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Abstract. We examine the existence of multiple vibrational resonance (VR) and antiresonance in two coupled
overdamped anharmonic oscillators where each one is individually driven by a monochromatic sinusoidal signal
with widely separated frequencies (� � ω). In contemporary VR, superposed periodic waves are adopted to
infer resonance, but herein we employ non-superposed periodic waves to acquire the elevated response. We study
two coupling schemes namely, unidirectional and bidirectional, to substantiate the occurrence of multiple VR and
antiresonance. Such occurrences have been shown and the results were ascertained with supportive numerical and
experimental outcomes. We also illustrate the effect of coupling strength on the observed phenomenon.
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1. Introduction

Resonance, the maximum displacement in the magni-
tude spectrum of a system at particular frequencies,
found a spotlight in the arena of physics, engineering and
communication technologies. Among the several known
resonance phenomena, stochastic resonance (SR) [1,2]
attracted a great deal of attention among the research
community as it exploits the productive role of noise
in the amplification of a weak input signal. Recently,
the ‘deterministic’ approach to describe and predict the
SR phenomenon, based on replacing noise by high-
frequency excitations, has been studied [3]. As noise
is inexorable and ubiquitous, SR has drawn interdisci-
plinary attention from climate modelling [4] and signal
processing [5] to neurophysiology [6–8]. After a brief
interval, Landa and McClintock [9] reported a homolo-
gous phenomenon, namely vibrational resonance (VR)
in a bistable system, where the amplification of a weak
periodic component can be stimulated in the presence of
an optimal high-frequency signal. Following the obser-
vation of VR in the bistable system, the study has been
extended to monostable systems [10], excitable systems
[11], time-delayed systems [12,13], maps [14] and so on,
as structures employing widely varying frequencies find

extensive applications in communication and engineer-
ing. The development of atmospheric disturbance has
also been described in terms of VR [15]. VR concern-
ing the nonlinear response of the system was reported
recently [16], where symmetry-breaking effect due to
high-frequency component was manifested as the non-
linear response.

Further, non-autonomous coupled dynamical sys-
tems are pervasive in nature, and unravelling the
physical phenomena associated with them becomes a
non-trivial problem. Several intriguing observations,
including synchronisation, amplitude death, chimera
states and so on could be witnessed in such sys-
tems [17–19]. Among them, the resonant dynamics
of coupled nonlinear systems has been a subject of
extensive research in recent times due to its wide
potential applications. To cite a few, stronger cou-
pling strength in globally coupled Hodgkin–Huxley
neurons can induce coherence resonance and synchro-
nisation [20], theoretical and experimental verification
of fano resonances in coupled plasmonic system [21],
chemical synaptic coupling in three Fitzhugh–Nagumo
neurons shows enhanced response under the influence of
high-frequency driving [22], one-way coupled bistable
system attributed to high- and low-frequency displays
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improved signal transmission [23]. In particular, VR
and SR have been ascertained in nonlinearly cou-
pled overdamped anharmonic oscillators driven by
amplitude-modulated periodic force and noise [24,
25]. In addition, multiple VR with extreme appli-
cation facets in signal transmission and communi-
cation technologies have been reported in discrete
systems [26], one-way coupled n-Duffing oscillator
[27], quintic oscillator with monostable potential [28]
and in a neuron model induced by dynamics of Na+
and K+ ions [29]. On the other hand, antiresonance
leads to umpteen number of real practical applica-
tions including designs of chemotherapeutic protocols
[30], robust dynamic model updating [31], desyn-
chronising undesired oscillations [32], etc. have been
reported. Specifically, Zhang et al [33] indicate the
antiresonance behaviour as mode localisation in the
frequency domain of weakly coupled micromechanical
resonator sensors. As an added credit, antiresonance has
been used for minimising undesired vibrations of cer-
tain parts of the system in aerospace and mechanical
engineering.

A sweeping generalisation made out of the aforemen-
tioned studies is that either VR or SR is observed in
nonlinear systems when excited by superposed bihar-
monic signals or a periodic signal combined with noise.
But, a question can be raised whether VR can be induced
in a coupled system, when both of them are driven by
distinct and unique frequencies (figure 1). The present
study aims at addressing the constraints such as (i)
restriction on the modulation of additional periodic sig-
nals in coupled oscillating systems and (ii) denial of
accessing the individual nodes or subsystems in a hybrid
or complex network. Motivated by these aspects, we had
set the following objectives:

• To investigate the VR and antiresonance phenomena
in a unidirectionally coupled overdamped oscillator
driven at distinct frequencies with one greater than
the other (� � ω).

