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Abstract. This paper investigates the Newtonian heating effect on nanofluid flow over a nonlinear permeable
stretching/shrinking sheet near the region of stagnation point. Only two important mechanisms on the transportation
of nanoparticles in base fluid are discussed: the Brownian motion and thermophoresis. This physical problem is
modelled using the Buongiorno (ASME J. Heat Transfer 128, 240 (2006) model in terms of nonlinear governing
partial differential equations and transformed into dimensionless ordinary differential equations by using similarity
transformation and the solution is calculated using the numerical scheme known as the Chebyshev spectral
collocation method. The main interest of this study is the region of the boundary layer where viscous effects
are dominant. Dual solutions are reported against the shrinking parameter in which the first solution is stable
due to positive eigenvalues and the second is unstable due to negative eigenvalues and ranges of these solutions
are effected by the suction parameter which is discussed using graphs and tables. The effects of dimensionless
parameters, namely, velocity ratio, suction, Schmidt number, Prandtl number, thermophoresis and Brownian motion
on temperature and concentration profiles, skin friction coefficient and Nusselt number are also shown using graphs.
For the validity of the applied scheme, a comparison is established with published studies in the limiting case.
Through the results, it is concluded that temperature and concentration increase by increasing the values of the
thermophoresis parameter and the opposite behaviour is observed in the case of Brownian motion and Schmidt
number. Skin friction coefficient, Nusselt and Sherwood numbers increase on increasing the suction parameter.
Also, an enhancement in temperature and concentration profiles is observed in the presence of Newtonian heating
parameter.
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1. Introduction

Heat transfer plays a key role in physics and engineer-
ing problems. Highest heat transfer rate can improve
the efficiency of many processes in electronic cooling
and heat exchangers. The commonly used base fluids
are oil, water and ethylene glycol mixture, which have
very low thermal conductivity and, therefore, known
as poor heat transfer fluids. On the other hand, many
solids, particularly, metals have higher thermal conduc-
tivities compared to base fluids. For the enhancement
of thermal conductivity of base fluids, nanosized solid
particles with sizes up to 100 nm are suspended in

the base fluids and the resulting mixture is known as
the nanofluid. The term nanofluid was introduced by
Choi [1]. Buongiorno [2] was the first one to study
comprehensively the convective transport in nanoflu-
ids and considered seven mechanisms such as inertia,
thermophoresis, Brownian diffusion, gravity settling,
fluid draining, diffusiophoresis and Magnus effect [3].
He observed that the absolute velocity of the nanopar-
ticle can be considered as the sum of the velocity of
the base fluid and a relative velocity. Among these
mechanisms, he found that only two mechanisms were
very important, namely, Brownian diffusion and ther-
mophoresis. Detailed studies on nanofluids have been
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done by Daungthongsuk and Wongwises [4] and Wang
and Mujumdar [5,6]. Mustafa et al [7] investigated the
boundary layer stagnation point flow of an incompress-
ible nanofluid towards a stretching sheet. Kameswaran
et al [8] computed the dual solutions of the stagna-
tion point flow of a nanofluid towards a stretching
surface. Bachok et al [9] investigated the boundary
layer stagnation point flow of a nanofluid towards a
stretching/shrinking sheet and calculated a dual solu-
tion up to a certain value of the velocity ratio parameter.
Mansur et al [10] considered the stagnation point flow
of a nanofluid towards a stretching/shrinking sheet and
used Buongiorno’s model. They found that the skin
friction coefficient decreases due to the stretching of
the sheet but increases by increasing the suction param-
eter. Pal et al [11] investigated the buoyancy effects on
the stagnation point flow of nanofluids towards a
stretching/shrinking sheet in a porous medium in the
presence of internal heat generation/absorption. Abbas
et al [12] considered the hydromagnetic stagnation
point flow of a viscous fluid over a stretching/shrinking
sheet in the presence of homogeneous/heterogeneous
reactions with slip condition. Pal and Mandal [13] anal-
ysed buoyancy effects on the stagnation point flow of
nanofluids towards a stretching/shrinking sheet in a
porous medium by considering heat generation, vis-
cous dissipation and radiation effects. Naramgari and
Sulochana [14] investigated magnetohydrodynamics
(MHD) effects on the boundary layer flow of nanofluid
towards a permeable stretching/shrinking sheet with
suction and injection. They found that nanoparticle con-
centration decreases and mass transfer rate increases
due to the enhancement in Brownian motion and ther-
mophoresis. Mustafa et al [15] considered three differ-
ent magnetic nanoparticles in the study of stagnation
point flow over a stretchable rotating disk in the pres-
ence of an external applied magnetic field. Nandy and
Pop [16] investigated the two-dimensional MHD stag-
nation point flow of a nanofluid towards a shrinking
sheet in the presence of thermal radiation. Studies on
nanofluid flow towards a nonlinear stretching/shrinking
sheet have been made by many researchers [17–29].

