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Abstract. This work studies a forced generalised Liénard oscillator with φ8 potential with order 8 dissipation. The
fixed points and their stability have been analysed for autonomous and non-dissipative Liénard oscillator. The system
can exhibit three, five or seven fixed points and the corresponding stability diagram is checked and analysed. The
effect of restoring parameters on the potential is also studied. Periodic, multiperiodic and chaotic monostable and
bistable attractors and their coexistence have been checked through the bifurcation diagram, Lyapunov exponent,
phase space and Poincaré section using the fourth-order Runge–Kutta algorithm. The results obtained by the
analytical methods are validated and complemented by the numerical simulations.
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1. Introduction

From ancient times till today, many life-like phenomena
are based on nonlinearities. The knowledge and mas-
tery of these phenomena require a good understanding
of the related laws of nonlinear sciences. It is in this
sense that many researchers are doing research in fields
such as mathematics, physics, chemistry, finance, epi-
demiology, aeronautics, engineering, etc. where these
nonlinear sciences are applied. The equations of non-
linear oscillators are based on the equations which are
often used to globalise these nonlinear phenomena. To
understand the behaviour of oscillators, we often focus
on theoretical, numerical and experimental investiga-
tions. Theoretical investigations reveal their rich and
complex behaviours, and the experimental investiga-
tions (self-excited oscillators) describe the evolution of
many biological, chemical, electrical, mechanical, opti-
cal, aeronautical and other engineering systems [1–6].
Among the nonlinear oscillators, we can cite the Liénard
oscillator with its various variants that model several
phenomena in electronics, electricity and mechanics

[7–14]. For these different oscillators, the researchers
have studied the existence and the number of limit cycles
using different techniques [7–12]. In the meantime, we
have studied Melnikov’s chaos for Rayleigh–Liénard’s
two-well oscillators subjected to parametric excitation
and then to an amplitude modulation force [13,14]. In
these studies, we note the importance of limit cycles,
chaos in engineering and other fields of science. On the
other hand, Chudzik et al [15], Kuiate et al [16] and
Kingni et al [17] have studied multistability and coex-
istence of periodic, multiperiodic and chaotic attractors
for nonlinear oscillators using numerical methods. They
have proved the importance of the presence of these
attractors and their coexistence in biological, physical
and non-physical systems. It is pointed out that the chaos
analysis of the four-well oscillator has not yet been done
in the literature. In this work we consider the generalised
oscillator of Liénard oscillator whose equation is as
follows:

ẍ − (a0 + a1x
2 + a2x

4 + a3x
6 + a4x

8)ẋ

+(x − x3)(b2x
4 + b1x

2 + b0) = f cos �t. (1)
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ai , i = 0–4, are coefficients of the damping terms while
b j , j = 0–2, are the coefficients of the stiffness terms.
f and �, respectively, denote the amplitude and the
frequency of the external periodic excitation. This oscil-
lator has been the subject of research and the Hopf
bifurcation is studied by Wu et al [18]. In their study,
they considered the case where the generalised oscillator
of Liénard is Z2-equivariant. In addition, the generalised
forced Liénard equations appear in a number of physical
models and an important question is whether these equa-
tions can support periodic solutions. This problem has
been studied extensively by a number of researchers. In
fact, they investigated the existence of periodic solu-
tions for a class of second-order generalised forced
Liénard equations using Schauder’s fixed point theorem
and Green’s function (see e.g. [19–24]). The objective
of this work is to look for all the fixed points of the
undamping and autonomous system and to study their
nature and stability. This work is also concerned with
the conditions for which the φ8 potential of the Liénard
oscillator is a four well considering the importance of
sinks in the variation of energy for physical and biolog-
ical oscillators. The variation of the depth of each well
under the influence of the parameters b j is also analysed.
Finally, multistability, chaos and hysteresis are numeri-
cally studied and the nature of damping terms is derived.

