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Abstract. The flow of a second grade fluid by a rotating stretched disk is considered. Brownian motion and
thermophoresis characterise the nanofluid. Entropy generation in the presence of heat generation/absorption, Joule
heating and nonlinear thermal radiation is discussed. Homotopic convergent solutions are developed. The behaviour
of velocities (radial, axial, tangential), temperature, entropy generation, Bejan number, Nusselt number, skin friction
and concentration is evaluated. The radial, axial and tangential velocities increase for larger viscoelastic parameters
while the opposite trend is noted for temperature. Concentration decreases when Schmidt number and Brownian
diffusion increase. Entropy generation increases when the Bejan number increase while the opposite is true for the
Brinkman number and the magnetic parameter.
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1. Introduction

The requirements for the development in the heat
transfer rate cannot be achieved by ordinary fluids like
water, kerosene oil, ethylene glycol, etc. Several exper-
iments have been carried out by the researchers for
improving heat exchange. Many techniques have been
proposed in this direction by enhancing micrometre-
sized particles for the thermal conductivity of con-
vectional fluids. The major drawbacks in heat trans-
fer components and high-pressure drops are blockage
and erosion. To overcome such issues, the idea of
nanofluids is introduced. Nanofluids is a suspension
of particles of size 1–100 nm in base fluids. It is
very effective as the suspension of these particles can
enhance the thermal conductivity of base fluids and
thus is useful in increasing the heat transfer rate. The
enhancement of the thermophysical properties of con-
ventional fluids using nanoparticles suspension is first
examined by Choi [1]. Nanofluids have many applica-
tions in fields such as nanocryosurgery, environment
engineering, chemical industry, heat control systems,
heat exchangers, energy storage, power production,

refrigeration process, etc. Due to these noteworthy
applications, many researchers have already worked on
this topic [1–10]. Many materials in nature have diverse
properties. All such materials cannot be handled by the
Navier–Stokes theory. These materials are viscoelastic.
Food stuff, care products, ketchup, shampoo, many fuel
and oils are a few examples of such fluids. Many models
like Maxwell, Williamson, Sisko, Jeffrey, Oldroyd-B,
Burgers, generalised Burgers, etc. are developed for
describing these fluids. Some contributions in this direc-
tion have already been made [11–19].

The irreversibility process in the system is called
entropy. In thermodynamics, the transfer of heat is
related to the minimum change of entropy. To enhance
the ability of machines, entropy generation minimi-
sation (EGM) is utilised. Some applications of EGM
include spin moment, internal molecular friction, kinetic
energy and vibration. This type of loss of energy
cannot be regained without extra work. That is why
entropy is called the measure of irreversibility through
heat transfer, mass transfer or viscous dissipation.
Several scientists used this process of minimisation
in many systems like natural convection, fuel cells,
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cooling by evaporation, gas turbines, etc. Qayyum et al
[20] analysed entropy generation in radiative and Von
Karman’s swirling flow with Soret and Dufour effects.
Berdichevsky [21] studied the effect of crystal plastic-
ity in the presence of entropy. Khan et al [22] worked
on disorderedness of the system for nanofluid flow after
considering Arrhenius activation energy. An increase in
the efficiency of thermal power plants through entropy
generation is examined by Haseli [23]. Hayat et al [24]
discussed the entropy generation of a flow with non-
linear thermal radiation. The generation of entropy in
a gaseous phosphorus dimer is discussed by Jia et al
[25]. The simulation of entropy generation by a similar
method can be seen in [25] and Gibbs free energy and
enthalpy generation in nitrogen monoxide and gaseous
phosphorus dimer can be seen in refs [26–28].

This paper examines entropy generation optimisa-
tion for the flow of a second-grade nanofluid. Nonlinear
thermal radiation, heat generation/absorption and Joule
heating in formulation are considered. The relevant non-
linear problems are computed for the convergent series
solutions by the homotopy analysis method [7,29–35].
The effects of sundry variables on velocity, temperature,
Bejan number, entropy generation, skin friction coeffi-
cients and concentration are examined.