Boundary conditions play a vital role in material
processing technologies and significantly modify the
characteristics of manufactured products. In the above
studies, two types of boundary conditions were consid-
ered, namely, prescribed surface heat flux (PHF) and
prescribed surface temperature (PST). There is another
type of boundary condition called Newtonian heating
which is also known as conjugate convective flow [30] in
which, heat is transported to the convective fluid passing
through a boundary surface having finite heat capac-
ity. Newtonian heating occurs in different engineering
devices such as heat exchangers in which the conduction

in the solid wall is affected by the convection in the
fluid [31]. Salleh et al [32] studied the effect of New-
tonian heating on the laminar boundary layer flow over
a stretching sheet. They found numerical solutions to
the problem of using the finite difference scheme along
with two cases ‘constant wall temperature (CWT)’ and
‘constant heat flux (CHF)’. Mohamed et al [33] investi-
gated the boundary layer stagnation point flow of an
incompressible fluid towards a stretching sheet with
Newtonian heating. A number of studies with New-
tonian and convective boundary conditions have been
considered by many researchers [34–43].

The aim of this study is to investigate the effect of
Newtonian heating on the stagnation point flow over
a nonlinear permeable stretching/shrinking sheet in a
nanofluid. The governing partial differential equations
of this analysis are converted into nonlinear ordinary
differential equations by using suitable similarity trans-
formation and the solution is obtained numerically by
using the spectral collocation method. The effects of
pertinent parameters on temperature and concentration
profiles, skin friction coefficient, local Nusselt number
and local Sherwood number are discussed and shown
graphically. The dual solutions are reported for specific
values of suction parameter in a certain range of the
velocity ratio parameter.

2. Formulation of the flow problem

A steady boundary layer flow in the region of the
stagnation point of a viscous incompressible nanofluid
towards a nonlinear stretching/shrinking horizontal per-
meable sheet is discussed. The sheet is stretched or
shrunk nonlinearly along the x-axis, keeping O fixed
as the stagnation point and the y-axis is perpendicu-
lar to the sheet as shown in figure 1. The nonlinear

Figure 1. Schematic diagram near the stagnation region.
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stretching/shrinking velocity and the straining veloc-
ity in potential flow are assumed as uw(x) = cxm and
ue(x) = axm , respectively, where a is a positive con-
stant and c is the constant in wall velocity, which is
considered less than zero (c < 0) in the shrinking case
and greater than zero (c > 0) in the stretching case.
Using the mathematical model reported by Buongiorno
[2], the governing equations of the problem under the
boundary layer approximation can be written in the sim-
plified form as (see Rana and Bhargava [18])

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ue(x)

due(x)

dx
+ ν

∂2u

∂y2 , (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 + τ

[
DB

∂C

∂y

∂T

∂y

+ DT

T∞

(
∂T

∂y

)2
]
, (3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2 + DT

T∞
∂2T

∂y2 , (4)

with boundary conditions

u = uw(x) = cxm, v = vw(x), −k
∂T

∂y
= hsT,

C = Cw at y = 0,

u = ue(x) = axm, T → T∞,

C → C∞ as y → ∞. (5)

The components of velocity along and normal to the
surface are u and v, respectively, and T is the tem-
perature, C is the concentration of the nanoparticle,
ν is the kinematic viscosity, α is the thermal diffusiv-
ity, τ = (ρcp)p/(ρcp)f, where (ρcp)p and (ρcp)f are
the heat capacity of the nanoparticle and base fluid, DB
and DT are the Brownian and thermophoretic diffusion
coefficients, T∞ is the ambient temperature of the fluid,
vw is the suction/injection velocity at the wall along the
y-axis which exhibits suction when vw < 0 or injection
when vw > 0, hs is the heat transfer coefficient, m �= 1
is a nonlinear parameter, Cw and C∞ are the nanopar-
ticle concentrations at the wall and far away from the
wall. Now, introduce the following similarity transfor-
mation (see Rana and Bhargava [18]), which converts
the governing partial differential equations into ordinary
differential equations:

u = axm f ′(η),

v = −
√
aν(m + 1)

2
x (m−1)/2

[
f (η) + m − 1

m + 1
η f ′(η)

]
,

η = y

√
a(m + 1)

2ν
x (m−1)/2,

θ = T − T∞
T∞

, ϕ = C − C∞
Cw − C∞

. (6)

The differentiation with respect to η is denoted by prime.
For similarity solution of the governing equations, a suc-
tion or injection velocity vw is assumed as (see Zaimi
et al [19])

vw = −
√
aν(m + 1)

2
x (m−1)/2γ,

where γ is a constant which stands for suction when γ

is greater than zero, i.e. (γ > 0) and injection when γ

is less than zero, i.e. (γ < 0). Using similarity transfor-
mation (6) into eqs (2)–(4), the dimensionless form of
the ordinary differential equations are obtained as

f ′′′ + f f ′′ + 2m

m + 1
(1 − f ′2) = 0, (7)

θ ′′ + Pr( f θ ′ + Nb θ ′ϕ′ + Ntθ ′2) = 0, (8)

ϕ′′ + Sc f ϕ′ + Nt

Nb
θ ′′ = 0. (9)