Our work is motivated by the physical significance of
the generalised Liénard oscillator. Indeed, in addition
to its many applications in electronics and mechanics,
Liénard systems are frequently used to model many
biological regulatory and physiological systems (single-
organ systems, such as the cardiac, respiratory or neural
systems, and multiorgan systems, such as the vegetative
system, by coupling of Liénard systems) [25–28]. In
these systems, the interest of knowing the potential and
Hamiltonian contributions in understanding their mech-
anisms is crucial. For example, in metabolic models, the
potential and Hamiltonian parts have precise biological
meanings. In practice, nonlinear systems, in general, and
particularly the dynamic, electronic, mechanical, bio-
logical, physiological and chemical systems modelled
by Liénard equations have interesting properties in the
neighbourhood of their equilibrium points. Thus, locat-
ing the fixed points of a dynamic system and controlling
their stability can predict the dynamics of the system.
For example, knowledge of the nature of a point of equi-
librium of a system may lead to the determination not
only of a certain symmetry of the problem studied but
also of the types of bifurcations that the system may
present. Specifically, in practice, when the dynamics
systems are in the vicinity of one of its stable fixed points
or one of its stable limit cycles, it is not too sensitive to
the initial conditions. This makes it possible to choose
parameters to avoid chaos. On the other hand, the control

of the depth of the wells of the potential of a nonlinear
dynamic system allows to have an idea of the energy
that the system will put in play to enter or leave the
well according to the application that one wants to do it.
Finally, the systems that undergo hysteresis phenomena
are memory systems and are very much in demand in
technologies. So looking for stability and multistability,
chaotic behaviour, hysteresis and evolution of the depth
of the four wells of a generalised Liénard oscillator at
potential φ8 is important. This work on the generalised
Liénard oscillator with potential φ8 (this case is studied
very little so far because of the great difficulty related to
the high nonlinearity of the equation) opens doors to the
research on four-well potential systems with significant
engineering applications.

The paper is structured as follows: §2 provides the
study of the equilibrium points and the stability of the
unperturbed generalised Liénard oscillator. This section
also deals with the analysis of the effect of parame-
ters b j on the number and depth of the wells of the
φ8 potential. In §3, the bifurcation sequences, route
to chaos and multistability using numerical simula-
tions are analysed. We provided a conclusion in the last
section.

2. Fixed points of the unperturbed system

In this section, we consider the unperturbed system

ẋ = y,

ẏ = −(x − x3)(b2x
4 + b1x

2 + b0). (2)

The undamped autonomous system Hamiltonian is

H(x, y) =1

2
y2 + 1

2
b0x

2 + 1

4
(b1 − b0)x

4

+ 1

6
(b2 − b1)x

6 − 1

8
b2x

8. (3)

The associated potential is

V(x) = 1

2
b0x

2 + 1

4
(b1 − b0)x

4

+1

6
(b2 − b1)x

6 − 1

8
b2x

8. (4)

The research and analysis of fixed points of the unper-
turbed system (2) shows that the system can exhibit
three, five or seven fixed points which can be saddle
nodes or centres according to the values of the parame-
ters b0, b1, and b2. The following lemma (whose proof
is given in Appendix A) summarises this result.
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Lemma. We consider the undamped autonomous Lié-
nard oscillator described by system (2).

1. We assume that b0 < 0:

(a) For b2
1 < 4b0b2, system (2) possesses three fixed

points P0, P1 and P2. P0 is a saddle node if
b0 < 0 and a centre if b0 > 0; P1 and P2
are symmetrical with respect to P0 and are sad-
dle nodes if b0 + b1 + b2 < 0 and centre if
b0 + b1 + b2 > 0.

(b) When b2
1 = 4b0b2,

i. there exists three fixed points P0, P1 and P2
which can be saddle nodes or centres if b1
and b2 have the same sign;

ii. if b1 and b2 have opposite sign, the system
has five fixed points P0, P1, P2,C1 and C2.

(c) For b2
1 > 4b0b2, the system possesses:

i. seven fixed points P0, P1, P2, P3, P4, P5 and
P6 if b0 < 0, b1 > 0 and b2 < 0. P0 is a
saddle node; P1 and P2 are saddle nodes if
b0+b1+b2 > 0andcentre ifb0+b1+b2 < 0.
P3 and P4 are saddle nodes if α > 0 and
centres when α < 0. In the same vein, P5
and P6 are saddle nodes if β > 0 and centres
when β < 0;

ii. three or five fixed points P0, P1, P2,

P3, P4, P5 and P6 which can be coll points
or centres if b1 < 0, and b0 and b2 do not
have a same sign.

