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Abstract. In this paper, a novel passive memristor model and its equivalent circuit model are designed, analysed
and realised to investigate the memristor characteristics and their applications in nonlinear circuits. By employing
this memristor model, a new third-order memristive Wien bridge is set up. Dynamical behaviours of the system are
studied in detail, and multiscroll attractors, coexisting bifurcation modes, coexisting attractors, antimonotonicity
and transient chaotic bursting are observed in this system by using theoretical analysis, simulation analysis and
circuit experiment. Integrable deformation of the memristive Wien-bridge system is analysed. The circuit experiment
is performed by replacing the memristor with its equivalent circuit model in the proposed memristor-based
Wien-bridge circuit.
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1. Introduction

The memristor, recognised as the fourth circuit element,
was predicted by Chua [1] in 1971. In 2008, HP labora-
tory reported the implementation of a nanoscale mem-
ristor [2], which aroused wide interest in academia and
industry. The research of memristors mainly focusses on
physical implementation [2–6] and applications [7–11],
and has achieved some results.

Nanoscale memristors that store information without
the need for an internal power source can be used for
non-volatile memories [7], neural networks [9], nonlin-
ear circuits [10,11], digital logic circuits [12] and so on.

In the field of memristor-based chaotic circuits,
Itoh and Chua [11] derived several memristive chaotic
systems from Chua’s oscillator by replacing Chua’s
nonlinear resistor with a piecewise-linear memristor,
which has greatly stimulated the study on memristor-
based chaotic circuits. Afterwards, some memristive
Wien bridges are constructed in refs [13–17]. Li and
Zeng [13] employed a piecewise-linear memristor to
construct a fourth-order memristor-based Wien-bridge
circuit, which can generate chaotic and hyperchaotic

behaviours. Yu et al [14] introduced a generalised
memristor into a Wien-bridge oscillator to establish a
fifth-order chaotic circuit. Wu et al [15] constructed an
active generalised memristor, with which a fourth-order
Wien-bridge chaotic oscillator was designed further.
By employing a flux-controlled memristor to replace
the resistance of a fourth-order Wien-bridge circuit, Ye
et al [16] built a fifth-order Wien-bridge hyperchaotic
circuit. Although these memristive Wien-bridge sys-
tems are chaotic or hyperchaotic circuits, which have
rich dynamical behaviours, these chaotic systems are
high-order chaotic circuits, i.e. of the fourth or the fifth
order, which makes it difficult to analyse and design.
Bao et al [17] proposed a third-order memristive oscil-
lator, exhibiting symmetric periodic bursting, but the
memristive circuit does not show chaotic behaviour.
Moreover, all these memristive Wien bridges are based
on the canonical Wien bridge. To explore a chaotic cir-
cuit combining a memristor and a non-canonical Wien
bridge, we design a third-order memristive chaotic sys-
tem based on a non-canonical Wien bridge and a passive
memristor model. The proposed Wien-bridge chaotic
system can generate a multiscroll chaotic attractor, and
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Figure 1. Equivalent circuit of the memristor.

exhibits some complex dynamical characteristics, such
as coexisting bifurcation modes, coexisting attractors,
antimonotonicity and transient chaotic bursting. As the
system possesses complex dynamical behaviours, it can
be employed in information engineering, e.g. the gen-
eration of pseudorandom sequences in various informa-
tion encryptions. In addition, the integrable deformation
of the Wien-bridge chaotic system is analysed.

2. A memristive non-canonical Wien-bridge system

2.1 A memristor model and its equivalent circuit

Memristor was proposed by Chua [1] in 1971, and after
that, Chua and Kang [18] generalised the definition of
the memristor as follows:

y(t) = M(z, u, t)u(t),
dz

dt
= F(z, u, t), (1)

where u(t) and y(t) are the input and output of a mem-
ristor, respectively, and z is the state variable of a system.
F(·) and M(·) are differentiable scalar-valued functions,
which are related to the specific device.