• To probe an interesting system with a bidirectional
diffusive coupling to concur single and multiple VR.

Furthermore, a system of linear coupled anharmonic
oscillators is capable of imitating the dynamics of
many naturally existing systems, including the dynam-
ics of interacting species in a fluctuating environ-
ment to find the probability of the survival of species
[34].

The lay-out of the paper is as follows: in §2, a detailed
description of the observation of VR and antiresonance
in one-way coupled system is presented with numer-
ical and experimental results. Section 3 discusses the
detection of multiple VR and antiresonance in a bidi-
rectionally coupled system with the necessary numerical

Oscillator 1
    driven 
by fcos(ωt)

Oscillator 2
    driven
by gcos(Ωt)

Figure 1. Case 1: (Blue line) One-way coupling scheme of
the oscillators. Case 2: (Red line) Mutually interacting oscilla-
tors. The oscillators are driven by harmonic signals ( f cos ωt
and g cos �t) of amplitudes f , g and frequencies ω, �.

and experimental support. Finally, conclusions are given
in §4. An effort has been made to derive an empirical
analytical expression for response amplitude Q and crit-
ical high-frequency amplitude gmax for both coupling
schemes and are presented in appendices.

2. Unidirectionally coupled oscillators

Unidirectionally coupled structures do play a key role
in potential applications ranging from the construction
of electronic sensors [35] to modelling of repressilators
[36]. In the present case, we consider a system of uni-
directionally coupled anharmonic oscillators in which
the first oscillator is modulated by a high-frequency sig-
nal (g cos(�t)) and the other with the low-frequency
periodic forcing component ( f cos(ωt)). The dynam-
ical equations of unidirectionally coupled oscillators
are

ẋ = x − x3 + g cos(�t), (1)

ẏ = y − y3 + γ x + f cos(ωt), (2)

where γ is the coupling coefficient that plays a crucial
role in response amplitude. To substantiate the pres-
ence of VR and antiresonance in the chosen model,
we have calculated the response of y(t) from the sine
and cosine components of Fourier amplitude, which are
given by

Bs(ω) = 2

nT

∫ nT

0
y(t) sin(ωt)dt, (3)

Bc(ω) = 2

nT

∫ nT

0
y(t) cos(ωt)dt, (4)

where n is an integer and T = 2π/ω. The response
amplitude is calculated using the relation

Q =
√
B2

s + B2
c

f
, (5)

whereas the phase shift with respect to the input signal
( f cos ωt) is given by θ(ω) = tan−1(Bs(ω)/Bc(ω)). To
analyse the response amplitude in the parametric space
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of f and g, we fix the parameters as ω = 500 and
� = 2000. These frequencies were chosen to provide
convenient experimental concurrence, and the results
follow in the next section. By varying f ∈ [0, 1] and
g ∈ [0, 20], one can observe multiple resonance peaks
as inferred from figure 2a. It is observed that the coupling
strength γ has an effective role in influencing the mag-
nitude of Q but none with the number of resonant peaks.
Therefore, γ is fixed as 1.5. Larger response (Qmax) can
be obtained at f = g = 0.02 that is measured to be 1.8
and the interval of peaks agrees with the period of low-
frequency signal. Figure 2b is plotted by varying ω in
the range [200, 1000] and � ∈ [1400, 2600] for fixed
values of f = g = 0.02. The plot displays two promi-
nent peaks with Qmax measured as 6.98 at ω = 440
and 940 within the chosen spectrum of �. The response
amplitude is calculated for different ω in the range of
[100, 500] as a function of γ ∈ [0.01, 1.2] to study the
effect of coupling strength and is shown in figure 2c.
The plot depicts multiple VR at regular intervals of ω,
but the variation in the magnitude of Q changes abruptly
due to nonlinear damping.

The antiresonance frequencies of the system can be
spotted by fixing ω = 550, � = 2000, f = 0.18 and
scanning g ∈ [0, 20]. Figures 2d and 2e show the res-
onance peak at ω = 500 and antiresonance locus at
ω = 550 for two different coupling strengths γ = 0.1
and 1.5, respectively. The mechanism of antiresonance
can be ascribed as the vigorous energy transfer from
the oscillator driven by high-frequency signal and at
particular frequencies, the amplitude of the oscillator
driven by low-frequency signal is limited to a mini-
mum. The behaviour of linear increase in magnitude
of the response amplitude as a function of γ can be
affirmed from figure 2f, due to the absence of to and
fro vibrational energy transfer, as limited by unidirec-
tional coupling. The rate of change in Q is measured
by fitting a straight line to the data and quantified as
0.015.