2. Formulation

The flow of a second-grade nanofluid by a stretchable
rotating disk is examined. Entropy generation for vis-
cous dissipation, Joule heating and nonlinear thermal
radiation is also discussed. A magnetic field of constant
strength (B0) is exerted in the z-direction. The disk at
z = 0 rotates at an angular velocity (�1) (see figure 1).
The stretching velocity of the disk is a (with a being the
stretching rate). The disk and ambient temperature are
denoted by T̂w and T̂∞, respectively. The surface and
ambient concentrations are Ĉw and Ĉ∞.

The governing equations in component form are
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Figure 1. Flow geometry.
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with boundary conditions

û = ra, v̂ = r�1, ŵ = 0,
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Ĉ = Ĉw, T̂ = T̂w, p̂ → 0 at z = 0,

û = 0, v̂ = 0, Ĉ → Ĉ∞
T̂ = T̂∞ when z → ∞. (6)

Here (û, v̂, ŵ) are velocities in the (r̂ , θ̂ , ẑ) directions
of the disk, α1 is the material parameter, ν f is the kine-
matic viscosity, ρ f is the density, p̂ is the pressure, k f
is the thermal conductivity, cp is the specific heat, Q∗
is the heat generation/absorption coefficient and DB is
the coefficient of diffusion species. Considering [18]
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Ĉw − Ĉ∞
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the continuity equation is satisfied and eqs (2)–(6) are
reduced in the dimensionless form as
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in which We, Re, Pr, A, Q, Sc, δ, Nb, Nt, M ,
Rd , θw and Ec represent the Weissenberg number,
Reynolds number, Prandtl number, stretching param-
eter, heat generation/absorption parameter, Schmidt
number, ratio of diffusion coefficient, Brownian param-
eter, thermophoresis parameter, magnetic parameter,
radiation parameter, temperature difference and the Eck-
ert number, respectively.

We have C f θ and C f r as skin friction coefficients in
the tangential and radial direction, i.e.
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where shear stresses τzr and τzθ are
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∂z

∂ û
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Skin friction coefficients in the dimensionless form are
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Rer C f θ = g̃′(0)
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)
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where Rer = r�1h/ν depicts the local Reynolds num-
ber.

The heat transfer rate is
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The Nusselt number in the dimensionless form is
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2.1 Entropy generation

Entropy generation in the nanofluid flow of a second-
grade fluid with nonlinear thermal radiation irreversibil-
ity, viscous dissipation irreversibility and Joule heating
irreversibility is discussed here. The dimensional form
is defined as
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The above two equations yield
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∂z

)2

+
(

∂v̂

∂z

)2
]

+α1

[
2
∂ û
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Equation (24) consists of four factors: (i) heat transfer
irreversibility, (ii) fluid friction irreversibility, (iii) Joule
heating irreversibility and (iv) diffusive irreversibility.
Now, eq. (24) in the dimensionless form is
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where NG indicates entropy generation, Br is the
Brinkman number, α1 is the temperature ratio, α2 is the
concentration ratio and L∗ is the diffusive parameter.
The Bejan number is defined as
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Be = Entropy generation due to heat and mass transfer irreversibility

Total entropy generation
, (27)
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3. Homotopic solutions
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(θw−1)2 +2θ̃ (ξ, q)(θw−1)

]
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+∂2θ̃ (ξ, q)

∂ξ2

[
1 + (θw−1)3(θ̃(ξ, q))3

+3(θw−1)2(θ̃(ξ, q))2 +3(θw − 1)θ̃(ξ, q)
]}

,

(42)

Nϕ̃ = ∂2ϕ̃(ξ, q)

∂ξ2 + 2Sc Re f̃ (ξ, q)
∂ϕ̃(ξ, q)

∂ξ

+ Nt

Nb

∂2θ̃ (ξ, q)

∂ξ2 . (43)

