. It has been seen
by this correspondence that our THDE model can be an
answer to the question of how to describe the late-time
acceleration for the expansion of the Universe. The cor-
respondence with quintessence, phantom, tachyon and
dilation field can open plenty of chances in the field of
research later on to reformulate the potential and the
scalar field.

In summary, the present scenario of THDE displays a
richer behaviour than the standard HDE, quantified by
the presence of the new parameter δ. We found, when
the apparent horizon is considered as IR cut-off, that the
THDE model can explain the current acceleration of the
Universe expansion.
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