Boundary conditions (5) reduce to

f (0) = γ, f ′(0) = c

a
,

θ ′(0) = −γs(1 + θ(0)), ϕ(0) = 1,

f ′(∞) = 1, θ(∞) = 0, ϕ(∞) = 0, (10)

where the Prandtl number Pr = ν/α, Schmidt number
Sc = ν/DB, Brownian and thermophoresis parameters
are Nb = τDB(Cw −C∞)/ν and Nt = τDT/ν respec-
tively, the conjugate parameter for Newtonian heating
is γs = hs

√
2ν/a(m + 1)x (1−m)/2 and the ratio of the

constant of the stretching/shrinking velocity with the
straining velocity is c/a which corresponds to stretch-
ing when c/a > 0 and shrinking when c/a < 0. The
relations of the skin friction coefficient, local Nusselt
and Sherwood numbers are shown as

Cf = τw

ρu2
e
, Nux = xqw

k(Tw − T∞)
,

Shx = xqm

DB(Cw − C∞)
, (11)

where τw is the shear stress at the wall, qw and qm are the
heat and mass fluxes from the wall, respectively, which
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are written as

τw = μ

(
∂u

∂y

)
y=0

, qw = −k

(
∂T

∂y

)
y=0

,

qm = −DB

(
∂C

∂y

)
y=0

. (12)

Substituting eq. (12) into eq. (11), the skin friction
coefficient, local Nusselt number and local Sherwood
number take the new form as follows:

C f Re1/2
x =

√
m + 1

2
f ′′(0),

NuxRe−1/2
x = −

√
m + 1

2

θ ′(0)

θ(0)
,

ShxRe−1/2
x = −

√
m + 1

2
ϕ′(0).

3. Flow stability

In the present study, dual solutions are found against the
velocity ratio parameter, namely, c/a for the shrinking
sheet case. In these solutions, one solution is physically
realisable, i.e. stable and second solution is unstable. To
check which solution is physically realisable, Weidman
et al [44], Najib et al [45], Rosca and Pop [46], Postel-
nicu and Pop [47], Awaludin et al [48], Ismail et al [49]
and Fauzi et al [50] performed stability analysis. Before
examining the analysis first, the governing eqs (2)–(4)
are converted into an unsteady problem by introducing
the time variable in dimensionless form as τ = axm−1t
and the dimensionless functions f (η), θ(η) and ϕ(η)

are replaced by f (η, τ ), θ(η, τ ) and ϕ(η, τ ). The
resulting governing equations for the unsteady flow are
given as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue(x)

due(x)

dx
+ ν

∂2u

∂y2 , (13)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 + τ

[
DB

∂C

∂y

∂T

∂y

+ DT

T∞

(
∂T

∂y

)2
]
, (14)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2 + DT

T∞
∂2T

∂y2 . (15)

Using the time variable, the similarity transformation
given in eq. (6) takes a new form and is written as

u = axm
∂ f

∂η

v = −
√
aν(m + 1)

2

[
f + m − 1

m + 1
η
∂ f

∂η

]
x (m−1)/2,

η = y

√
a(m + 1)

2ν
x (m−1)/2,

θ = T − T∞
T∞

, ϕ = C − C∞
Cw − C∞

, τ = axm−1t. (16)

Governing eqs (13)–(15) are written in the dimension-
less form after using the transformation given in eq. (16),
and we have

∂3 f

∂η3 + f
∂2 f

∂η2 + 2m

m + 1

(
1 −

(
∂ f

∂η

)2
)

− 2

m + 1

∂2 f

∂η ∂τ

(
1 + (m − 1)τ

∂ f

∂η

)
= 0, (17)

∂2θ

∂η2 + Pr

(
f
∂θ

∂η
+ Nb

∂θ

∂η

∂ϕ

∂η
+ Nt

(
∂θ

∂η

)2
)

− 2 Pr

m + 1

∂θ

∂τ

(
1 + (m − 1)τ

∂ f

∂η

)
= 0, (18)

∂2ϕ

∂η2 + Sc f
∂ϕ

∂η
− 2Sc

m + 1

∂ϕ

∂τ

(
1 + (m − 1)τ

∂ f

∂η

)

+ Nt

Nb

∂2θ

∂η2 = 0. (19)

The boundary condition given in eq. (5) takes the fol-
lowing form:

f(0, τ ) = γ,
∂ f

∂η
(0, τ ) = c

a
,

∂θ

∂η
(0, τ ) = −γs(1 + θ(0, τ )),

ϕ(0, τ ) = 1,
∂ f

∂η
(∞, τ ) = 1,

θ(∞, τ ) = 0, ϕ(∞, τ ) = 0. (20)

