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Abstract. This article addresses the flow of a thixotropic liquid with nanomaterials due to a stretching sheet of
variable thickness. The stimulus effects of the heat source/sink and first-order chemical reaction are retained.
Convective conditions of heat and mass transfer are also considered at the boundary. Unlike the classical
consideration, the linear thermal radiation aspect is examined. The influence of emergent flow, heat and mass
parameters on velocity, concentration and temperature fields are shown graphically. It is also noted that the
velocity of the fluid significantly favours the non-Newtonian parameters. For higher values of radiation and heat
source/sink parameter, the temperature rises. Moreover, a novel investigation on heat and mass transfer rates subject
to nanomaterials (i.e. Brownian motion and thermophoresis) in the liquid has been carried out. Nonlinear systems
are solved by the optimal homotopy analysis method (OHAM). Convergence analysis has been executed and the
optimal values are computed. The main advantage of the proposed technique is that it can be directly utilised in
highly nonlinear systems without using discretisation, linearisation and round-off errors. The table shows the results
of the error analysis.
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1. Introduction

Nanofluid is a uniform suspension of ultrafine nano-
sized particles (metallic/non-metallic/nanofibres) with
the typical size less than 100 nm of diameter in base
fluids, such as water, ethylene, toluene and oil. Some
common nanoparticles are copper, aluminium, silver
[1], silicon [2], diamond [3], titanium [4] and car-
bon nanotubes [5] which tend to enhance thermal
conductivity. Experimental investigation revealed that
the thermal performance of nanofluids depends on
particle material, particle shape, particle volume frac-
tion, temperature, particle size and base fluid material.
Nanofluids have attained great importance in many
engineering and biological fields such as catalysis,
electronics, solar cells, medicines, glass industry, mate-
rial manufacturing, laser cutting, plasma, etc. Choi
[6] initiated the basic mechanism of nanofluids to

enhance their thermal characteristics. Buongiorno [7]
observed enhanced thermal conductivities with the
insertion of Brownian motion and thermophoresis prop-
erties in a flow. Babu and Sandeep [8] worked on
nanofluids with thermophoresis and Brownian motion
aspects due to stretching sheets. A review of the ther-
mal conductivity of various nanofluids was done by
Ahmadi et al [9]. Uddin et al [10] studied the con-
vective flow of nanofluids. For further details, see
refs [1–5,11,12].

Nowadays, the boundary layer flow of non-Newtonian
fluids is a hot topic of research and such fluids can
be used in fibre technology, coating of wires, ketchup,
slurries, drilling muds, shampoo, apple sauce, synovial
fluid and heather honey. Non-Newtonian fluids exhibit
a nonlinear relationship between shear stress and strain
rate. The thixotropic fluid model is one of these models.
The thixotropic fluid exhibits a reduction in viscosity
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over time at a constant shear rate. Sadeqi et al [13]
elaborated the Blasius flow of thixotropic materials.
Deus and Dupim [14] investigated the behaviour of
thixotropic fluids. Shehzad et al [15] worked on the
chemically reactive flow of thixotropic fluids subject
to stretching sheets. In a doubly stratified medium, the
flow analysis of thixotropic nanomaterials with mag-
netic field effects is discussed by Hayat et al [16].
Zubair et al [17] elaborated the flow of thixotropic
fluid with the Cattaneo–Christov heat flux model. A
comparison of non-thixotropic and thixotropic mate-
rials in a tube is presented by Abedi et al [18].
Qayyum et al [19] presented the flow of thixotropic
nanofluids subject to a stretched surface of variable
thickness.

Heat and mass transport in the flow of an incom-
pressible fluid due to the stretching surface has been
extensively investigated by many researchers. Recently,
an attempt has been made to introduce variable thick-
nesses on stretching surfaces. Due to the acceleration or
deceleration of the surface, the thickness of the stretched
surface may decrease or increase depending on the value
of the power index of velocity. Presently, fluid flow sub-
ject to stretching surfaces with variable thicknesses is an
important area of research. This is due to its relevance
in the industrial and engineering sectors, particularly in
civil, marine, aeronautical and architectural engineer-
ing. It also helps in refining the utilisation of the material.
Fang et al [20] introduced flow due to a stretched sheet of
variable thickness. The flow of the thixotropic fluid with
nanomaterials subject to a nonlinear stretching surface
of variable thickness is modelled by Hayat et al [21].
Daniel et al [22] studied the radiative flow of nanoflu-
ids towards a nonlinear stretching sheet with variable
thickness. A fragment’s mass distribution scaling rela-
tion with variable thickness is elaborated by Zhang et
al [23]. Hayat et al [24] described the MHD effects on
the Al2O3−water nanofluid due to the rotating disk with
variable thickness. The flow of the Maxwell fluid by a
stretching sheet with variable thickness is studied by Liu
and Liu [25].