2. Consider now b0 > 0. The results are symmetrical
with the case of b0 < 0 with respect to O.

The different fixed points are given by

P0(0, 0), P1(−1, 0), P2(1, 0),

P3

⎛
⎝−

√
−b1 + √

�

2b2
, 0

⎞
⎠, P4

⎛
⎝

√
−b1 + √

�

2b2
, 0

⎞
⎠,

P5

⎛
⎝−

√
−b1 − √

�

2b2
, 0

⎞
⎠, P6

⎛
⎝

√
−b1 − √

�

2b2
, 0

⎞
⎠,

C1

(
−

√
−b1

2b2
, 0

)
, C2

(√
−b1

2b2
, 0

)

with � = b2
1 − 4b0b2. α and β are given by

α = −b0 − 3(b1 − b2)

(
−b1 + √

�

2b2

)

− 5(b2 − b1)

(
−b1 + √

�

2b2

)2

Figure 1. Existence and stability domains of fixed points of
the unperturbed Liénard system withb0 = −0.6.

+ 7b2

(
−b1 + √

�

2b2

)3

,

β = −b0 − 3(b1 − b2)

(
−b1 − √

�

2b2

)

− 5(b2 − b1)

(
−b1 − √

�

2b2

)2

+ 7b2

(
−b1 − √

�

2b2

)3

.

Figures 1 and 2 resume Lemma and show the stabil-
ity diagram, respectively, for b0 = −0.6 and 0.6. For
example, figure 1 shows 15 domains in which the num-
ber of fixed points and the stability are not the same.
Exactly, in domain A, there exists three fixed points
P0, P1 and P2 where P0 is a stitch point and the other two
are centres. Domains B1 and B2 have three fixed points
P0, P1 and P2; B3 is the place where seven fixed points
coexist: P0, P3, P4 are saddle nodes and P1, P2, P5, P6
are centres. B4 is the place where seven fixed points,
P0, P1, P2, P3, P4, P5, P6 coexist. P0, P3, P4, P5, P6
are saddle nodes and P1, P2 are centres. Domains C1
and C2 represent the place where only fixed points
P0 (coll point) and P1, P2 (centres) coexist. In domain
C3, seven fixed points exist: P0, P1, P2, P3, P4 are sad-
dle nodes and P5, P6 are centres. In domains D1 and
D2, � < 0 and the undamped autonomous system
has three fixed points P0, P1, P2 which are all saddle
nodes. Then there exist, in domain E , seven fixed points
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Figure 2. Existence and stability domains of fixed points of
unperturbed Liénard system with b0 = 0.6.

Figure 3. Four-well potential of unperturbed Liénard system
with b0 = −0.6, b1 = 0.5 and b2 = −0.1.

P0, P1, P2, P3, P4, P5, P6, where P0 is a coll and the
other six are centres. Domain F1 is the place where the
undamped autonomous system has equilibrium points
P0, P1, P2, P3, P4, P5, P6, where P0, P1, P2 are sells
and P3, P4, P5, P6 are centres because � > 0, b0 +
b1 + b2 > 0, α < 0, β < 0 (see figure 1). In domain
F2, � > 0, b1 > 0, b2 > 0 and b0 + b1 + b2 > 0
so that eq. (2) admits three fixed points: P0 (saddle
node) and P1, P2 (centres). G is the place of existence of

Figure 4. Effect of different parameters on the four-well
potential with parameters of figure 3: (a) effect of b0, (b)
effect of b1 and (c) effect of b2.

the seven fixed points P0, P1, P2, P3, P4, P5, P6 which
are stitch because � > 0, b0 + b1 + b2 > 0, α >

0, β > 0 (see figure 1). At last, in domain H , eq. (2)
possesses seven fixed points P0, P1, P2, P3, P4, P5, P6,
where P0, P3, P4, P5, P6 are stitch and P1, P2 are cen-
tres because � > 0, b0 + b1 + b2 < 0, α > 0, β > 0
(see figure 1). The same analysis can be made for figure 2
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while each domain is symmetrical with its correspond-
ing domain of figure 1 with respect to O .