To design a third-order memristive Wien bridge-based
system, we introduce a voltage-controlled memristor,
and the internal state function is set as dz/dt = −vM −
hz+v2

Mz, where vM denotes the voltage across the mem-
ristor. The voltage-controlled memristor employed in a
Wien bridge-based system should be a passive memris-
tor, thereby its memductance is set asW (z) = γ (z2+β).
The sign before the parameter β denotes polarity. If
the sign is ‘+’, the memristor is a passive element.
Otherwise, the memristor is active. For simplifying the
expression of the chosen memristor, let γ = c and
γβ = 1. Hence, the memristor is expressed as

iM = (1 + cz2)vM,

dz

dt
= −vM − hz + v2

Mz, (2)

where iM is the current passing through the memristor.

To further explore the memristor, we designed its
equivalent circuit, as shown in figure 1. From the equiv-
alent circuit, we get

iM = 1

R1

(
1 + R9

R8
z2

)
vM,

dz

dt
= 1

R4C1

(
−vM − R4

R2
z + R4

R3
v2

Mz

)
. (3)

When resistors and capacitors of the circuit are chosen
as in figure 1, the input port AB connects to a sinusoidal
voltage signal of amplitude vm = 1 V. In the sinu-
soidal excitation, the v–i characteristic of the memristor
is shown in figure 2, which exhibits a pinched hystere-
sis loop and shows the most common of all memristors,
ideal or otherwise. As shown in figure 2, the pinched
hysteresis loops depend on the frequencies of the input
signal, and the lobe area decreases as the frequency
increases.

The memristor can be attributed to two types. One
type is an active memristor, whose v–i characteristic
curves exist in the first and the third quadrants. The other
type is a passive memristor, of which the characteris-
tic curves are in the second and the fourth quadrants.
Figure 2 shows that the characteristic curves exist in
the first and the third quadrants, and thus the proposed
memristor is a passive memristor.

Figure 2. v–i hysteresis loops of the memristor.
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2.2 Model of a memristive Wien bridge-based system

Employing the above memristor, a third-order memris-
tive chaotic circuit based on the Wien bridge is proposed
as shown in figure 3.

According to Kirchhoff’s law and the relationship
between the voltage and current of the elements, simul-
taneously considering eq. (2), the state equations of the
circuit are obtained as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1
dv1

dt
= (R1/R2)v1 − v2

R3
− (1 + cz2)v1,

C2
dv2

dt
= (R1/R2)v1 − v2

R3
,

dz

dt
= −v1 − hz + v2

1z.

(4)

Let v1 = x , v2 = y, R1/R2R3C1 = R1/R2R3C2 =
a, 1/R3C1 = 1/R3C2 = b and 1/C1 = 1. Equation (4)
can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx

dt
= (ax − by) − (1 + cz2)x,

dy

dt
= ax − by,

dz

dt
= −x − hz + x2z.

(5)

For a = 3.05, b = 1, c = 0.5 and h = 2, and the ini-
tial condition taken as (0, 1, 0), the Lyapunov exponents
of the system are calculated as LE1 = 0.028, LE2 = 0,
LE3 = −0.406 and the corresponding Lyapunov dimen-
sion is DL = 2.069. These indicate that the system is
a chaotic oscillator under proper parameters. Figure 4
shows the chaotic attractor, in which figure 4d depicts a
four-scroll attractor. The corresponding Poincaré map-
pings on z = 0 are demonstrated in figure 5.

Figure 3. Memristive Wien-bridge circuit.

3. Characteristic analysis of the system

3.1 Equilibrium point

The divergence of eq. (5) is written as

∇V = ∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
= a− (1+ z2)−b−h+ x2. (6)

Obviously, if ∇V < 0, the system is dissipative, and
its attractor might be a chaotic attractor. System (5) is
invariant under the coordinate transformation

(x, y, z) → (−x, −y, −z). (7)

It implies that this system is symmetrical about the
original point. The left-hand side of eq. (5) is set to zero
to obtain the equilibrium of system (5), written as⎧⎨
⎩
ax − by − (1 + cz2)x = 0,

ay − bx = 0,

−x − hz + x2z = 0.

