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Abstract. The generalised nonlinear Schrödinger equation (NLSE) of third order is investigated, which accepts
one-hump embedded solitons in a single-parameter family. In this paper, we constructed analytical solutions in the
form of solitary waves and solitons of third-order NLSE by employing the extended simple equation method and
exp(−�(ξ))-expansion method. In applied physics and engineering, the obtained exact solutions have important
applications. The stability of the model is examined by employing modulational instability which verifies that all
the achieved exact solutions are stable. The movements of exact solitons are also presented graphically, which assist
the researchers to know the physical interpretation of this complex model. Several such types of problems arising
in engineering and physics can be resolved by utilising these reliable, influential and effective methods.
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1. Introduction

The nonlinear Schrödinger equations (NLSEs) in par-
tial differential equations (PDEs) arise in many fields
of engineering and applied sciences such as quantum
mechanics, optics, fluid dynamics, plasma physics, elas-
tic media, molecular biology, magnetostatic spin waves,
optical fibres and many more [1–7]. In dynamical sys-
tems, the promulgation of solitons in fibre optics is one
of the many fascinating and gorgeous fields of research
in these days. In fibre optics, a majority of such sys-
tems is usually depicted in time domain and through the
field promulgation at various frequencies. The dynami-
cal systems are mostly complex PDEs in nonlinear form
[6–11]. Several researchers have focussed their atten-
tion in the field of optical fibre communication systems.
Furthermore, the introduction of fibre amplifiers, non-
linear effects in optical fibre and optical solitons for
data transmitting through loss of optical fibres hundreds
of kilometres, even submarines, are the sign of com-

prehensive developments in this period. Lately, moving
discrete breathers were linked to embedded solitons as
well.

Breathers and solitons are the two basic classes of
solutions of the NLSE. These analytical solutions can
explain a range of nonlinear complex phenomena and
have attracted a lot of attention from the scientific
community. Solitons play a main role in the study of
dynamics theory of nonlinear waves for more than 50
years. Particularly, the NLSE plays a vital role in sustain-
ing the propagation of non-spreading electromagnetic
pulses, by the so-called self-focussing phenomena in
nonlinear media [12]. Taking into account nonlinearity
and dispersion, Hasegawa and Tappert [13] derived the
Schrödinger equation for applications in optical fibre.
After this amazing progress, the rapid development in
the Schrödinger equation-based soliton theory started
taking place in other research fields such as oceanogra-
phy [14], plasma physics [15], molecular biology [16],
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meteorology [17], geology [18] and nonlinear field
theory [19].

Once the NLSEs are developed, the search for exact
solutions in different forms has been done intensely
and generally in different aspects. For constructing
travelling wave solutions in various forms, several
efficient and powerful methods such as F-expansion
method [7], Jacobi elliptic function technique [10],
semi-inverse variational principle [20], direct alge-
braic technique [21], Kudryashov method [22], simple
equation method (SEM) [23], Darboux transformation
[24], similarity transformations method [25], rational
expansion scheme [26], expansion method [27], aux-
iliary equation technique [28], exp-function method
[29], spectral collection scheme [30] and many more
[31–38] have been developed. The dynamical behaviour
of the NLSEs was studied by researchers in [39,40].
The analytical studies of the model of longitudinal wave
motion in solitary wave form in magneto-electro-elastic
round sticks were done using the expansion technique
[41]. Furthermore, it was employed to get analytical
results of the Drinfel’d–Sokolov–Wilson equation and
the Painleve integrable Burger equation. Khan et al
[42] constructed the analytical solitons of the modi-
fied Korteweg–de Vries (KdV) equation by utilising the
extension of the expansion scheme. Castro López et al
[43] obtained the analytical matter–wave solutions to a
generalised Gross–Pitaevskii equation with several new
time- and space-varying nonlinearity coefficients and
external fields.

The non-Kerr media discernment was shown to be
an enormously exciting field of study in the modu-
lational instability (MI) to study the propagation of
an optical pulse in NLSE [44]. The MI signifies non-
linear interaction among a strong carrier wave and
small periodic perturbation, and occurs in the pro-
mulgation of waves, plasmas and different biological
systems. Furthermore, it governs the configuration of
the periodic train of picosecond pulse, or supercon-
tinuum generation, optical short optical bursts of light
and a category of exotic effects in nonlinear optical
fibres.