Now, we shall consider the case where the system
has seven fixed points. Hence, as long as b0 < 0, b1 >

0, b2 < 0 and b2
1 > 4b0b2, the undamped autonomous

system has a four-well potential. For example, when
b0 = −0.6, b1 = 0.5 and b2 = −0.1, we are in
the domain H , and one observes clearly in figure 3
that the undamped autonomous system has seven fixed
points P0, P1, P2, P3, P4, P5, P6 and a four-well poten-
tial. Figures 4a–4c show, respectively, the effects of
b0, b1 and b2 on the four wells of the potential. Indeed,
through these figures, we note that the depth of each of
the extreme wells increases with each of the parameters
b0, b1 and b2, and that of the intermediate wells decrease
when b0 or b1 increases. The increase of b2 has almost
no action on intermediate wells. It is also noted that the
system has three or five fixed points P0, P1, P2, P3, P4,

P5 and P6 which can be coll points or centres if b1 < 0,
and b0 and b2 do not have the same sign. In this case,
the potential is not four wells.

3. Bifurcation and route to chaos

In this section, we are interested in finding the param-
eters which lead to chaos, and those which can make
chaos disappear. The tools used for this purpose are
the bifurcation diagram, the Lyapunov exponent, the
phase portrait and the Poincaré section. We set b0 =
−0.6, b1 = 0.5, b2 = −0.1, � = 1 and the initial con-
ditions are x0 = 0.5 and y0 = 0.5. We plot the bifurca-
tion diagram and its corresponding Lyapunov exponent
by taking as the bifurcation parameter the amplitude f of
the periodic excitation force and also the order 4, 6 and 8
damping parameters. Figure 5 shows the bifurcation dia-
gram of the undamped Liénard oscillator. It is observed

Figure 5. Bifurcation diagram of the generalised Liénard
system without damping force when b0 = −0.6, b1 = 0.5
b2 = −0.1, δ = 0.003 and � = 1.

from this figure that the undamped system is chaotic
over a large range of amplitude of the external force and
that the domain of regular behaviour is small compared
to that of the chaotic one. The phase portrait (figure 6)
obtained for f = 0.3 confirms the chaotic behaviour of
the system. Figure 7 represents the bifurcation diagram
and the corresponding Lyapunov exponent for a0 =
0.002, a1 = 0.01, a2 = 0, a3 = 0.01, a4 = 0 and δ =
0.003 when f ∈ [0, 10]. We note that for these values
of damping parameters, the oscillator exhibits periodi-
cal behaviours with the periods 1T, 2T, 3T, . . . and also

Figure 6. Chaotic phase space (a) and its corresponding
Poincaré section (b) of the generalised Liénard system with
parameters of figure 5 and f = 0.3.
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chaotic behaviours. Comparing figures 5 and 7, it can
be seen that the presence of damping force considerably
reduces the area of chaotic behaviour. Figures 8 and 9
show, respectively, the phase portraits and their corre-
sponding Poincaré sections and have been obtained by
choosing the parameters of figure 7 with values of f in
the appropriate domains. Through these figures, we note
that the periodic, multiperiodic and chaotic behaviours

Figure 7. Bifurcation diagram (a) and its corresponding
Lyapunov exponent (b) of the generalised Liénard sys-
tem with a0 = 0.001, a1 = 0.01, a2 = 0, a3 = 0.01,
a4 = 0, b0 = −0.6, b1 = 0.5, b2 = −0.1 and � = 1.

predicted by the bifurcation diagram are confirmed. In
addition, there is the coexistence of several attractors
(see figure 8c). The influence of order 4, 6 and 8 damp-
ing on the chaotic behaviour is analysed and the study of
multistabilityof the damped oscillator is performed. The
obtained results are plotted in figures 10–14. Figures 10
and 13 have been obtained with various values of a2 in
[0, 0.04] (figure 10), a3 in [0, 0.01] (figure 13a) and a4
in [0, 0.006] (figure 13b). The blue colour corresponds
to an increase of the bifurcation parameter and the
red one to a decrease of the same bifurcation param-
eter. These figures show oscillations for the oscillator
with periods 1T, 2T, 3T, .., nT and chaotic oscillations.
We also observe the presence of a variety of periodic,
multiperiodic and chaotic attractors confirmed by the
phase portraits and their corresponding Poincaré sec-
tions (see figures 11, 12 and 14). As can be seen in
figures 10 and 13, the bifurcation parameters (a2, a3, a4)
evolve in the increasing or decreasing direction, the
dynamics of the generalised Liénard oscillator are
the same for the same parameter. Irrespective of the
damping parameter, the system is either monostable or
bistable. For example, in figure 10, when a2 increases
(blue diagram) or decreases (red diagram) in the
domain [0, 0.0099041], the dynamic remains the same,
corresponding to a value of x . On the remains of
the domain, we have different values of x with the
same dynamic (figure 10). We then conclude that

Figure 8. Various phase spaces and the corresponding Poincaré sections of the generalised Liénard system with parameters
of figure 7: (a) f = 0.3, (b) f = 1.2, (c) f = 5.3 and (d) f = 6.5.
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Figure 9. Various Poincaré sections of the generalised
Liénard system with parameters of figure 8: (a) f = 0.3,
(b) f = 5.3 and (c) f = 6.5.