We now expand f̃ (ξ, q), g̃(ξ, q), θ̃ (ξ, q) and
ϕ̃(ξ, q) by using the Taylor series about q = 0 as

f̃ (ξ, q) = f̃0(ξ) +
∞∑

m=1

f̃m(ξ)qm;

f̃m(ξ) = 1

m

∂m f̃

∂qm

∣∣∣∣
q=0

, (44)

g̃(ξ, q) = g̃0(ξ) +
∞∑

m=1

g̃m(ξ)qm;

g̃m(ξ) = 1

m!
∂mg̃

∂qm

∣∣∣∣
q=0

, (45)

θ̃ (ξ, q) = θ̃0(ξ) +
∞∑

m=1

θ̃m(ξ)qm;

θ̃m(ξ) = 1

m!
∂m θ̃

∂qm

∣∣∣∣
q=0

, (46)

ϕ̃(ξ, q) = ϕ̃0(ξ) +
∞∑

m=1

ϕ̃m(ξ)qm;

ϕ̃m(ξ) = 1

m!
∂m ϕ̃

∂qm

∣∣∣∣
q=0

. (47)

3.2 mth-order deformation equations

The mth-order problems are

L f̃

[
f̃m(ξ) − χm f̃m−1(ξ)

] = h̄ f̃ R
m
f̃
(ξ), (48)

Lg̃
[
g̃m(ξ) − χmg̃m−1(ξ)

] = h̄ g̃R
m
g̃ (ξ), (49)

Lθ̃

[
θ̃m(ξ) − χm θ̃m−1(ξ)

] = h̄ θ̃R
m
θ̃
(ξ ), (50)

Lϕ̃

[
ϕ̃m(ξ) − χm ϕ̃m−1(ξ)

] = h̄ϕ̃R
m
ϕ̃ (ξ ), (51)

f̃m(0) = ∂ f̃m(0)

∂ξ
= ∂ f̃m(∞)

∂ξ
= 0,

θ̃ (0) = θ̃ (∞) = 0,

g̃m(0) = g̃m(∞) = 0,

ϕ̃(0) = ϕ̃(∞) = 0, (52)

where the functions Rm
f̃
(ξ),Rmg̃ (ξ), Rm

θ̃
(ξ ) and Rm

ϕ̃
(ξ )

are

Rm
f̃
(ξ) = f̃ ′′′

m−1

+We Re

(
2
m−1∑
k=0

f̃ ′′
m−1−k f̃

′′
k +

m−1∑
k=0

g̃′
m−1−k g̃

′
k

−2
m−1∑
k=0

f̃m−1−k f̃
iv
k +

m−1∑
k=0

f̃ ′
m−1−k f̃

′′′
k

)

−Re

(
m−1∑
k=0

f̃ ′
m−1−k f̃

′
k −

m−1∑
k=0

f̃m−1−k f̃
′′
k

−
m−1∑
k=0

g̃m−1−k g̃k

)
− M f̃ ′

m−1, (53)

Rmg̃ (ξ) = g̃′′
m−1 + We Re

(
2
m−1∑
k=0

f ′
m−1−k g̃

′′
k

−2
m−1∑
k=0

f̃m−1−k g̃
′′′
k − 3

m−1∑
k=0

f̃ ′′
m−1−k g̃

′
k

)

−Re

(
2
m−1∑
k=0

f̃ ′
m−1−k g̃k − 2

m−1∑
k=0

f̃m−1−k g̃
′
k

)

−Mg̃m−1, (54)

Rm
θ̃
(ξ ) = θ̃ ′′

m−1+2Re Pr
m−1∑
k=0

f̃m−1−k θ̃
′
k

+Re PrQ
m−1∑
k=0

θ̃m−1 + Nb Pr
m−1∑
k=0

θ̃ ′
m−1−k ϕ̃

′
k

+Nt Pr
m−1∑
k=0

θ̃ ′2
m−1

+M Pr Ec
m−1∑
k=0

(
f̃ ′2
m−1−k + g2

m−1−k

)

+Rd

(
3(θw − 1)

(
θ̃ ′2

m−1

+
m−1∑
k=0

θ̃2
m−1−k θ̃

′2
k(θw−1)2

+2
m−1∑
k=0

θ̃m−1−k θ̃
′2
k(θw − 1)