(8)

Obviously, the system has a unique equilibrium O(0,
0, 0), which differs from other memristive Wien-bridge
chaotic systems that have line equilibrium or multiple
equilibria. By linearising system (5) at the equilibrium,
the Jacobian matrix is expressed as

J =
⎡
⎣a − 1 −b 0

a −b 0
−1 0 −h

⎤
⎦. (9)

The corresponding characteristic equation is written
as

F(λ) = [λ2 − (a − b − 1)λ + b](λ + h) = 0. (10)

The eigenvalues of the equilibrium are solved as

λ1 = −h,

λ2 = (a − b − 1)

2
+ 1

2

√
(a − b + 1)2 − 4b,

λ3 = (a − b − 1)

2
− 1

2

√
(a − b + 1)2 − 4b. (11)

It shows that the equilibrium is asymptotically stable
when h > 0 and a < b+ 1, which is λ1 < 0, Re(λ2) <

0 and Re(λ3) < 0. However, for a = 3.05, b = 1,
c = 0.5 and h = 2, the eigenvalues are λ1 = −2,
λ2 = 0.525 + j2.626, λ3 = 0.525 − j2.626. λ1 is a
negative real root, while λ2 and λ3 are a pair of conjugate
complex roots with a positive real part. Therefore, the
equilibrium is an unstable saddle focus.

3.2 The impacts of system parameters

Now we explore the influence of parameters on the
dynamical behaviours of the system. When we fixb = 1,
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Figure 4. Chaotic attractors of the system: (a) x–y–z phase diagram, (b) x–y phase diagram, (c) y–z phase diagram and
(d) z–x phase diagram.

Figure 5. Poincaré mappings of the system on the z = 0
plane.

c = 0.5 and h = 2, and vary a from 2.5 to 3.3, with
the initial condition as (0, 1, 0), the bifurcation dia-
gram and the corresponding Lyapunov exponent spectra
are obtained as shown in figures 6a and 6b, respec-
tively. This dynamic process includes periodic windows,
quasiperiodic and chaotic orbits. The system starts from
the period-1 state, and it jumps into a chaotic state when
a is about 2.515. In succession, several periodic win-
dows appear in the chaotic region. Then, the system
returns to a period-3 state when a is about 3.255. Par-
ticularly, if we take a = 2.5, 2.6 and 3.27, figures 7

a–7c show periodic, quasiperiodic and chaotic attractors,
respectively.

Setting a = 3.05, c = 0.5, h = 2 and b ∈ [0.2, 2], the
bifurcation diagram and the Lyapunov exponent spec-
trum are illustrated in figures 8a and 8b, respectively.
Similarly, it is obvious that the system has complex
dynamical behaviours on increasing the parameter b.

A dynamical map is displayed in figure 9 to
investigate a and b influencing the states of the system
simultaneously, in which the yellow regions represent
the periodic states, the blue regions represent the chaotic
states and the brown regions represent the unbounded
states.

3.3 Coexisting attractors and coexisting bifurcation
modes

Coexisting attractors and coexisting bifurcation modes
discovered in refs [19–21] are special nonlinear phe-
nomena, and became research hotspots recently. When
the parameters are set as a = 2.765, b = 1 and c = 1,
while h varies from 0.1 to 1.3, under the initial condi-
tions (0, 1, 0) and (0, −1, 0), the coexisting attractors are
found, as shown in figure 10. The orbits starting from the
initial condition (0, 1, 0) are coloured blue, and the orbits
starting from the initial condition (0, −1, 0) are coloured
red. Under the two initial conditions, figures 10a and 10b
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Figure 6. Bifurcation diagram and Lyapunov exponent spectrum with a changing from 2.5 to 3.3: (a) bifurcation diagram
and (b) Lyapunov exponent spectrum.