The main aim of this study is to explore the flow
of thixotropic nanofluid by a stretching sheet of vari-
able thickness with a heat source/sink. The effects
of thermal radiation and chemical reaction are also
highlighted. The relevant problems are formulated.
The governing nonlinear framework is solved by the
optimal homotopy analysis method (OHAM) [26–
32]. Based on the aforementioned literature survey,
the flow of the thixotropic nanofluid on a stretch-
ing surface with variable thickness is discussed for
the first time. The immediate applications are in the
melting of plastics, engine cooling and paper
production.

Figure 1. Flow geometry.

2. Modelling

Consider the chemically reactive flow of a thixotropic
nanofluid due to a stretching surface of variable
thickness. The flow caused by the nonlinear stretching
surface is restricted to the domain y > 0. The stretching
velocity of the sheet is

�
uw(x) = a(x + b)n (n being the

power-law index). The flow fills the porous medium. In
this analysis, contributions due to thermophoresis and
Brownian movements are studied. Heat transfer anal-
ysis is performed in the presence of thermal radiation
and heat generation/absorption effects. Figure 1 plots
the physical description.

The problem statements are:
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where
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v are the velocity components parallel to the x
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give

F̃ ′′′ − 2n

n + 1
F̃ ′2 + F̃ F̃ ′′

+Ka(x)

[
n + 1

2
F̃ ′′2 F̃ ′′′

]
− 2

n + 1
DaF̃ ′

+Kb(x)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
n + 1

2

)(
3n − 1

2

)
F̃ ′′4

−n + 1

2
F̃ F̃ ′′2 F̃ iv

−
(
n + 1

2

)2

F̃ F̃ ′′ F̃ ′′′2

+
(
n + 1

2

)(
5n − 3

2

)
F̃ ′ F̃ ′′2 F̃ ′′′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

1

Pr
(1 + R)�̃′′ + Nb�̃′φ̃′ + Nt�̃′2

+ F̃�̃′ + Q�̃ = 0, (11)

φ̃′′ +
(
Nt

Nb

)
�̃′′ + ScF̃ φ̃′ − LcScφ̃ = 0, (12)



97 Page 4 of 11 Pramana – J. Phys. (2019) 93:97

F̃(λ) = λ
1 − n

1 + n
, F̃ ′(λ) = 1, F̃ ′(∞) = 0,

�̃′(λ) = −γ1[1 − �̃(λ)], �̃(∞) = 0,

φ̃′(λ) = −γ2[1 − φ̃(λ)], φ̃(∞) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13)

Letting

F̃ = f̃ (ξ − λ) = f̃ (η), �̃ = θ̃ (ξ − λ) = θ̃ (η),

φ̃ = ϕ̃(ξ − λ) = ϕ̃(η). (14)

we have

f̃ ′′′ − 2n

n + 1
f̃ ′2 + f̃ f̃ ′′ + Ka(x)

[
n + 1

2
f̃ ′′2 f̃ ′′′
]

− 2

n + 1
Da f̃ ′

+Kb(x)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
n + 1

2

)(
3n − 1

2

)
f̃ ′′4

−n + 1

2
f̃ f̃ ′′2 f̃ iv

−
(
n + 1

2

)2

f̃ f̃ ′′ f̃ ′′′2

+
(
n + 1

2

)(
5n − 3

2

)
f̃ ′ f̃ ′′2 f̃ ′′′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

1

Pr
(1 + R)θ̃ ′′ + Nbθ̃ ′ϕ̃′ + Nt θ̃ ′2 + f̃ θ̃ ′ + Qθ̃ = 0,

}

(16)

φ̃′′ +
(
Nt

Nb

)
θ̃ ′′ + Sc f̃ ϕ̃′ − LcScϕ̃ = 0, (17)

f̃ (0) = λ

(
1 − n

1 + n

)
, f̃ ′(0) = 1, f̃ ′(∞) = 0,

θ̃ ′(0) = −γ1[1 − θ̃ (0)], θ̃ (∞) = 0,

ϕ̃′(0) = −γ2[1 − ϕ̃(0)], ϕ̃(∞) = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(18)