)
+ θ̃ ′′

m−1
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+(θw − 1)3
m−1∑
k=0

θ̃3
m−1−k θ̃

′′
k

+3(θw − 1)

m−1∑
k=0

θ̃m−1−k θ̃
′′
k

+3
m−1∑
k=0

(θw − 1)2θ̃2
m−1−k θ̃

′′
k

)
, (55)

Rm
ϕ̃ (ξ ) = ϕ̃′′

m−1 + 2Re Sc
m−1∑
k=0

f̃m−1−K ϕ̃′
K + Nt

Nb
θ̃ ′′
m−1,

(56)

χm =
{

0, m ≤ 1,

1, m > 1.
(57)

The general solutions can be written as

f̃m(ξ) = f̃ ∗
m(ξ) + c1 + c2e−ξ + c3eξ , (58)

g̃m(ξ) = g̃∗
m(ξ) + c4e−ξ + c5eξ , (59)

θ̃m(ξ) = θ̃∗
m(ξ) + c6e−ξ + c7eξ , (60)

ϕ̃m(ξ) = ϕ̃∗
m(ξ) + c8e−ξ + c9eξ , (61)

where the constants ci (i = 1−9) by using the boundary
conditions (52) have the values

c1 = −c2 − f̃ ∗
m(0), c2 = ∂ f̃ ∗

m(0)

∂ξ
,

c4 = −∂ g̃∗
m(0)

∂ξ
, c6 = −∂θ̃∗

m(0)

∂ξ
,

c8 = −∂ϕ̃∗
m(0)

∂ξ
, c3 = c5 = c7 = c9 = 0. (62)

4. Convergence analysis

With the help of auxiliary parameters h̄ f̃ , h̄ g̃, h̄ θ̃ and
h̄ϕ̃ , we can regulate the convergence region. By using
the homotopy analysis method (HAM), we can solve
the system of equations. Figure 2 shows the h̄-curves
at the 25th order of deformation. Convergence regions
for these parameters are −2 ≤ h̄ f̃ ≤ −1, −2 ≤
h̄ g̃ ≤ −0.1, −2 ≤ h̄ θ̃ ≤ −0.5 and −1.5 ≤ h̄ϕ̃ ≤
−0.5. Table 1 demonstrates the convergence order for
f̃ ′′(0), g̃′(0), θ̃ ′(0) and ϕ̃′(0) which converges at the
12th, 11th, 28th and 28th order of approximations,
respectively.

Figure 2. h curve at f̃ ′′(0), g̃′(0), θ̃ ′(0) and ϕ̃′(0).

Table 1. Solution convergence occurs when Re = 0.3,
We = 0.01, Rd = 0.01, θw = 0.1, A = 0.4,
Pr = 1.5, Q = 0.01, Ec = 0.4, Sc = 1, Nb = 0.3,
Nt = 0.01, M = 0.2.

Order of
approximation

− f̃ ′′(0) −g̃′(0) −θ̃ ′(0) −ϕ̃′(0)

1 0.05554 0.5800 0.5713 0.5233
12 0.09494 0.6942 0.2365 0.3021
17 0.09494 0.6942 0.2277 0.2939
24 0.09494 0.6942 0.2235 0.2890
27 0.09494 0.6942 0.2228 0.2879
28 0.09494 0.6942 0.2226 0.2877

5. Results and discussion

In this section, the behaviour of influential variables
on velocity, temperature, concentration, coefficients of
skin friction and the Nusselt number is analysed. In
figures 3–23, we fixed We = 0.3, Re = 0.9 = 0.9
= 0.7, Ec = 0.4, Q = 0.7, Nt = 0.3, Nb = 0.3, Rd =
0.5, θw = 0.2, Sc = 1 and M = 0.5.