To perform the stability analysis for the solution f =
f0(η), θ = θ0(η) and ϕ = ϕ0(η) which represents the
steady solution and satisfying the BVP given in eqs (7)–
(9), we write the functions f (η, τ ), θ(η, τ ) and ϕ(η, τ )

in the following form (see Weidman et al [44], Najib
et al [45] and Rosca and Pop [46]):

f (η, τ ) = f0(η) + e−γ τ F(η, τ ),

θ(η, τ ) = θ0(η) + e−γ τ H(η, τ ),

ϕ(η, τ ) = ϕ0(η) + e−γ τ P(η, τ ). (21)
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In eq. (21), the functions f (η, τ ), θ(η, τ ) and ϕ(η, τ )

are small, relative to f0(η), θ0(η) and ϕ0(η) and γ is
an unknown eigenvalue. On substituting eq. (21) into
eqs (17)–(19), the following linearised problems are
obtained:

∂3F

∂η3 + f0
∂2F

∂η2 + f ′′
0 F

+ 2

m + 1

∂F

∂η

[(
1 + (m − 1)τ f ′

0

)
γ − 2m f ′

0

]

− 2

m + 1

∂2F

∂η∂τ

(
1 + (m − 1)τ f ′

0

) = 0, (22)

∂2H

∂η2 + Pr

[
f0

∂H

∂η
+ Fθ ′

0 + Nb

(
θ ′

0
∂P

∂η
+ ϕ′

0
∂H

∂η

)

+Nt

(
2θ ′

0
∂H

∂η

)]
+ 2 Pr

m + 1
(1 + (m − 1)τ f ′

0)γ H

− 2 Pr

m + 1
(1 + (m − 1)τ f ′

0)
∂H

∂τ
= 0, (23)

∂2P

∂η2 + Sc

(
f0

∂P

∂η
+ Fϕ′

0

)

+ 2Sc

m + 1
(1 + (m − 1)τ f ′

0)γ P

− 2Sc

m + 1

(
1 + (m − 1)τ f ′

0

)∂P

∂τ
+ Nt

Nb

∂2H

∂η2 = 0

(24)

subject to the boundary conditions

F(0, τ ) = 0,
∂F

∂η
(0, τ ) = 0,

∂H

∂η
(0, τ ) = −γs H(0, τ ), P(0, τ ) = 0,

∂F

∂η
(∞, τ ) = 0, H(∞, τ ) = 0, P(∞, τ ) = 0.

(25)

For the stability of the solutions, i.e. f0(η), θ0(η) and
ϕ0(η) of the steady boundary value problem given in
eqs (7)–(9), subject to the boundary conditions given
in eq. (10), put τ = 0 suggested by Weidman et al
[44] and the solutions given in eqs (22)–(24), i.e. F =
F0(η), H = H0(η) and P = P0(η) cause the initial
growth or decay of the solution given in eq. (21):

F ′′′
0 + f0F

′′
0 + f ′′

0 F0 + 2

m + 1

[
γ − 2m f ′

0

]
F ′

0 = 0,

(26)

H ′′
0 + Pr

[
f0H

′
0 + F0θ

′
0

+ Nb
(
θ ′

0P
′
0 + ϕ′

0H
′
0

) + Nt
(
2θ ′

0H
′
0

)]
+ 2 Pr

m + 1
γ H0 = 0, (27)

P ′′
0 + Sc

(
f0P

′
0 + F0ϕ

′
0

) + 2Sc

m + 1
γP0 + Nt

Nb
H ′′

0 = 0,

(28)

and the boundary conditions given in eq. (25) take the
following form:

F0(0) = 0, F ′
0(0) = 0,

H ′
0(0) = −γs H0(0), P0(0) = 0,

F ′
0(∞) = 0, H0(∞) = 0, P0(∞) = 0. (29)

To solve an eigenvalue problem given in eqs (26)–(28)
subject to the boundary condition given in eq. (29), an
infinite set of eigenvalues γ1 < γ2 < γ3 · · · are obtained
by adding an extra boundary condition F ′′

0 (0) = 1
according to the study of Harris et al [51]. The smallest
negative eigenvalue corresponds to the unstable solu-
tion due to initial growth or disturbance in the solution
and the smallest positive eigenvalue corresponds to the
stable solution due to the initial decay in the solution
according to Fauzi et al [50] and Harris et al [51].

4. Numerical solution

To obtain the numerical solution of the nonlinear ordi-
nary differential equations given in eqs (7)–(9) with
respect to the boundary conditions given in eq. (10),
a numerical scheme, known as the spectral colloca-
tion scheme, is applied. In this scheme, the unknown
f (ξ), θ(ξ) and ϕ(ξ) are expressed in terms of the trun-
cated series of N + 1 basis functions Tn , and we get

f (ξ) ≈ fN (ξ) =
N∑

n=0

an(ξ)Tn(ξ), (30)

θ(ξ) ≈ θN (ξ) =
N∑

n=0

bn(ξ)Tn(ξ), (31)

ϕ(ξ) ≈ ϕN (ξ) =
N∑

n=0

cn(ξ)Tn(ξ). (32)

The Chebyshev polynomials of degree n which is
defined in the interval form [−1, 1] are considered as
the basis functions (see Boyd [52]):

Tn(ξ) = cos(n cos−1 ξ).