Figure 7. Phase diagrams on the x–y plane: (a) a = 2.5, (b) a = 2.6 and (c) a = 3.27.

display the coexistence of two period-1 attractors and
two period-2 attractors with h = 0.1 and 0.2, respec-
tively. When h = 0.3, the coexistence of the chaotic
attractors is demonstrated in figure 10c, when h = 0.4
and 0.9, the coexistence of two quasiperiodic attractors
is depicted in figures 10d and 10f. Furthermore, when
h = 0.5 and 1.3, two ordinary chaotic attractors are
observed in figures 10e and 10h, while for h = 1.1,
two conventional quasiperiodic attractors are observed
in figure 10g. Hence, there are numerous coexisting
periodic, quasiperiodic and chaotic attractors in the sys-
tem, as well as some conventional attractors that appear

alternately with the coexisting attractors with increasing
h, thereby implying the complexity of the system.

The attractive basin, which shows the multistability
nature of nonlinear systems, is an important method to
analyse coexistent attractors. Figure 11 gives the attrac-
tive basin in the cross-section of a = 2.765, b = 1,
c = 1, h = 0.3 and z(0) = 0. It can be observed that
there exist four different colours in the attractive basin,
implying four different types of attractors in the given
value region.

The coexisting bifurcation modes always accompany
with the coexisting attractors phenomenon. Under the



42 Page 6 of 14 Pramana – J. Phys. (2019) 93:42

Figure 8. Bifurcation diagrams with b changing from 0.2 to 2: (a) bifurcation diagram and (b) Lyapunov exponent spectrum.

Figure 9. Dynamical map with a and b.

above parameters and initial conditions, the bifurca-
tion diagram and the Lyapunov exponent spectrum
are shown in figure 12. The Lyapunov exponent spec-
trum agrees with the bifurcation diagram very well,
and the coexisting bifurcation modes are depicted. In
the bifurcation diagram, there are forward and reverse
period-doubling bifurcations and jump phenomenon.

3.4 Variety of the chaotic attractors

The proposed system can not only produce a four-scroll
attractor on the z–x plane as shown in figure 4d, but
also generate a double-scroll attractor and a one-scroll
attractor. Setting the parameters as a = 2.78, b = 1,
c = 1 and h = 0.3, with the same initial conditions as
in §2.2, the double-scroll attractor is obtained, which is
presented in figure 13a. If we choosea = 2.76, and other
parameters are fixed, the coexisting one-scroll attractors
are depicted in figure 13b. The blue one comes from the
initial condition of (0, 1, 0), and the other initial con-
dition is (0, −1, 0). Therefore, the scroll number of the
attractor can be controlled by choosing the parameters.

Moreover, for the parameters a = 2.8, b = 1, c = 1
and h = 0.3, if the fourth-order Runge–Kutta method
is employed to solve eq. (5), and 4000 steps are taken,
figure 14a demonstrates the coexisting attractors. The

red attractor starts from the initial condition of (0, 0.1, 0)
and the blue one starts from the initial condition of
(0, −0.1, 0). However, if 6000 steps are taken, the attrac-
tor from the former initial condition is displayed in
figure 14b, which is a double-scroll attractor, but the
two scrolls are different in density. Therefore, the coex-
isting one-scroll attractors do not exist for a long time.

3.5 Antimonotonicity

Antimonotonicity is a phenomenon of creation and anni-
hilation of periodic orbits, which has been observed in
some nonlinear systems, such as the memristive jerk sys-
tem, memristive twin-T oscillator and the laser systems
[22–24]. However, the phenomenon of antimonotonicity
is never observed in memristive Wien-bridge oscilla-
tors, whereupon we investigate this phenomenon in our
system. To illustrate this phenomenon clearly, some
bifurcation diagrams of the parameter h are shown in
figure 15, where the parameter b has some discrete
values. From figure 15, we observe a primary bub-
ble observed at b = 0.96, and a period-4 bubble at
b = 0.89. For b = 0.882, a period-6 bubble appears.
As b is further decreased, a Feigenbaum remerging tree
(like chaos) occurs at b = 0.8745.