2.1 Experimental results

To ascertain the numerical results, an experimental hard-
ware implementation of the chosen system has been
realised. The circuit comprises four dual BIFET TL082
JN operational amplifiers, four AD633 JN multipliers
(with 10 times scaling factor), two capacitors, eleven
linear resistors and two ATTEN function generators
to generate low- and high-frequency harmonic signals
(figure 3). Functionally, two pairs of operational ampli-
fiers ((OA1,OA3) and (OA2,OA4)) act as the adder and
the integrator, respectively. The governing dynamical
equations due to Kirchhoff’s laws are as follows:

(a)

(b)

(c)

(d)

(e)

(f)

Ωω

ω γ γ

γ

γγ

γ

Figure 2. (a) The response amplitude Q in parametric space
f ∈ [0, 1] and g ∈ [0, 20] when ω = 500, � = 2000
and γ = 1.5; (b) Q in parametric space ω ∈ [200, 1000],
� ∈ [1400, 1600] when f = 0.02, g = 0.02 and γ = 1.5;
(c) Q as a function of ω ∈ [100, 500] and γ [0.01, 1.5] when
� = 2000, f = g = 0.02; (d) Q for g ∈ [0, 20] with
f = 0.18, � = 2000 for γ = 0.1, resonance peak (black
solid line) at ω = 500 and antiresonance locus (red solid
line) at ω = 550; (e) Q and antiresonance curve for γ = 1.5
and (f) elevation of Q as a function of γ when g = 13.0,
f = 0.18, ω = 500 and � = 2000.

C1R4
dx

dt
= g cos(�t)

Rf 1

R2

− x3α2 Rf 1

R1
+ x

Rf 1

R3
, (6)

C2R9
dy

dt
= f cos(ωt)

Rf 2

R6

− y3α2 Rf 2

R5
+ y

Rf 2

R8
+ x

Rf 2

R7
, (7)

where α is the multiplier constant. To design the cir-
cuit with available off-shelf components, the values are
fixed as R1 = R5 = 1 k�, R f 1 = R f 2 = R2 =
R6 = R3 = R8 = R4 = R9 = 100 k�, R7 = 1 M�

and C1 = C2 = 10 μF. The coupling coefficient (γ )
is determined by the ratio Rf 2/R7 and is fixed at 0.1
to compare the results with the numerical outcome.
Following the procedure illustrated in refs [37,38], the
capture of response amplitude has been achieved. The
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Figure 3. Analogue simulation of one-way coupled overdamped oscillators.
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Figure 4. Numerical (black solid line) and experimental
(red circles) values of Q for g ∈ [0, 20] V with fixed
values of f = 180 mVp, �/2π = 318 Hz: (a) VR
peak at ω/2π = 80 Hz and (b) antiresonance locus at
ω/2π = 87.5 Hz.

values of ω/2π , �/2π and f are fixed as 80, 318 Hz
and 180 mVp, respectively. The response amplitude of
the voltage across capacitor C2 is measured by vary-
ing g from 0 to 20 Vp, VR is observed and figure 4a
compares the numerically and experimentally obtained
VR peaks. By fixing the rest of the parameters and
altering ω/2π = 87.5 Hz, we observed antiresonance
phenomenon. The locus is assessed with numerical pre-
diction and found to be in good agreement as shown in
figure 4b.

3. Mutually coupled oscillators

Next, we consider a system of mutually coupled over-
damped oscillators, each bearing an exclusive mono-
chromatic excitation ( f cos(ωt) and g cos(�t)). The

bidirectional coupling scheme enables us to understand
much about many natural processes, including neural
transmissions [39], interspecies competition, population
dynamics of the species [34] and so on. Despite vari-
ous coupling schemes, bidirectional diffusive coupling
is pervasive, and that can facilitate synchronisation and
phase coherence, and enhance the detection of weak
periodic signals. The occurrence of VR in the chosen
model can be assisted by the amplitude of both high-
frequency and low-frequency signals at an adjacent node
that make it distinct from the classical VR.