Figure 10. Bifurcation diagram vs. a2 (a) and its corres-
ponding Lyapunov exponent (b) of the generalised Liénard
system with a0 = 0.001, a1 = 0.001, a3 = 0.001, a4 = 0.0022,
b0 = −0.6, b1 = 0.5, b2 = −0.1, f = 4.5 and � = 1. Bifur-
cation diagrams and their corresponding Lyapunov exponents
are obtained by scanning the parameter a2 upwards (blue) and
downwards (red).

Figure 11. Chaotic attractor in the phase space of the gen-
eralised Liénard system with parameters of figure 10 and
a2 = 0.002. (a) Initial conditions (0.5, 0.5) and (b) initial
conditions (−0.5,−0.5).
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Figure 12. Period-3T attractor in the phase space of the gen-
eralised Liénard system with parameters of figure 10 and
a2 = 0.01. (a) Initial conditions (0.5, 0.5) and (b) initial
conditions (−0.5,−0.5).

the Liénard generalised oscillator is monostable if
a2 ∈ [0, 0.0099041] and bistable if a2 ≥ 0.0099041.
The possible dynamics of the system obtained for a2
have been confirmed by the Lyapunov exponent (see fig-
ures 10a and 10b). The monostability and bistability are
confirmed by the phase spaces (figures 11 and 12). We
can then conclude that these monostable and bistable
attractors obtained by taking two different directions
from variations of the damping parameters can give rise
to the phenomenon of hysteresis. This phenomenon is
often obtained in the physical and non-physical systems
in general and in particular in the electronic systems
modelled by the Liénard equation.

4. Conclusion

In this work, we have studied the forced generalised
Liénard oscillator with a four-well potential and an
eight-degree damping. We searched for the number of
fixed points and the stability of the autonomous oscil-
lator without damping with an order eight potential.
From the conditions of existence and stability obtained,
it appears that the oscillator considered in this case
can have three, five or seven fixed points which can
be stitch points or centres. These different important
results are summarised in a lemma and the proof is
given in Appendix A and these are supported by sta-
bility diagrams (figures 1 and 2). An analysis of the
effect of various parameters on the number of wells
and their depth has shown that the depth of each of
the extreme wells increases with each of the parame-
ters b0, b1 and b2 and that of the intermediate wells

Figure 13. Bifurcation diagram vs. a3 (a) and bifurcation
diagram vs. a4 (b) of the generalised Liénard system with
a0 = 0.001, a1 = 0.001, a2 = 0.001, b0 = −0.6, b1 = 0.5,
b2 = −0.1, f = 4.5 and � = 1. Bifurcation diagrams
and their corresponding Lyapunov exponents are obtained by
scanning each parameter a3 (a) and a4, (b) upwards (blue)
and downwards (red).

decreases when b0 or b1 increases; the increase of b2
has almost no action on the intermediate wells. It is
also noted that when one of the parameters b0, b1, b2
varies with b1 < 0 and b0, b2 do not have the same sign,
the system has three or five fixed points. Subsequently,
a numerical study is performed using a fourth-order
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Figure 14. Various phase spaces and the corresponding Poincaré section of the generalised Liénard system with parameters
of figure 13b. (a) and (b) a4 = 0.0003, (c) and (d) a4 = 0.0007, (e) and (f) a4 = 0.0031.