In this paper, the SEM [45] and exp(−�(ξ))-
expansion method [46] are applied on the generalised
third-order NLSE to construct different kinds of new
soliton solutions. MI is used to argue the stability of
achieved analytical solutions, which confirms that all
the solutions achieved are stable.

The rest of paper is arranged as follows: the model
is described in §2. The use of extended SEM and
exp(−�(ξ))-expansion method is given in §3. In §4,
the stability of the solutions is investigated using MI.
The discussion of the results of the attained solutions is
presented in §5. Conclusion is given in §6.

2. Governing equation

The generalised third-order NLSE has the following
form:

i

(
∂u

∂t
+ ∂3u

∂x3

)
+ |u|2

(
β1u + iβ2

∂u

∂x

)

+iβ3
∂(|u|2)

∂x
u = 0, (1)

where the values of parameters β1, β2 and β3 are real
and the function u(x, t) is complex. Equation (1) has
been utilised to model ultrashort pulses in optical
fibers. Usually, the above equation also has the term of
second-order derivative. However, once the derivative
expression of third order is included, the derivative term
of the second order can be removed via a gauge trans-
formation. If β1 = β3 = 0, then eq. (1) is described as
the modified KdV or Hirota equation in complex form,
which is integrable by the inverse scattering transform
technique.

3. Soliton solutions of the generalised third-order
NLSE

3.1 Soliton solutions by extended SEM

Assume the solutions in the travelling wave form of
eq. (1) as

u(x, t) = �(ξ)eiP , �(ξ) =
M∑

i=−M

biφ
i (ξ),

ξ = kx + ωt, P = δx + λt + θ, (2)

φ′(ξ) = h0 + h1φ(ξ) + h2φ
2(ξ) + h3φ

3(ξ), (3)

where the amplitude component of the wave profile is
�(ξ), phase factor is P, k and δ represent the frequencies
of solitons, ω and λ represent the wave numbers and θ

is the phase constant. The arbitrary constants are h0, h1,

h2 and h3. The constant M is determined later, which
is a positive integer. Substituting eq. (2) into eq. (1) and
splitting into real and imaginary parts give

3δk2� ′′ + (λ − δ3)� + (β2δ − β1)�
3 = 0, (4)

k3�(3) + (ω − 3δ2k)� ′ + k(β2 + 2β3)�
2� ′ = 0. (5)

Integrating eq. (5) and taking the integration constant as
zero, we have

k3� ′′ + (ω − 3δ2k)� + k

3
(β2 + 2β3)�

3 = 0. (6)
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Equations (4) and (6) are similar, and thus we obtain the
following relation among the coefficients as

β1 = −2β3δ, λ = 3δω − 8δ3k

k
. (7)

Utilise the homogeneous balancing principle in eq. (4)
and assume the solution of eq. (4) as

�(ξ) = b−2

φ2(ξ)
+ b−1

φ(ξ)
+ b0 + b1φ(ξ) + b2φ

2(ξ).

(8)

Substituting eq. (8) into eq. (4) and making the coeffi-
cients to zero of various powers of φi (ξ), we obtained
a systems of equations in parameters b−2, b−1, b0,

b1, b2, h0, h1, h2, h3, k, ν, ω, δ, λ and θ . This algebraic
system of equations is resolved by utilising Mathemat-
ica. The following cases of solutions are obtained.

Case 1: h0 = h2 = 0 and β2 + 2β3 < 0

b−2 = b−1 = 0, b0 = ±
√

6h1k√−β2 − 2β3
, b1 = 0,

b2 = ± 2
√

6h3k√−β2 − 2β3
, ω = 2h2

1k
3 + 3δ2k. (9)

The analytical solutions in solitons and solitary wave
form of eq. (1) from solutions (9) are as follows:

u11(ξ) = ∓
√

6h1k(h3e2h1ξ + 1)√−β2 − 2β3
(
h3e2h1ξ − 1

)eiP , h1 > 0,

(10)

u12(ξ) = ±
√

6h1k√−β2 − 2β3

(
1 − 2h3

e−2h1ξ + h3

)
eiP ,

h1 < 0, (11)

Case 2: h1 = h3 = 0 and β2 + 2β3 < 0

b−2 = 0, b−1 = ±
√

6h0k√−β2 − 2β3
,

b0 = b1 = b2 = 0, ω = 3δ2k − 2h0h2k
3, (12)

b−2 = b−1 = b0 = 0, b1 = ±
√

6h2k√−β2 − 2β3
,

b2 = 0, ω = 3δ2k − 2h0h2k
3, (13)

b−2 = 0, b−1 = ∓
√

6h0k√−β2 − 2β3
, b0 = 0, b2 = 0,

b1 = ∓
√

6h2k√−β2 − 2β3
, ω = 4h0h2k

3 + 3δ2k, (14)

b−1 = ±
√

6h0k√−β2 − 2β3
, b1 = ∓

√
6h2k√−β2 − 2β3

,

b−2 = 0, b0 = 0, b2 = 0, ω = 3δ2k − 8h0h2k
3.