5.1 Dimensionless velocities

Figures 3–10 illustrate the velocities of various
parameters. In figures 3 and 4, the effects of viscoelas-
tic parameter (ξ)

(
when We = 0, 0.4, 0.8, 1.2

)
on axial(

f̃ (ξ)
)

and radial ( f̃ ′(ξ)) velocities are shown. We
know that the Weissenberg number (We) is inversely
proportional to the fluid viscosity because of which
the motion of the fluid increases with larger We. The
effect of the Reynolds number Re on

(
f̃ (ξ), g̃(ξ)

)
is

shown in figures 5 and 6. Here, for increasing val-
ues of the Reynolds number (Re) (Re = 0, 0.5, 1, 1.5),
( f̃ (ξ), g̃(ξ)) decreases because inertial forces become
stronger for higher Re. The behaviour of velocities
( f̃ (ξ), g̃(ξ)) for the stretching parameter (A) is
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Figure 3. Graph of f (ξ) against We.

Figure 4. Graph of f ′(ξ) against We.

Figure 5. Graph of f (ξ) against Re.

Figure 6. Graph of g(ξ) against Re.

Figure 7. Graph of f (ξ) against A.

Figure 8. Graph of g(ξ) against A.

Figure 9. Graph of f ′(ξ) against M .

discussed in figures 7 and 8. For larger values of
A (A = 0, 0.2, 0.4, 0.6), momentum boundary layer
and f̃ (ξ) rise for a longer stretching rate (see figure 7).
On the other hand, the reverse trend is noticed for g̃(ξ)

because the angular velocity (�1) reduces. Figures 9
and 10 show the effect of magnetic parameter M on(
f̃ ′(ξ), g̃(ξ)

)
. We know that the Lorentz force is related

to the magnetic field which causes resistance to the flow,
and so

(
f̃ ′(ξ), g̃(ξ)

)
reduces for M .

5.2 Temperature

The analysis of temperature distribution θ̃ (ξ ) against
different parameters is deliberated in figures 11–16. The
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Figure 10. Graph of g(ξ) against M .

Figure 11. Graph of θ(ξ) against Pr.

Figure 12. Graph of θ(ξ) against Q.

Figure 13. Graph of θ(ξ) against θw.

Figure 14. Graph of θ(ξ) against Nb.

Figure 15. Graph of θ(ξ) against M .

Figure 16. Graph of θ(ξ) against Nt .

behaviour of Pr with θ̃ (ξ ) is discussed in figure 11.
As Pr is inversely proportional to thermal diffusivity,
for large values of Pr (Pr = 0.4, 0.8, 1.2, 1.6), the
temperature of the fluid decreases. The effect of Q on the
temperature is shown in figure 12. Clearly, θ̃ (ξ ) boosts
up for larger Q (Q = 0, 0.4, 0.8, 1.2) because heat
generation/absorption coefficient increases. Figure 13
demonstrates the behaviour of θ̃ (ξ ) against θw. The
thermal state of the fluid enhances by increasing θw

(θw = 1.1, 1.3, 1.5, 1.7) due to which the tempera-
ture is enhanced. Figure 14 illustrates the effect of
Nb on θ̃ (ξ ). Temperature increases for higher Nb.
Figure 15 shows the behaviour of the magnetic field
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Figure 17. Graph of ϕ(ξ) against Sc.

Figure 18. Graph of ϕ(ξ) against Nt .

Figure 19. Graph of ϕ(ξ) against Nb.

(M) on temperature distribution. An increase in M
(M = 0, 0.5, 1, 1.5) gives rise to θ̃ (ξ ). It is for larger
Lorentz force. In figure 16, both θ̃ (ξ ) and the thermal
layer thickness are increased for Nt = 0, 0.5, 1, 1.5. An
enhancement in Nt results in a stronger thermophoretic
force due to which nanoparticles are transferred from
warm to cold regions, and hence θ̃ (ξ ) rises.

5.3 Concentration

The behaviour of the concentration is portrayed in
figures 17–19. The influence of the Schmidt number
(Sc) on ϕ̃(ξ) is described in figure 17. Large values of
Sc (Sc = 0, 0.3, 0.6, 0.9) decrease the concentration.

Figure 20. Graph of Nux against We.