Runge–Kutta algorithm and bifurcation diagrams, Lya-
punov’s exponent, phase portrait and Poincaré sections
are plotted. From the analysis of the results obtained,
we showed that the forced damped Liénard oscillator
considered in this work presents periodic, multiperiodic
and chaotic behaviours for appropriate values of dif-
ferent parameters. Periodic, multiperiodic and chaotic
attractors obtained are monostable and bistable prov-
ing the presence of the phenomenon of hysteresis. From
this study, it appears that the generalised Liénard oscil-
lator with φ8 potential is very rich in dynamics and
presents important phenomena such as monostability,
bistability and hysteresis. Finally, we can conclude that
the different important results such as, the fixed points

and their stability, the four-well potential and their
depth, obtained in this work can help the researchers
to investigate the horseshoes chaos for high nonlinear
oscillators with φ8 potential which is not found right
now.
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Appendix A: Proof of the lemma

We consider the undamped autonomous system (2). The
fixed points are given by x − x3 = 0 and b2x4 +b1x2 +
b0 = 0:

x − x3 = 0 ⇔ x = 0 and x = ±1.

Thus, we have P0(0, 0), P1(−1, 0) and P2(−1, 0). We
note that P0, P1 and P2 exist always. Now, we resolve
b2X2 + b1X + b0 = 0 with x2 = X . The discriminant
is � = b2

1 − 4b0b2.

• If b2
1 − 4b0b2 > 0, X± = −(b1 ± √

�)/2b2.

Sign of X±:

X± > 0 ⇔ [−(b1 ± √
�)/2b2] > 0.

If b2 > 0, then

−b1 ± √
� > 0 ⇔

{√
� > b1,√
� < −b1.

This implies
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 < 0,

b1 < 0,

b2 > 0,

b2
1 > 4b0b2

or⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 < 0,

b1 > 0,

b2 > 0,

b2
1 > 4b0b2

or⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 > 0,

b1 < 0,

b2 < 0,

b2
1 > 4b0b2.

Thus, in these conditions x2± exist.

If b2 < 0, then

−b1 ± √
� < 0 ⇒ ±√

� < b1

⇒ √
� < b1 or

√
� > −b1.

If b1 > 0 and then x± exist when
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 < 0,

b1 > 0,

b2 < 0,

b2
1 − 4b0b2 > 0

or
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 > 0,

b1 < 0,

b2 > 0,

b2
1 − 4b0b2 > 0.

Then, the unperturbed system admits a trivial double
solution (0; 0) and six symmetrical fixed points two
by two:

P1(−1, 0) and P2(1, 0),

P3

⎛
⎝−

√
−b1 + √

�

2b2
, 0

⎞
⎠and P4

⎛
⎝
√

−b1 + √
�

2b2
, 0

⎞
⎠,

P5

⎛
⎝−

√
−b1 − √

�

2b2
, 0

⎞
⎠and P6

⎛
⎝
√

−b1 − √
�

2b2
, 0

⎞
⎠.

Consider now the case where x± are not simultane-
ously positive:

X± = −b1 ± √
�

2b2
, X+X− = b0

b2
.

There are the three cases:

• b0 < 0, b2 < 0. This case is discussed above.
• If b0 > 0, b2 > 0. This case is also discussed

above.
• If b0 < 0, b2 > 0 and b2 < 0, b0 > 0, X+·X− <

0. Then X+ and X− have opposite signs and the
system admits five fixed points.

* b0 < 0 and b2 > 0:

� = b2
1 − 4b0b2 > 0,

X+ = −(b1 + √
�)/2b2 and X− = −(b1 − √

�)/

2b2.

In this case, X± > 0 have the numerator sign and we
have
{√

� > b1√
� < −b1

or

{√
� < b1,√
� < −b1.

* b0 > 0 and b2 < 0: X+ and X− have opposite signs
of −b1 + √

� and −b1 − √
�, respectively.

In the same vein,
{
b1 − √

� < 0
b1 + √

� > 0
or

{
−b1 + √

� < 0,

−b1 − √
� > 0

{
b1 <

√
�√

� > −b1
or

{√
� < b1,√
� < −b1.
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Then⎧⎪⎨
⎪⎩

b1 > 0,

b2 < 0,

b2
1 > 4b0b2.

In these conditions, X+ < 0 and X− > 0:

X− > 0 ⇔ X1− = −b1 − √
�

2b2

and

X2− = −b1 − √
�

2b2
,

x1− =
√

−b1 − √
�

2b2

and

x2− = −
√

−b1 − √
�

2b2
.

The fixed points are:

(0; 0); (1; 0); (−1; 0); (x1−; 0) and (x2−; 0).
* � < 0, i.e. b2

1 − 4b0b2 < 0: The system admits three
fixed points (0; 0), (1; 0) and (−1; 0).