Here Ka and Kb are the non-Newtonian parameters, γ1
is the thermal Biot number, γ2 is the concentration Biot
number, Pr is the Prandtl number, Da is the porosity
parameter, Sc is the Schmidt number, R is the radiation
parameter, Nb is the Brownian motion parameter, Q is
the heat generation/absorption parameter,Nt is the ther-
mophoresis parameter, Lc is the reaction-rate parameter
and λ is the variable thickness index. These values are
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3. Physical quantities of curiosity

3.1 Skin friction coefficient

Mathematically, the coefficient of skin friction is defined
as
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where the wall heat flux (qw) is expressed as
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In the above expressions Rex = U0(x+b)n+1/ν f is the
local Reynolds number.

4. Solution methodology

4.1 Optimal homotopic solutions

With the aim of computing the solutions, the optimal
values are determined using OHAM. We select suitable
operators and initial guesses as follows:
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where di (i = 1–7) are arbitrary constants.

Figure 2. Total residual error for thixotropic nanofluid.

4.2 Convergence analysis

In homotopic solutions, convergence is obtained by set-
ting the non-zero auxiliary variables h̄�

f
, h̄ θ̃ and h̄ϕ̃ .
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where etm represents the total squared residual error,
δη = 0.5 and k = 20. Total average squared residual
error is etm = 0.0284356 (see figure 2 and table 1).
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Table 1. Magnitudes of error with optimal parameter m = 2.

m ε

�
f

m εθ̃
m ε

ϕ̃
m

2 2.44423 × 10−2 3.81685 × 10−3 1.76489 × 10−4

4 1.04467 × 10−2 3.26281 × 10−3 6.1928 × 10−5

6 6.45867 × 10−3 3.03153 × 10−3 4.40793 × 10−5

8 4.75994 × 10−3 2.88080 × 10−3 3.85323 × 10−5

10 3.87898 × 10−3 2.79506 × 10−3 3.51377 × 10−5

12 3.34876 × 10−3 2.73319 × 10−3 3.29852 × 10−5

14 2.99461 × 10−3 2.69118 × 10−3 3.16008 × 10−5

16 2.74823 × 10−3 2.66208 × 10−3 3.05774 × 10−5

18 2.58425 × 10−3 2.64165 × 10−3 2.97839 × 10−5

20 2.49455 × 10−3 2.62736 × 10−3 2.91575 × 10−5
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Figure 3. f̃ ′(η) against Ka.
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Figure 4. f̃ ′(η) against Kb.
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Figure 5. f̃ ′(η) against Da.
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Figure 7. θ̃ (η) against Nb.
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Figure 8. θ̃ (η) against Nt.
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Figure 10. θ̃ (η) against Pr.
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Figure 13. φ̃(η) against Nt.
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Figure 14. φ̃(η) against Nb.
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Figure 15. φ̃(η) against γ2.
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Figure 16. φ̃(η) against Lc.
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Figure 17. φ̃(η) against Sc.
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Figure 20. (Rex )−1/2Nu against Nb.

5. Discussion

5.1 Velocity

Figures 3 and 4 are plotted to analyse the behaviour
of Ka = 0.0, 0.2, 0.4, 0.6 and Kb = 0.0, 1.4, 0.7, 1.0
for velocity f̃ ′(η). Here thixotropic parameters Ka and
Kb significantly favour the velocity f̃ ′(η). Physically,
Ka,Kb < 1 leads to a shear thinning case in which the
viscosity varies with time. A reduction in fluid viscos-
ity is noted for larger Ka and Kb. Hence fluid velocity
increases. From figure 5, it can be seen that the veloc-
ity field diminishes for larger local porosity parameters
(Da = 0.2, 0.7, 1.3, 2.2). Due to the presence of porous
space, resistance is produced in the liquid flow which is
the reason for the reduced fluid velocity. Multiple values

Nb
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Figure 21. (Rex )−1/2Nu against Nt.

of n for the velocity profile f̃ ′(η) are depicted in figure 6.
Velocity is enhanced for n > 1 near the surface.