(15)

The solitary wave solutions of eq. (1) are obtained from
solution (12) as

u21(ξ) = ±
√

6h0h2k cot(
√
h0h2ξ)√−β2 − 2β3

eiP ,

h0h2 > 0, (16)

u22(ξ) = ±
√−6h0h2k coth(

√−h0h2ξ)√−β2 − 2β3
eiP ,

h0h2 < 0. (17)

More solitary wave solutions from solution (13) of
eq. (1) are obtained as

u23(ξ) = ±
√

6h0h2k tan(
√
h0h2ξ)√−β2 − 2β3

eiP , h0h2 > 0,

(18)

u24(ξ) = ∓
√−6h0h2k tanh(

√−h0h2ξ)√−β2 − 2β3
eiP ,

h0h2 < 0. (19)

One can also get more new analytical results of eq. (1)
from (14) and (15) in the same way.

Case 3: h0 = h3 = 0,

b−2 = 0, b0 =
√

3h1k√−2(β2 + 2β3)
,

b1 =
√

6h2k√−β2 − 2β3
, b−1 = b2 = 0,

ω = k(6δ2 + h2
1k

2)

2
, b−2 = 0, (20)

b0 = −
√

3h1k√−2(β2 + 2β3)
, b1 = −

√
6h2k√−β2 − 2β3

,

b−1 = b2 = 0, ω = k(6δ2 + h2
1k

2)

2
. (21)

We achieved the following solutions in the form of soli-
tons and solitary wave of eq. (1) from solution (20) as

u31(ξ) = −
√

3h1k
(
h2eh1ξ + 1

)
√−2(β2 + 2β3)

(
h2eh1ξ − 1

)eiP ,

h1 > 0, (22)

u32(ξ) = −
√

3h1k
(
h2eh1ξ − 1

)
√−2(β2 + 2β3)

(
h2eh1ξ + 1

)eiP ,

h1 < 0. (23)
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In a similar way, we can also get more exact solutions
of eq. (1) from solution (21).

Case 4: h3 = 0

b−2 = 0, b−1 = ∓
√

6h0k√−β2 − 2β3
,

b0 = ∓
√

3h1k√−2(β2 + 2β3)
, b1 = b2 = 0,

ω = h2
1k

3 − 4h0h2k3 + 6δ2k

2
, (24)

b−2 = 0, b0 = ±
√

3h1k√−2(β2 + 2β3)
,

b1 = ±
√

6h2k√−β2 − 2β3
, b−1 = b2 = 0,

ω = h2
1k

3 − 4h0h2k3 + 6δ2k

2
. (25)

We obtain the solutions in soliton form of eq. (1) from
solutions (24) and (25) as

u41(ξ)

= ∓

√
3k

⎛
⎜⎜⎝h1 − 4h0h2

h1−
√

4h0h2−h2
1 tan

(√
4h0h2−h2

1
2 ξ

)

⎞
⎟⎟⎠

√−2(β2 + 2β3)
eiP ,

4h0h2 > h2
1, (26)

u42(ξ)

= ±

√
6h0h2 − 3h2

1
2 k tan

(√
4h0h2−h2

1

2 ξ

)

√−β2 − 2β3
eiP ,

4h0h2 > h2
1. (27)

3.2 Soliton solutions by exp(−φ(ξ))-expansion
method

Assuming the solutions in the travelling wave form of
eq. (1) as

u(x, t) = �(ξ)eiP , �(ξ) =
N∑
l=0

Bi (exp(−φ(ξ))i ,

ξ = kx + ωt, P = δx + λt + θ, (28)

φ′(ξ) = exp(−φ(ξ)) + μ exp(φ(ξ)) + ρ. (29)

The arbitrary constants are Bi , μ and ρ. The constant N
is determined later, which is a positive integer. Substitute
eq. (28) into eq. (1) and split into parts as