* � = 0, i.e. b2
1 − 4b0b2 = 0:

b2
1 − 4b0b2 = 0 ⇔ b2

1 = 4b0b2

b0 and b2 have the same sign.

So X0 = −b1/2b2.

• If b0 < 0, b2 < 0:

X0 > 0 ⇒ b1 > 0,

x1
0 =

√
−b1

2b2

and

x2
0 = −

√
−b1

2b2
.

Then the system admits five fixed points (0; 0),
(1; 0), (−1; 0), (x1

0; 0) and (x2
0 ; 0).

• If b0 > 0, b2 > 0:

X0 > 0 ⇒ b1 < 0

and

x1
0 =

√
−b1

2b2

and

x2
0 = −

√
−b1

2b2
.

The system possesses five fixed points (0; 0),
(1; 0), (−1; 0), (x1

0; 0) and (x2
0 ; 0).

• b1 and b2 have the same sign, X0 < 0 then the
system has three fixed points.

Nature and stability of fixed points when
� > 0:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 < 0,

b1 > 0,

b2 < 0,

b2
1 − 4b0b2 > 0.

The fixed points of the system are

P0(0, 0), P1(−1, 0),

P2(1, 0), P3

⎛
⎝−

√
−b1 + √

�

2b2
, 0

⎞
⎠,

P4

⎛
⎝

√
−b1 + √

�

2b2
, 0

⎞
⎠,

P5

⎛
⎝−

√
−b1 − √

�

2b2
, 0

⎞
⎠,

P6

⎛
⎝

√
−b1 − √

�

2b2
, 0

⎞
⎠.

The Jacobian matrix at the equilibrium point
E∗(x∗, 0) gives

J =
(

0 1
−b0 − 3(b1 − b0)x2∗ − 5(b2 − b1)x4∗ + 7b2x6∗ 0

)
.

• Case of P0(0; 0)

J =
(

0 1
−b0 0

)
.

The characteristic equation is

λ2 + b0 = 0

and the eigenvalues are λ± = ±√−b0 if b0 < 0. λ+
and λ− are real with opposite sign and then the fixed
point P0 is a semistable saddle node.
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If b0 > 0, λ± = ±i
√−b0, the fixed point P0 is a

centre.

* Case of P1 and P2

JP1 = JP2

=
(

0 1
−b0 − 3(b1 − b0) − 5(b2 − b1) + 7b2 0

)
.

The characteristic equation

λ2 + 3(b1 − b0) − 5(b2 − b1) + 7b2 = 0

and is reduced as

λ2 = 2(b0 + b1 + b2).

• If b0 + b1 + b2 > 0,

b1 > −b0 − b2, λ± = ±√
2(b0 + b1 + b2).

The fixed points P1 and P2 are saddle nodes and
semistable.

• If b0 + b1 + b2 < 0, then

λ± = ±i
√−2(b0 + b1 + b2).

So, P1 and P2 are centres.

* Case of P3 and P4

JP3,JP4 =
(

0 1
−b0 − 3(b1 − b0)x2 − 5(b2 − b1)x4 + 7b2x6 0

)

P3,P4

.

The characteristic equation is

λ2 − α = 0

with

α = − b0 − 3(b1 − b0)

(
−b1 + √

�

2b2

)

− 5(b2 − b1)

(
−b1 + √

�

2b2

)2

+ 7b2

(
−b1 + √

�

2b2

)3

.

If α > 0, λ± = ±√
α and P3 and P4 are saddle nodes.

If α < 0, λ± = ±i
√

α and P3 and P4 are centres.
* Case of P5 and P6

JP5,JP6 =
(

0 1
−b0 − 3(b1 − b0)x2 − 5(b2 − b1)x4 + 7b2x6 0

)

P5,P6

.

The characteristic equation is

λ2 − β = 0

with

β = − b0 − 3(b1 − b0)

(
−b1 − √

�

2b2

)

− 5(b2 − b1)

(
−b1 − √

�

2b2

)2

+ 7b2

(
−b1 − √

�

2b2

)3

.

• If β > 0, λ± = ±√
β, P5 and P6 are saddle nodes

and are semistable.

• If β < 0, λ2 = −i2β ⇔ λ± = ±i
√

β, P5 and P6 are
centres.
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