5.2 Temperature profile

The influence of the Brownian motion parameter Nb
(Nb = 0.1, 0.4, 0.8, 1.1) on θ̃ (η) is plotted in figure 7.
Temperature and thermal layer thickness show an
increasing trend for Brownian motion (Nb). Physically,
collision of particles occurs for increasing values of
the Brownian motion parameter which enhances the
irregular motion of nanoparticles. As a consequence,
kinetic energy is transformed into heat energy,
resulting in temperature enhancement. Figure 8 depicts
an enhancement in temperature for the thermophore-
sis motion Nt (Nt = 0.1, 0.3, 0.5, 0.7). It is due to the
thermophoresis phenomenon that the temperature of
the fluid increases, in which heated particles are pulled
away from a hot region to a cold surface. The effect of
the thermal Biot number γ1 (γ1 = 0.2, 0.4, 0.6, 0.8) for
temperature θ(η) is plotted in figure 9. An increase in
γ1 causes a stronger convection which shows a higher
temperature profile θ(η). The impact of Prandtl num-
ber Pr (Pr = 1.0, 1.5, 2.0, 2.5) on temperature θ̃ (η) is
plotted in figure 10. It is noted that temperature θ̃ (η)

shows a decreasing trend for Prandtl number (Pr).
Physically, bigger values of Pr yield weaker thermal
diffusivity which corresponds to a decay in temperature.
The impact of the heat generation/absorption parame-
ter (Q > 0 or Q < 0) on temperature is plotted in
figures 11 and 12. A rise in temperature is observed for
higher Q (Q > 0). Physically, the internal energy of
liquid particles rises for higher values of Q. Therefore,
the temperature increases. A reverse trend is noticed for
Q < 0.
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Figure 22. (Rex )1/2Sh against γ2.

5.3 Concentration field

Figure 13 depicts the effect of thermophoresis motion
parameter Nt (Nt = 0.1, 0.3, 0.5, 0.7) on concentra-
tion ϕ̃(η). It is noted that the concentration enhances
for larger values of Nt. There is no doubt that thermal
conductivity increases in the presence of nanoparti-
cles. Higher values of Nt enhance fluid thermal con-
ductivity. Larger thermal conductivity leads to high
concentration. Figure 14 elucidates the variation of Nb
(Nb = 0.1, 0.4, 0.8, 1.1) for ϕ̃(η). Physically, for larger
Nb, collision among the fluid particles rises and the cor-
responding concentration decreases. Figure 15 shows
the results of the plot to study the variation of con-
centration ϕ̃(η) for larger γ2 (γ2 = 0.1, 0.3, 0.5, 0.7).
With an increment in solutal Biot number (γ2), the
resulting coefficient of mass transfer increases. It gives
an enhancement in concentration ϕ̃(η). Higher values
of Lc (Lc = 0.1, 0.3, 0.5, 0.7) on concentration ϕ̃(η)

are depicted in figure 16. A larger chemical reaction
parameter (Lc) shows a decay in concentration ϕ̃(η)

because the chemical reaction parameter depends on the
reaction rate which produces a decay in concentration
ϕ̃(η). The impact of Schmidt number (Sc = 0.5, 1.0,

1.5, 2.0) on concentration ϕ̃(η) is shown in figure 17.
Physically, Schmidt number (Sc) has an inverse relation
with Brownian diffusivity. So a larger Schmidt number
(Sc) yields a weaker Brownian diffusivity leading to
lower concentration ϕ̃(η).

5.4 Skin friction coefficient and local Nusselt and
Sherwood numbers

Figures 18 and 19 depict the impacts of Ka and Kb on
surface drag force. The magnitude of the skin friction
coefficient shows increasing behaviour for larger values
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Figure 23. (Rex )1/2Sh against Nb.

of Ka while decreasing behaviour for Kb. For Nb and
Nt, the heat transfer reduces (see figures 20 and 21).
Figures 22 and 23 show that the magnitude of Sherwood
number increases for larger γ2 and Nb.

6. Conclusions

In this paper, the use of a thixotropic nanomate-
rial towards a nonlinear stretching surface of variable
thickness is addressed. In our view, no attempt at
analysing the chemically reactive flow of a thixotropic
nanofluid through nonlinear thermal radiation under
convective conditions has been made. The velocity of
fluid particles enhances the variable thickness index
and the non-Newtonian parameters Ka and Kb, while it
decays the porosity parameter Da. The temperature and
concentration are enhanced through the thermophoresis
variable and heat generation parameter. The skin fric-
tion coefficient strongly depends on the non-Newtonian
parameter Ka. The Nusselt number decreases through
the Brownian motion parameter and the thermophoresis
parameter, respectively. The magnitude of the Sherwood
number is enhanced by the Brownian motion parameter
and the concentration Biot number.
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