The N + 1 unknowns an , bn and cn are determined to
get the solution. The physical domain is truncated from
[0, η∞] to [−1, 1] using the following transformation:
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ξ = 2
η

η∞
− 1, (33)

where η∞ is the physical infinity at the edge of the
boundary layer. By using the above-mentioned trans-
formation in eq. (33), eqs (7)–(9) are converted into a
new form as

8
d3 f

dξ3 + 4η∞ f
d2 f

dξ2

+ 2m

m + 1

(
η3∞ − 4η∞

(
d f

dξ

)2
)

= 0, (34)

4

Pr

d2θ

dξ2 + 2η∞ f
dθ

dξ
+ 4Nb

dθ

dξ

dϕ

dξ
+ 4Nt

(
dθ

dξ

)2

= 0,

(35)

4
d2ϕ

dξ2 + 2Scη∞ f
dϕ

dξ
+ 4

Nt

Nb

d2θ

dξ2 = 0 (36)

with boundary conditions eq. (10) becomes

f (−1) = γ,
d f (−1)

dξ
= cη∞

2a
,

dθ(−1)

dξ
= −γsη∞

2
(1 + θ(−1)),

ϕ(−1) = 1,
d f (1)

dξ
= η∞

2
,

θ(1) = 0, ϕ(1) = 0. (37)

After substituting the truncating series form solutions
(30)–(32) into eqs (34)–(36), the non-zero residues R1,
R2 and R3 are obtained as

R1 = 8

(1 − ξ2)5/2

N∑
n=0

nan

×
⎛
⎝−3nξ

√
1 − ξ2 cos(n cos−1 ξ)

+ sin(n cos−1 ξ) − n2 sin(n cos−1 ξ)

+2ξ2 sin(n cos−1 ξ) + n2ξ2 sin(n cos−1 ξ)

+ 2m

1 + m

⎛
⎝η3∞ − 4η∞

(
N∑

n=0

nan sin(n cos−1 ξ)√
1 − ξ2

)2⎞⎠
⎞
⎠

+4
η∞

(1 − ξ2)

N∑
n=0

an cos(n cos−1 ξ)

N∑
n=0

nan

×
(

−n cos(n cos−1 ξ) + ξ
sin(n cos−1 ξ)√

1 − ξ2

)
, (38)

R2 =
(

2η∞
N∑

n=0

an cos(n cos−1 ξ)

+4Nb
N∑

n=0

ncn sin(n cos−1 ξ)√
1 − ξ2

)

×
N∑

n=0

nbn sin(n cos−1 ξ)√
1 − ξ2

+4Nt

(
N∑

n=0

nbn sin(n cos−1 ξ)√
1 − ξ2

)2

+ 4

Pr

1

(1 − ξ2)

N∑
n=0

nbn

×
(
−n cos(n cos−1 ξ) + ξ

sin(n cos−1 ξ)√
1 − ξ2

)
, (39)

R3 = 2Sc
N∑

n=0

an cos(n cos−1 ξ)

N∑
n=0

ncn sin(n cos−1 ξ)√
1 − ξ2

+4
Nt

Nb

1

(1 − ξ2)

N∑
n=0

nbn

×
(

−n cos(n cos−1 ξ) + ξ
sin(n cos−1 ξ)√

1 − ξ2

)

+4
1

(1 − ξ2)

N∑
n=0

ncn

×
(

−n cos(n cos−1 ξ) + ξ
sin(n cos−1 ξ)√

1 − ξ2

)
.

(40)

The problem is to find the unknown coefficients an , bn
and cn such that the residues are minimised throughout
the domain of the solution. The unknown coefficientsan,
bn and cn are chosen such that the residues are minimised
in the problem domain. In this study, the collocation
scheme is used at the set of N + 1 collocation point
which is known as the Gauss–Lobatto collocation point
(see Canuto et al [53], Javed and Mustafa [54]) and the
residues R1, R2 and R3 become exactly equal to zero.
Newton’s iteration method (see Jaluria [55]) is used to
achieve three systems of N + 1 linear algebraic equa-
tions. For N = 54 the grid independent is achieved for
all parameters involved in this study.

5. Results and discussion

The numerical technique known as the Chebyshev
spectral collocation point method is used to solve
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Table 1. Numerical results of f ′′(0) for some values of c/a
with m = 1 and γ = 0.

c/a Wang [56] Bachok et al [9] Present

2 −1.88731 −1.887307 −1.887307
1 0 0 0
0.5 0.71330 0.713295 0.713295
0 1.232588 1.232588 1.232588

−0.5 1.49567 1.495670 1.495670
−1 1.32882 1.328817 1.328817

[0] [0] [0]
−1.15 1.08223 1.082231 1.082231

[0.116702] [0.116702] [0.116702]
−1.2 0.932473 0.932473

[0.233650] [0.233650]
−1.2465 0.55430 0.584281 0.584282

[0.554297] [0.554296]

Table 2. Numerical results of −θ ′(0) and θ(0) for some val-
ues of Pr when m = γs = 1 and γ = c/a = 0.