3δk2� ′′ + (λ − δ3)� + (β2δ − β1)�
3 = 0, (30)

k3�(3) + (ω − 3δ2k)� ′ + k(β2 + 2β3)�
2� ′ = 0

(31)

and integrate eq. (31) and take the integration constant
as zero, we have

k3� ′′ + (ω − 3δ2k)� + k

3
(β2 + 2β3)�

3 = 0. (32)

Equations (30) and (32) are similar, and hence we get
the relation among the coefficients as

β1 = −2β3δ, λ = 3δω − 8δ3k

k
. (33)

Utilising the homogeneous balancing principle in
eq. (30), assuming that eq. (4) has solutions as

�(ξ) = B0 + B1(exp(−φ(ξ)), (34)

substituting eq. (34) along with eq. (29) into eq. (30)
and taking coefficients as zero for various powers of
exp(−φ(ξ))l , we obtained a system of equations in
parameters B0, B1, μ, ρ, k, ν, ω, δ, λ and θ . These alge-
braic systems of equations are resolved utilising Math-
ematica. The following sets of solutions are obtained:

Set 1:

B0 =
√

3kρ√
2(−β2 − 2β3)

, B1 =
√

6k√−β2 − 2β3
,

δ = ∓
√

2ω − k3ρ2 + 4k3μ√
6
√
k

. (35)

Set 2:

B0 = −
√

3kρ√
2(−β2 − 2β3)

, B1 = −
√

6k√−β2 − 2β3
,

δ = ±
√

2ω − k3ρ2 + 4k3μ√
6
√
k

. (36)

The analytical solutions in the form of solitons and
solitary wave of eq. (1) from solutions (35) are given as
follows:

u1(ξ) =

√
3
2k

(
ρ− 4μ√

ρ2−4μ tanh
(

1
2 (c+ξ)

√
ρ2−4μ

)
+ρ

)

√−β2−2β3
eiP ,

μ �= 0, ρ2 − 4μ > 0, (37)

u2(ξ)=

√
3
2k

(
4μ√

4μ−ρ2 tan
(

1
2 (c+ξ)

√
4μ−ρ2

)
+ρ

+ρ

)

√−β2 − 2β3
eiP ,

μ �= 0, ρ2 − 4μ < 0, (38)

u3(ξ) =
√

3
2kρ

(
eρ(c+ξ) + 1

)
√−β2 − 2β3

(
eρ(c+ξ) − 1

)eiP , μ = 0,
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Figure 1. Solitary waves and soliton in various forms of Case 1 solutions are plotted.

ρ �= 0, ρ2 − 4μ > 0, (39)

u4(ξ) =
√

3
2kρ√−β2 − 2β3(cρ + ξρ + 1)

eiP ,

μ �= 0, ρ �= 0, ρ2 − 4μ = 0, (40)

u5(ξ) =
√

3
2k(cρ + ξρ + 2)

√−β2 − 2β3(c + ξ)
eiP , (41)

μ = 0, ρ = 0, ρ2 − 4μ = 0. (42)

One can get more soliton solutions from Set 2.

4. Modulation instability

Numerous higher-order nonlinear models illustrate an
instability, which leads to investigate steady-state mod-
ulation as a consequence of interface between the
dispersive and nonlinear effects. To establish MI of
higher order NLSE (1) by utilising the linear stability
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Figure 2. Periodic solitary wave and bright soliton in different forms of Case 2 solutions are plotted.

analysis [5,6,21] to analyse how the time dependent and
weak perturbation build up along the promulgation dis-
tance. The solution in the steady state of third-order
NLSE is as follows:

u(x, t) = (
√
P + ψ(x, t))eiϕ(t), ϕ(t) = Pαεt. (43)

In the above equation, P is the optical power in the nor-
malised form. The perturbation ψ(x, t) is investigated
by utilising linear stability analysis. Substituting eq. (43)
into eq. (1) and linearising, we get

i

(
∂ψ

∂t
+ β2P

∂ψ

∂x

)
+ iβ3P

(
∂ψ

∂t
+ ∂ψ∗

∂t

)
+ i

∂3ψ

∂x3

+ β1P
(
2ψ + ψ∗) − Pαεψ = 0, (44)

where ∗ signifies the complex conjugate. Assume the
solution of eq. (44) as

ψ(x, t) = γ1ei(kx−ωt) + γ2e−i(kx−ωt), (45)

where ω and k are the normalised frequency and wave
number of ψ(x, t). The dispersion relation ω = ω(k) of
a constant coefficient linear evolution equation specifies
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Figure 3. Dark and periodic solitary waves in various forms are plotted for Cases 3 and 4 solutions.