3.6 Chaotic bursting and chaotic transient phenomena

Bursting oscillation is a complex nonlinear behaviour,
which is employed for communication in biological neu-
rons [25,26]. In the past few years, this phenomenon has
been discovered in many chaotic systems [15,27,28].
Some dynamical systems with two time scales can
generate a combination of large-amplitude and small-
amplitude oscillations. The system is considered to be
in a quiescent state when the oscillation amplitude is
zero or small. In contrast, when the oscillation ampli-
tude is large, the system is in the spiking state. Bursting
is the phenomenon of alternations between quiescent
states and spiking states. Chaotic bursting is a type of
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Figure 10. Attractors on the x–y plane with different h under initial conditions (0, 1, 0) (blue) and (0, −1, 0) (red): (a)
coexisting period-1 attractors with h = 0.1, (b) coexisting period-2 attractors with h = 0.2, (c) coexisting chaotic attractors
with h = 0.3, (d) coexisting quasiperiodic attractors with h = 0.4, (e) conventional chaotic attractors with h = 0.5, (f)
coexisting quasiperiodic attractors with h = 0.9, (g) conventional quasiperiodic attractors with h = 1.1 and (h) conventional
chaotic attractors with h = 1.3.
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bursting pattern, whose oscillations are aperiodic. The
chaotic bursting has been frequently exhibited in various
kinds of neuronal models, and exists in some chaotic
systems [29,30]. When the system has two time scales,
the fast variables are modulated by the slow variable,
leading to the emergence of bursting.

Hence, a system, which has a bursting phenomenon,
can be divided into fast and slow subsystems such that
the slow subsystem includes a single slow variable, and

Figure 11. Attractive basins in the cross-section of
a = 2.765, b = 1, c = 1, h = 0.3 and z(0) = 0.

the fast subsystem includes the remaining variables,
which are relatively fast [31]. The fast subsystem of
system (5) is expressed as
{

dx
dt = (ax − by) − (1 + cz2)x,
dy
dt = ax − by,

(12)

which consists of the first and second equations in
eq. (5), while the slow subsystem is expressed as

dz

dt
= −x − hz + x2z, (13)

which is the third equation of eq. (5). For the fast
subsystem, the variable z can be considered as a conven-
tional parameter, and its equilibrium point is obtained as
O(0, 0). The corresponding Jacobian matrix is expressed
as

Jsub =
[
a − (1 + cz2) −b

a −b

]
. (14)

Therefore, the characteristic equation is expressed as

det(λI − Jsub) = λ2 +[b−a+(1+cz2)]λ+b(1+cz2).

(15)

Figure 12. Coexisting bifurcation mode and Lyapunov exponent spectrum with respect to h under different initial conditions:
(a) bifurcation diagram under initial conditions (0, 1, 0) (blue) and (0, −1, 0) (red) and (b) Lyapunov exponent spectrum.

Figure 13. Attractors of different scroll number: (a) double-scroll attractor with a = 2.78 and (b) coexisting one-scroll
attractors with a = 2.76.
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Figure 14. Attractors of different scroll numbers under different steps: (a) transient coexisting one-scroll attractors under
4000 steps and (b) double-scroll attractor under 6000 steps.

Figure 15. Bifurcation diagrams in terms of h: (a) a primary bubble at b = 0.96, (b) a period-4 bubble at b = 0.89, (c) a
period-6 bubble at b = 0.882 and (d) a Feigenbaum remerging tree at b = 0.8745.

For b > 0 and c > 0, the solution of eq. (15) is non-
zero, implying that fold bifurcation does not exist in
system (5). As the Hopf bifurcation is associated with
the existence of a pair of pure imaginary eigenvalues,
the critical condition at the Hopf bifurcation point is
z = ±√

(a − b − 1)/c.
When the parameters are selected as a = 20, b =

0.5, c = 1 and h = 0.01, with the initial con-
ditions of (0.1, 0.1, −4.0) and (−0.1, −0.1, −4.0),
the critical condition is z = ±4.30. By simulating,
bursting oscillations appear as shown in figure 16,
in which the variable x(t) changes fast with time t ,
whereas the variable z(t) is slow. The fast variable

x(t) is modulated by the low variable z(t). Further-
more, both burstings are symmetric, of which the red
one depends on the critical value z = 4.30 and the
other relates to the critical value z = −4.30. Hence,
we can conclude that the generation of the symmetric
bursting oscillation is linked to the symmetric Hopf–
Hopf bifurcation. From figure 16, it is clear that the
bursting oscillations are aperiodic, indicating chaotic
bursting.