Let us consider the following mutually coupled driven
system:

ẋ = x − x3 + γ (x − y) + f cos(ωt), (8)

ẏ = y − y3 + γ (y − x) + g cos(�t). (9)

The potential of the system in the absence of external
driving is given by

U(x, y) = − x2

2
+ x4

4
− y2

2
+ y4

4

+γ

(
xy − x2

2
− y2

2

)
. (10)

Depending on the sign of the coefficients of x and y
and coupling strength γ , the potential can have wells,
humps or a combination of both. Here we are interested
in potential with four and two wells explicitly relying
on γ . For γ = 0.1, eq. (10) unveils symmetric four-well
potential with a barrier height of 0.2 in turn equivalent
to fc as evinced from figure 5a, whereas for γ = 1.0
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Figure 5. (a) Three-dimensional view of symmetric four-
well potential for γ = 0.1 and (b) transformed two-well
potential for γ = 1.0. Parts a(i) and b(i) show the respective
contour plots (colour box denotes the height of the potential
wells).

the potential shrinks to a double-well potential due to
the disappearance of barriers between U++ and U−+
and its symmetric potential (U−− and U+−) (figure 5b).
One can notice that the barrier height is increased to
fc = 1.0, when γ is increased. The model has nine
equilibrium points, out of which (x1, y1) = (0, 0) and
(x2,3, y2,3) = (±1, ±1) for all γ > 0. The stability
of (x1, y1) remains unaltered. However, the stability of
(x2,3, y2,3) varies from the stable node (γ < 1.01) to
the saddle (from γ = 1.01 onwards). The values and
the stability of the rest of the equilibrium points rely on
the value of γ . For a set of initial conditions (x0, y0 =
±1.0, ±1.0), the system settles down to the equilibrium
points x2,3, y2,3, respectively.

Figures 6a and 6b represent the Poincaré surface of
section (SOS) of the variable x(t) sampled at every
2π/ω with respect to the control parameter g ∈ [0, 12]
corresponding to two different coupling strengths γ =
0.1 and 1.0, respectively. The other parameters of the
model are kept fixed as f = 1.0, ω = 0.1 and � = 3.0.
Figure 6a denotes the confinement of the orbit in the
potential wellU++ for the preferred initial conditions up
to the critical threshold vibrational amplitude gc = 7.92
for γ = 0.1. Beyond gc, the oscillation of the orbit
gets bounded in U−+, whereas at the point of a criti-
cal threshold the orbits of x(t) coexist and experience
cross well motion that illustrates the well renowned sig-
nature of VR. When γ = 1.0, gc is shifted to a higher
value (gc = 9.2) due to the increase in potential bar-
rier height as inferred from figure 6b. As the potential
is a two-well potential for γ = 1.0, the dynamics of
the system get bounded within U−+ and U+− wells.
The amplitude of the periodic orbit in a single well is

-1
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Figure 6. Poincaré SOS of x(t) by setting g as a control
parameter in the range g ∈ [0, 12] when f = 1.0, ω = 0.1
and � = 3.0 : (a) for γ = 0.1 and (b) for γ = 1.0.

increased for higher coupling strength (γ = 1.0) as a
consequence of an increase in the depth of the potential
wells as seen by comparing figures 5a and 5b. Moreover,
period-doubling bifurcation or chaos is exempted in the
chosen parametric space, because of the stability of the
fixed points in this region. Even though the amplitude of
the orbits differs as a function of coupling strength, the
time period of oscillation remains constant, equivalent
to T = 2π/ω.

For numerical evaluation of the response amplitude
of x(t) in eq. (8), same set of equations that assesses the
Fourier amplitude of the signal is considered (eqs (3)–
(5)). To start with, the non-monotonic variation of Q is
assessed by simultaneous scanning of f ∈ [0.01, 0.5]
and g ∈ [0, 12.0] with fixed values of ω = 500,
� = 2000 and γ = 1.0, as shown in figure 7a. This
figure shows four resonant peaks and among them the
peak at g = 4.0 is found to be with maximum response,
Qmax = 15.4. Moreover, upon close inspection one
could visualise the presence of multiple antiresonance
loci in the fabric. To track the response of x(t) in the
parametric space of frequencies, ω ∈ [100, 300] and
� ∈ [800, 1100], Q is computed by fixing f = 0.05,
g = 0.1, γ = 1.0 and shown in figure 7b. The
plot displays consistent alternative peaks and loci at
overtones found at ω = 180, 280, etc. with average
Qmax = 0.62. When compared with unidirectional cou-
pling (figure 2b), it is found that the interval between
harmonic frequencies is reduced and thus one could get
more number of resonant peaks due to the mutual trans-
fer of energy. Figure 7c is plotted to analyse the influence
of coupling strength on Q in the range of γ ∈ [0.01, 1.5]
for a spectrum of ω ∈ [100, 500] when f = 0.05,
g = 0.1 and � = 2000. One could infer multiple VR
peaks associated with nonlinear variations in Q from
the plot due to the intrinsic nonlinearity present in the
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Figure 7. (a) The response amplitude Q by scanning f ∈ [0.01, 0.5] and g ∈ [0, 12] when ω = 500, � = 2000 and γ = 1.0;
(b) Q in parametric space ω ∈ [100, 300], � ∈ [800, 1100] when f = 0.05, g = 0.1 and γ = 1.0; (c) Q as a function of
ω ∈ [100, 500] and γ [0.01, 1.5] when � = 2000, f = 0.05 and g = 0.1; (d) Q for g ∈ [0, 12] with f = 0.05, � = 2000 for
γ = 0.1, resonance peak at ω = 500 and antiresonance locus at ω = 150; (e) same parameters were chosen as if to compute
(d) except with γ = 1.0, triple resonant peak is observed for ω = 500 and a single antiresonant locus for ω = 150 and
(f) plot of Q as a function of γ ∈ [0.1, 2] for fixed values of g = 8.1, f = 0.1, ω = 500 and � = 2000.