Figure 21. Graph of Nux against Nt .

In fact, higher values of Sc result in low molecular
diffusivity. The impacts of Nt and Nb on ϕ̃(ξ) are
shown in figures 18 and 19. With an enhancement of
Nt = 0, 0.5, 1, 1.5, thermophoresis force rises. Such
force tends to move nanoparticles from warm to cold
regions and hence ϕ̃(ξ) rises. Moreover, the concen-
tration layer thickness is also enhanced for larger Nt.
The higher the values of Nb (Nb = 0.3, 0.6, 0.9, 1.2),
the smoother is the distribution of nanoparticles concen-
tration in the fluid system, which eventually decreases
ϕ̃(ξ).

5.4 Nusselt number

Figures 20 and 21 demonstrate the effect of the vis-
coelastic parameter (We) and the thermophoresis param-
eter (Nt) on the rate of heat transfer. These figures show
that the Nusselt number increases for higher values of
We while a reverse behaviour is noticed for Nt.

5.5 Skin friction coefficients

Figures 22 and 23 indicate the effects of A and We on
the skin friction coefficients. Here, the magnitude of the
surface drag force in radial and tangential directions is
more for larger A and We.
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Figure 22. Graph of C fr Rer and C fθ Reθ against We.

Figure 23. Graph of C fr Rer and C fθ Reθ against A.

Figure 24. Graph of NG against Br.

5.6 Entropy generation and Bejan number

Figures 24–33 illustrate the trends of NG and Be for dif-
ferent parameters. Figures 24 and 25 show the behaviour
of NG and Be on the Brinkman number (Br). Br is asso-
ciated with the heat transfer from a disk to the flow
of a viscous fluid. Figure 24 indicates more entropy
generation rate for larger Br because by dissipation,
the conduction rate is slowly created. Figure 25 shows
the behaviour of Br on Be as entropy generation is
more for large Br. It means viscosity is dominant over
heat transfer irreversibility, and hence Be decreases.

Figure 25. Graph of Be against Br.

Figure 26. Graph of NG against M .

Figure 27. Graph of Be against M .

In figures 26 and 27, the influence of the magnetic
variable (M) on NG and Be is noticed. In figure 26,
the entropy generation rate is addressed for large val-
ues of M . The entropy generation rate is enhanced for
large M because drag force is higher for larger M .
Figure 27 shows the decaying behaviour of Be for a
larger magnetic variable M . Figures 28 and 29 describe
the behaviour of the diffusion parameter (L∗) on NG
and Be. It is noticed that for L∗, both NG and Be
are increasing functions. The diffusion rate of nanopar-
ticles enhances for larger L∗. That is why the total
entropy of the system and Be are enhanced. Figures 30
and 31 show the impact of θw on NG and Be. Here,
both NG and Be are increasing functions of θw. As
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Figure 28. Graph of NG against L∗.

Figure 29. Graph of Be against L∗.

Figure 30. Graph of NG against θw.

Figure 31. Graph of Be against θw.

Figure 32. Graph of NG against We.

Figure 33. Graph of Be against We.

the disk is heated, for larger values of the temperature
ratio (θw), the disorderedness near the disk is high and so
NG increases (see figure 30). Here, the irreversibility of
the mass and heat transfer prevail over the irreversibility
of the friction of the fluid for higher θw, and so Be also
rises (see figure 31). Trends of NG and Be vs. We are
displayed in figures 32 and 33. Disorderedness in the
system is more for larger We (see figure 32). Be decays
for increasing We (see figure 33).

6. Conclusions

Major findings of this study are:

• For larger viscoelastic parameter (We), the velocities
(radial ( f̃ (ξ)), axial ( f̃ ′(ξ)) and tangential (g̃(ξ)))

are increased.
• Temperature (θ̃(ξ)) against θw, Nt, M and Q en-

hances.
• Concentration reduces for A, Nb, Re and Sc.
• Entropy generation (NG) enhances for We and

Br while the opposite trend is noticed against
We.

• Both NG and Be are enhanced for larger L∗ and
θw.
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