However, this chaotic bursting is transient. For the
initial condition of (0.1, 0.1, −4.0), the time-domain
waveforms of x(t) are shown in figure 17a, and the Lya-
punov exponent spectrum is displayed in figure 17b. The
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Figure 16. Time-domain waveforms and phase diagrams of chaotic bursting with the initial conditions of (0.1, 0.1, −4.0)
(blue) and (−0.1, −0.1, 4.0) (red): (a) the time-domain waveforms of x(t), (b) the time-domain waveforms of z(t) and
(c) z–x phase diagram.

Figure 17. Transient chaotic bursting: (a) the time-domain waveforms of x(t) and (b) the Lyapunov exponent spectrum.

Lyapunov exponent spectrum matches with the time-
domain waveforms. From figure 16b, it can be seen that
the largest Lyapunov exponent decreases to zero with
time evolution.

4. Integrable deformation of the memristive
Wien-bridge system

Chaotic systems can be applied in many fields. Thus,
the construction of new chaotic systems has always
been of concern. Lăzureanu proposed a novel method
called the integrable deformation method to generate
some new chaotic systems [32]. However, Lăzureanu
[32] did not investigate the integrable deformation of a

chaotic system with multistability. Therefore, due to its
multistability, the integrable deformation of the memris-
tive Wien-bridge system is investigated. The memristive
Wien-bridge system f (x) is assumed to consist of a
Hamilton–Poisson part g(x) and a non-conservative part
h(x). Note that the Hamilton–Poisson part is not unique,
which is selected as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −ay,

dy

dt
= ax,

dz

dt
= 0

(16)
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Figure 18. Coexisting attractors of the deformed system on the z–x plane with different a under initial conditions (0, 1, 0)
(blue) and (0, −1, 0) (red): (a) coexisting quasiperiodic attractors with a = 3.28, (b) coexisting chaotic attractors with a = 3.7,
(c) coexisting periodic attractors with a = 4.051 and (d) coexisting chaotic attractors with a = 15.

Figure 19. Circuit schematic of realising the system.

with the corresponding constants of motion

H(x) = z, C(x) = (a/2)x2 + (a/2)y2,

whose relation is g = ∇H × ∇C . By employing
this integrable deformation method, and introducing
the deformation functions α and β, the integr-
able deformation of the memristive Wien-bridge
system is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= (ax − by) − (1 + cz2)x

−∂β

∂y
− ay

∂α

∂z
+ ∂α

∂y

∂β

∂z
− ∂α

∂z

∂β

∂y
,

dy

dt
= ax − by + ∂β

∂x
+ ax

∂α

∂z
− ∂α

∂x

∂β

∂z
+ ∂α

∂z

∂β

∂x
,

dz

dt
= −x − hz + x2z + by

∂α

∂x
− ax

∂α

∂y

+∂α

∂x

∂β

∂y
− ∂α

∂y

∂β

∂x
. (17)
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We choose α = (g/3a)z3 and β = 0 so that
the deformed system is symmetrical about the origi-
nal point. The integrable deformation of system (5) is
obtained as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= (ax − by) − (1 + cz2)x − gyz2,

dy

dt
= ax − by + gxz2,

dz

dt
= −x − hz + x2z.

(18)

Figure 20. Experimental set-up of the memristive Wien-
bridge circuit.

To highlight the multistability of the deformed system,
some phase portraits of the coexisting attractors are
shown in figure 18, where the parameter a is varied,
whereas the other parameters are fixed as b = 2,
c = 4.5, g = 1 and h = 0.4, and the initial conditions
are selected as (0, 1, 0) and (0, −1, 0). In figure 18, coex-
isting quasiperiodic attractors are observed at a = 3.28,
coexisting periodic attractors at a = 4.051 and two
kinds of coexisting chaotic attractors at a = 3.7, 15.
Moreover, two coexisting chaotic attractors shown as
figure 18d are chaotic bursting, and are symmetrical
about the original point. Therefore, the deformed sys-
tem still has multiple types of coexisting attractors with
appropriate parameters.