Mohamed et al [33] Present result

Pr θ(0) −θ ′(0) θ(0) −θ ′(0)

5 23.0239 24.0239 23.0239 24.0239
7 5.6062 6.6062 5.6062 6.6062
10 2.9516 3.9516 2.9516 3.9516
100 0.5034 1.5034 0.50327 1.5033
1000 0.1809 1.1809 0.1809 1.1809

the nonlinear system of ordinary differential equations
given in eqs (7)–(9) with boundary conditions given
in eq. (10) and the effects of pertinent parameters,
namely, suction, velocity ratio, Prandtl number, ther-
mophoresis and Brownian motion, Newtonian heating
and Schmidt number on the f ′ (velocity), θ (tempera-
ture), ϕ (nanoparticle concentration) profiles, CfRe1/2

x

(skin friction coefficient), NuxRe−1/2
x (local Nusselt

number) and ShxRe−1/2
x (Sherwood number) are shown

using graphs. The dual solution of the problem for some
values of the suction parameter γ are found by consid-
ering different η∞, the initial guess and two distinct
structures of boundary layer thicknesses are observed.
The solid line represents the first solution and the dot-
ted line represents the second solution. For the validity
of the applied spectral collocation scheme, a compari-
son of the values of f ′′(0), θ(0) and − θ ′(0) with the
previous studies considered by Wang [56], Bachok et
al [9] and Mohamed et al [33] was made and shown in
tables 1 and 2.

This shows that our computed solutions are in good
agreement and hence our solution scheme and code are
highly accurate. A number of researchers like Weidman
et al [44] and Rosca and Pop [46] have discussed the

Table 3. Smallest eigenvalues for different values of c/a
when γ = 2.5.

c/a m = 1 m = 2

1st
solution

2nd
solution

1st
solution

2nd
solution

−1 5.6239 −3.1640 9.4141 −6.5405
−1.5 5.0865 −3.1180 8.5723 −6.5311
−1.8 4.7258 −3.0923 7.9976 −6.0521
−2.0 4.4649 −3.0004 7.5767 −5.8481
−2.2 4.1841 −2.9085 7.1182 −5.6218
−2.4 3.8790 −2.7963 6.6148 −5.3499
−3.0 2.7394 −2.2147 4.6726 −4.2224
−3.5 1.0868 −1.0027 1.5626 −1.5980

Figure 2. Skin friction coefficient against c/a for distinct
values of suction parameter γ.

Figure 3. Local Nusselt number against c/a for distinct val-
ues of suction parameter γ.

stability analysis of multiple solutions. They have
proved that the first solution is a stable solution due to the
positive eigenvalue and the second solution is an unsta-
ble solution due to the negative eigenvalue. In this study,



53 Page 8 of 13 Pramana – J. Phys. (2019) 93:53

Figure 4. Sherwood number against c/a for distinct values
of suction parameter γ.

the stability analysis is also performed, and the eigen-
values are calculated for both the first and the second
solutions. The smallest positive and negative eigenval-
ues for different values of m are shown in table 3.
Figures 2–4 show the variation of CfRe1/2

x , NuxRe−1/2
x

and ShxRe−1/2
x against the velocity ratio parameter c/a

for some values of the suction parameter γ with fixed
values of the remaining parameters m = 2, Sc = 1.5,
Pr = 7, γs = 1 and Nt = Nb = 0.3. From these fig-
ures, it is seen that dual solutions exist for each positive
value of c/a under different values of suction param-
eter γ (= 2.5, 3 and 3.5) but for negative values of
c/a, there exist critical values t1 for which dual solu-
tion exists, i.e. c/a > t1 and no solution for c/a < t1,
which are presented in table 4. It is also seen that the
region of c/a for which the dual solution exists increases
with the increase in suction parameter γ . Zaimi et al
[19] found dual solutions for the same values of suc-
tion parameter γ (= 2.5, 3 and 3.5) without considering
the stagnation point flow and they calculated the crit-
ical values which are shown in table 3 and from this
table, it is seen that the ranges of the dual solutions in
the present study are increased compared to a previous
study due to the presence of stagnation point in the flow
field. This finding shows that the stagnation point flow
widens the ranges of dual solutions. Figure 2 depicts that
the values ofCfRe1/2

x increase in the stable solution (first
solution) and decrease in the unstable solution (second
solution) by increasing the values of the suction parame-
ter γ . The values ofCfRe1/2

x in the first solution become
higher than the values of the second solution. In figures 3
and 4, NuxRe−1/2

x and ShxRe−1/2
x are plotted against

the velocity ratio parameter c/a for some values of the
suction parameter γ (= 2.5, 3.0 and 3.5). From these
figures, it is noted that both NuxRe−1/2

x and ShxRe−1/2
x

Table 4. Critical values t1 of c/a for
some values of γ when m = 2.