how the time oscillations eikx are linked to the oscil-
lations of spatial eiωt of ω. Substituting eq. (45) into
eq. (44), we obtain the relation as follows:

ω =Pk(β2 + β3) − k3

± P
√

α2ε2 − 4αβ1ε + 3β2
1 + β2

3k
2. (46)

Relation (46) reveals the steady-state stability which
depend on self-phase modulation, wave number ω and
stimulated Raman scattering. When α2ε2 − 4αβ1ε +
3β2

1 + β2
3k

2 ≥ 0, i.e. ω is real for every k, the steady

state is stable along the small perturbation. It becomes
unstable when α2ε2 − 4αβ1ε + 3β2

1 + β2
3k

2 < 0,
i.e. ω is imaginary as the perturbation develops expo-
nentially. One can simply observe MI when α2ε2 −
4αβ1ε + 3β2

1 + β2
3k

2 < 0. Under these circumstances,
the growth rate of MI gain spectrum f (k) can be
expressed as

f (k) = 2 Im(k) = 2P
√

α2ε2 − 4αβ1ε + 3β2
1 + β2

3 k2.

(47)



44 Page 8 of 9 Pramana – J. Phys. (2019) 93:44

Figure 4. Graph of the dispersion relation ω = ω(k).

5. Results and discussion

The analytical solutions achieved in various forms
using the current scheme are different from the con-
structed solutions of other researchers using the exist-
ing techniques. Equation (3) presents some particular
kind of solutions such as rational and trigonometric
functions by granting special values of parameter.
Pelinovsky and Yang [47] constructed the embedded
soliton solutions of eq. (1). Hence, the solutions obtained
by us are new and have not been constructed in the
literature.

Figure 1 shows the solitary waves of exact solutions
in various forms plotted for Case 1. Figures 1a and 1c
evaluate the solitary wave and dark soliton of solutions
(10) and (11) when β2 = 1, β3 = −2, h1 = 0.5, h3 =
1, k = 0.5, δ = 1, θ = −1 and β2 = 1, β3 = −2, h1 =
−0.5, h3 = 1, k = 0.5, δ = 1, θ = −1, respectively,
and figures 1b and 1d evaluate the contour plots for the
same parameters of the same solutions.

Figure 2 shows the evaluation of solitary waves in
different forms plotted for Case 2. Figures 2a and 2c
manipulate the periodic solitary waves and bright soliton
of solutions (16) and (19) when β2 = 1, β3 = −2, h0 =
−0.5, h2 = −1, k = 0.5, δ = 1, θ = −1 and β2 =
1, β3 = −2, h0 = 0.5, h2 = −1, k = 0.5, δ = 1,

θ = −1, respectively, and figures 2b and 2d evaluate
the contour plots for the same parameters of the same
solutions.

Figure 3 shows the evaluation of the solitary waves in
different shapes for Cases 3 and 4 solutions. Figures 3a
and 3c show the dark solitary and periodic solitary wave
of solutions (23) and (26) when β2 = 1, β3 = −2, h1 =
−0.5, h2 = 1, k = 0.5, δ = 1, θ = −1 and β2 =
1, β3 = −2, h0 = 1.5, h1 = 0.5, h2 = 1, k = 0.5,

δ = 1, θ = 1, respectively, and figures 3b and 3d show
the significance of the contour plots for the same param-
eters of the same solutions. Graph of the dispersion
relation ω = ω(k) is shown in figure 4.

6. Conclusion

In this paper, we have investigated the solitons, solitary
wave solutions and MI of the generalised third-order
NLSE. The extended simple equation technique and
exp(−�(ξ))-expansion method are utilised success-
fully to construct analytical solutions in different forms
such as solitons, solitary waves, periodic solutions and
so on. In optical fibres, this model has been utilised to
form ultrashort pulses. The achieved analytical solu-
tions are of meticulous curiosity for their prospective
applications in various fields such as ultrashort pulses,
optical fibre, applied physics, transmission system, etc.
The exact expression for the MI gain has been obtained
by using the MI analysis that reveals to be sensitive of the
septic nonlinearity. A few results are presented graph-
ically. Among the constructed solutions, many exact
solutions are new and may be useful for mathematicians,
physicists and scientists from other fields to investi-
gate more nonlinear complex physical phenomena. The
obtained results and computational work confirm the
power and efficiency of the present scheme.
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