5. Circuit design and experimental results

This chaotic system can be realised via the analogue
circuit. For circuit realisation, the time constant which
is often called the time scale factor should be taken into
account since it influences the frequency and the spec-
trum of chaotic signal. It is very important to choose

Figure 21. Experimental results of the chaotic system: (a) x–y phase diagram, (b) y–z phase diagram and (c) z–x phase
diagram.
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Figure 22. Experimental results of the memristive system: (a) period-1 phase diagram and (b) period-3 phase diagram.

a suitable time scale factor for easy observation. When
the time scale factor K is introduced into eq. (5), and
the parameters are chosen as b = 1, c = 0.5 and h = 2,
then eq. (5) is rewritten as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx

dt
= K(ax − y) − K(1 + 0.5z2)x,

dy

dt
= K(ax − y),

dz

dt
= −K(x + 2z − x2z).

(19)

If the memristor in the third-order Wien-bridge
chaotic system is replaced with its equivalent circuit,
and the time-scale factor is chosen as K = 10,000, the
circuit is designed as shown in figure 19, whose state
equations are expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dv1

dt
= (R1/R2)v1 − v2

R3C1
− 1

R4C1

(
1 + R12

R11
z2

)
v1,

dv2

dt
= (R1/R2)v1 − v2

R3C2
,

dz

dt
= 1

R7C3

(
−v1 − R7

R5
z + R7

R6
v2

1z

)
.

(20)

For the parameters a = 3.05, b = 1, c = 0.5 and
h = 2, the values of all the components are taken as
shown in figure 19, specifically, C1 = C2 = C3 =
10 nF, R1 = 30.5 k�, R2 = R3 = R4 = R6 = R7 =
R9 = R10 = R12 = 10 k�, R5 = 5 k�, R8 = 1 M�,
R11 = 20 k�. The multipliers A1, A2 and A3 in figure 18
are realised by the low cost AD633. By employing the
experimental set-up shown in figure 20, the experimen-
tal chaotic attractors shown in figure 21 can be obtained,
which are captured by the digital oscilloscope. If we
vary the value of R2, the period-1 and period-3 orbits
can be observed as shown in figure 22. The circuital

experimental results are consistent with the results of
numerical simulation.

6. Conclusion

This paper proposes a passive memristor, and designs its
equivalent circuit to investigate its fingerprints. Based on
the memristor and a non-classical Wien bridge, a third
chaotic system without inductive element is constructed,
which can produce chaotic multiscroll attractors. Stabil-
ity analysis shows that it has a unique equilibrium and
is symmetrical about the original point. By employing
nonlinear analysis tools, the complex nonlinear phe-
nomena of this system are demonstrated, which include
coexisting bifurcation modes, coexisting attractors, con-
trollable scroll number, antimonotonicity and transient
chaotic bursting. If the initial conditions are symmetric,
the coexisting bifurcation modes and the coexistence
of periodic, quasiperiodic and chaotic attractors are
depicted. Furthermore, the system can generate differ-
ent scroll attractors by changing the parameters and
the initial conditions. More interestingly, the symmet-
ric chaotic bursting of the system is transient, relat-
ing to symmetric Hopf–Hopf bifurcation. Then, by
using the integrable deformation method, the integrable
deformation of the memristive Wien-bridge system is
constructed, which can generate multiple types of coex-
isting attractors. Finally, the third-order Wien-bridge
circuit is implemented by replacing the memristor model
with its equivalent circuit, and the circuital experiment is
performed. The experimental results are consistent with
the theoretical analysis. This memristor-based Wien-
bridge circuit can be used in the generation of complex
pseudosequences for various information encryptions,
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such as secret communications, digital watermarking,
digital signature and so on.
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