Zaimi et al [19] Present results

γ t1 t1

2.5 −1.4278 −3.565
3.0 −2.0561 −4.286
3.5 −2.7986 −5.101

Figure 5. Local Nusselt number against c/a for distinct val-
ues of Prandtl number Pr.

increase with the increase of suction parameter γ . In
the case of the first solution, NuxRe−1/2

x (Nusselt num-
ber) decreases up to a certain value of c/a and after
that value, it becomes an increasing function but the
values of ShxRe−1/2

x (Sherwood number) decrease by
decreasing the values of c/a. The values of NuxRe−1/2

x
in the first solution become smaller than the values of
the second solution and an opposite behaviour is noticed
for the values of ShxRe−1/2

x . Figure 5 illustrates the
variation of NuxRe−1/2

x against c/a for some values
of Pr. It is seen that for large values of Prandtl num-
ber Pr, i.e. 5 and 7, the values of NuxRe−1/2

x decrease
up to a certain value of c/a, and after that value, it
becomes an increasing function but for Pr = 3, the
values of NuxRe−1/2

x increase against the velocity ratio
parameter c/a. It is also seen that NuxRe−1/2

x increases
by increasing the values of Pr because Prandtl num-
ber is the ratio of momentum diffusivity and thermal
diffusivity.

For the small value of Prandtl number, i.e. Pr = 3, the
first solution maintains a higher value of NuxRe−1/2

x for
−3.565 < c/a < −0.15, and after that, the second solu-
tion crosses the first solution. For large values of Pr other
than 3, the first solution has smaller values of NuxRe−1/2

x
than the second solution. Figures 6a and 6b demon-
strate the effects of γ (suction) on velocity profiles for
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(a) (b)

Figure 6. Velocity profile for distinct values of γ when m = 2, Sc = 1.5, Pr = 7, γs = 1, Nt = Nb = 0.3: (a) shrinking
sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

(a) (b)

Figure 7. Temperature profile for distinct values of Nt when m = 2, Sc = 1.5, Pr = 7, γs = 1, Nb = 0.3, γ = 2.5: (a)
shrinking sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

(a) (b)

Figure 8. Nanoparticle concentration profile for distinct values of Nt when m = 2, Sc = 1.5, Pr = 7, γs = 1, Nb = 0.3
γ = 2.5: (a) shrinking sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

shrinking and stretching cases, respectively, and other
parameters are considered fixed. For the first solution
in figure 6a, the velocity increases and the momentum
boundary layer thickness reduces by increasing the val-
ues of γ (suction) because suction enhances the flow
near the surface and reduces the momentum boundary

layer thickness in the case of shrinking sheet. Also,
for the second solution, a negative velocity gradient is
found at the edge of the sheet and becomes positive
away from the sheet. In figure 6b, velocity reduces for
the first solution with the increase of suction param-
eter γ because suction is responsible for the delay in



53 Page 10 of 13 Pramana – J. Phys. (2019) 93:53

(a) (b)

Figure 9. Temperature profile for distinct values of Nb when m = 2, Sc = 1.5, Pr = 7, γs = 1, Nt = 0.3, γ = 2.5:
(a) shrinking sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

(a) (b)

Figure 10. Nanoparticle concentration profile for distinct values of Nb when m = 2, Sc = 1.5, Pr = 7, γs = 1, Nt = 0.3,
γ = 2.5: (a) shrinking sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

(a) (b)

Figure 11. Temperature profile for distinct values of Sc when m = 2, Pr = 7, γs = 1, Nt = Nb = 0.3, γ = 2.5: (a)
shrinking sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

fluid motion over a stretching sheet. In the case of the
second solution, velocity reduces by increasing the suc-
tion parameter γ for the initial values of η and becomes
an increasing function for large η. Figures 7a, 7b and 8a,
8b illustrate the temperature and nanoparticle concen-
tration profiles for some values of the thermophoresis
parameter Nt . Figures 7a and 7b reveal that a variation
of Nt from 0.1 to 0.7 enhances both temperature and

thermal boundary layer thickness for the first and
the second solutions, respectively. This is because the
strength of thermophoresis parameter Nt generates a
force known as the thermophoretic force due to which
a rapid flow is observed away from the surface. There-
fore, the hot fluid moves away from the sheet. But it is
noticed that the magnitude of temperature difference and
the increase in boundary layer is almost negligible. It is
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(a) (b)

Figure 12. Nanoparticle concentration profile for distinct values of Sc when m = 2, Pr = 7, γs = 1, Nt = Nb = 0.3 and
γ = 2.5: (a) shrinking sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

(a) (b)

Figure 13. Temperature profile for distinct values of γs when m = 2, Sc = 1.5, Pr = 7, Nt = Nb = 0.3, γ = 2.5: (a)
shrinking sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

further noticed that the thermal boundary layer thick-
ness is higher in the case of shrinking sheet than in the
case of stretching sheet. Figures 8a and 8b show that the
nanoparticle concentration increases with the increase
of Nt for both the first and second solutions, and this is
because thermophoresis increases the mass transfer of
nanofluids, i.e. nanoparticles disperse from a hot surface
to the ambient fluid. The nanoparticles face resistance
from the hot surface and, therefore, nanoparticles import
heat from the heated sheet to the moving fluids, and thus,
the concentration boundary layer thickness increases.
In figure 8a, a positive concentration gradient ϕ′(0) is
obtained at the surface of the plate for the second solu-
tion when the thermophoresis parameter Nt = 0.7 and
becomes negative for other values ofNt ( = 0.4 and 0.1).
Also in figures 8a and 8b, the concentration boundary
layer thickness is higher in the second solution than in
the first solution. Figures 9a, 9b and 10a, 10b are plotted
to show the effect of Nb (Brownian motion) on temper-
ature and nanoparticle concentration profiles. Figure 9a
and 9b demonstrate that the variation of Nb from 0.1 to
0.3 enhances temperature and thermal boundary layer

thickness for both the first and the second solutions.
This is because the collision between nanoparticles and
molecules of a base fluid like water generates additional
energy and warms the boundary layer, and consequently,
thermal conductivity increases. Figures 10a and 10b
illustrate that the nanoparticle concentration decreases
with the increase of the Brownian motion parameter Nb
for both solutions. Also, for the second solution, the con-
centration boundary layer thickness in both shrinking
and stretching cases is greater than that of the first solu-
tion. This is because Brownian motion generates due to
the interaction of the base fluid and the nanoparticles
which warms the fluid within the boundary layer. The
nanoparticles deposit on the heated sheet and enhance
the surface area of the sheet and, consequently, the con-
centration of nanoparticles in the base fluid decreases.
In figure 10a, a positive concentration gradient ϕ′(0)

is obtained for Nb = 0.1 and negative concentration
gradient ϕ′(0) is obtained for Nb = 0.2 and 0.3. The
influence of Schmidt number on the temperature profile
and nanoparticle concentration profile are presented in
figures 11a, 11b and 12a, 12b for both shrinking and
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(a) (b)

Figure 14. Nanoparticle concentration profile for distinct values of γs when m = 2, Sc = 1.5, Pr = 7, Nt = Nb = 0.3,
γ = 2.5: (a) shrinking sheet (c/a = −3) and (b) stretching sheet (c/a = 2).

stretching cases, respectively. In figures 11a and 11b,
it is seen that the temperature and thermal boundary
layer thickness increase with the increasing values of
Sc for both solutions. On the other hand, the nanopar-
ticle concentration profile shows an opposite behaviour
by increasing Sc for both the first and second solu-
tions. From both figures 12a and 12b, it is observed that
the concentration boundary layer thickness for Sc = 2
for the second solution is larger than that for the first
solution in the shrinking and stretching cases, which is
responsible for the instability of the second solution. The
temperature and nanoparticle concentration profiles for
different values of conjugate parameter γs are presented
in figures 13a, 13b and 14a, 14b. The effect of conju-
gate parameter γs on the temperature profile for both
the first and second solutions shows that the tempera-
ture and thermal boundary layer thickness increase with
the increase of γs in both the shrinking and stretching
cases, respectively. It is noted that when the conjugate
parameterγs is zero, the temperature at the wall becomes
zero, i.e. there is no heat transfer and when γs → ∞,
the Newtonian heating condition becomes the condition
of constant wall temperature. Physically, it is observed
that the temperature becomes zero when the conjugate
parameter γs is zero. Therefore, by increasing the con-
jugate parameter γs , the temperature enhances within
the boundary layer. The same behaviour is observed in
the nanoparticle concentration profile but in the second
solution, the boundary layer thickness is greater than
that for the first solution.

6. Conclusion

In this study, we have theoretically investigated the
effect of Newtonian heating on the flow of a nanofluid
over a nonlinear permeable stretching/shrinking sheet
near the region of stagnation point. The governing

equations of the flow problem are solved numerically
by using the spectral collocation method and dual solu-
tions are found for specific values of suction parameter
γ . The effects of pertinent parameters, namely suc-
tion, velocity ratio, Prandtl number, thermophoresis
and Brownian motion parameters, Schmidt number and
Newtonian heating parameter γs on the velocity, temper-
ature, nanoparticle concentration profiles, skin friction
coefficient, local Nusselt number and local Sherwood
number are examined using graphs. The key findings in
this study are:

1. Temperature and concentration increase with
increasing values of Nt for both stretching and
shrinking sheets. Also, the thermal and concen-
tration boundary layer thicknesses are higher in
the shrinking case than in the stretching case.

2. Temperature increases and concentration decreas-
es with increasing values of Nb and Schmidt num-
ber Sc for both stretching and shrinking sheets.
Also, the thermal and concentration boundary
layer thicknesses are higher in the shrinking case
than in the stretching case.

3. Skin friction coefficient increases in the first solu-
tion and decreases in the second solution with the
increase of suction parameter γ . The values of
the first solution are higher than that of the sec-
ond solution. The suction parameter γ widens the
ranges of dual solutions.

4. Local Nusselt number and local Sherwood number
increase with the increase of suction parameter γ .
The values of the local Nusselt number and local
Sherwood number in the first solution are smaller
in magnitude than in the second solution.

5. Local Nusselt number increases with the increase
of Prandtl number Pr.
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6. Temperature and concentration profiles increase
with the increase of the Newtonian heating param-
eter γs for both stretching and shrinking sheets.
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