model. Higher magnitude of Qmax is observed at one of
the harmonic frequencies (ω = 380) that can be affirmed
from the figure.

In an attempt to determine the antiresonant frequen-
cies, we have chosen the values of parameters as � =
2000, f = 0.05 and γ = 0.1. When ω = 150, the model
exhibits antiresonance locus as seen from figure 7d.
For the same set of parameters, but when ω = 500,
the model exhibits resonance peak with Qmax = 2.35.
Interestingly, at higher coupling strength γ = 1.0, triple
resonant peaks were identified as shown in figure 7e. We
found that Qmax is linearly decreasing with increasing
g. Nevertheless, a single antiresonant locus is detected
irrespective of coupling strength as witnessed from the
figure. We study the dependence of Qmax on γ by fix-
ing g = 8.1, f = 0.1, ω = 500 and � = 2000,

and unlike unidirectional coupling, the plot resembles a
cubic polynomial function that is symmetric about the
inflection point. This behaviour of the system could be
manifested from the cubic nonlinearity present in the
model.

To determine the random distribution of time spans
(τMR) spent by the orbit in respective potential wells,
we have chosen the parameters of the resonance curves
shown in figure 7d. The initial conditions were taken
such as the orbit lies in the well U−+ at g = gc, to
account for the variation in the behaviour of τMR. When
g = gc, τMR in U++ is very short and in U−+ it is close
to 2π/ω (figure 8a). As g → gmax, the value of τMR in
both the wells are found to be equal to the time period
of the low-frequency driving, as evident from figure 8b.
The logarithmic plot of τMR vs. the factor 1/(g − gc)
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arrow mark in the plot indicates τMR at g = gmax.

confirms the gradual decrement in mean residence times
beyond gmax in U++, whereas in U−+ it decreases as
gc → gmax and then increases to the maximum value at
g = gmax (figure 9). When g is increased above gmax,
the value of τMR decreases in both the wells. To reassert,
we found that as g increases from gc, τMR in the well
U−+ remains close to T, whereas in U++ it increases to
T until g reaches gmax. At g = gmax, the time span of the
orbit in both the wells is equal to T and then decreases to
T/2 beyond gmax. The time trace and spatial distribution

of the orbit in the active potential wells at g = 12 are
shown in figure 8c.

3.1 Experimental results

Equivalent analogue simulation of eq. (8) is achieved by
employing six dual BIFET TL082 JN operational ampli-
fiers, four AD633 JN multipliers (10 times scaling), two
capacitors, 20 linear resistors and two ATTEN function
generators as shown in figure 10.
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Figure 11. Numerical (solid line) and experimental (circles) values of Q for various values of g ∈ [0, 12] V for f = 50 mVp
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On applying Kirchhoff’s laws to the circuit, we obtain

C1R5
dx

dt
= f cos(ωt)

Rf 1

R2
− x3α2 Rf 1

R1
+ x

Rf 1

R4

+ Rf 2

R6
(x − y)

Rf 1

R3
, (11)

C2R13
dy

dt
= g cos(ωt)

Rf 3

R10
− y3α2 Rf 3

R9
+ y

Rf 3

R12

+ Rf 4

R14
(y − x)

Rf 3

R11
. (12)
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The values of the resistors and the capacitors are fixed
as: R1 = R9 = R5 = R13 = 10 k�, Rf 2 = Rf 4 =
R6 = R14 = R8 = R16 = 1 k�, Rf 1 = Rf 3 = R2 =
R4 = R10 = R12 = 100 k�, C1 = C2 = 0.01 μF,
and the coupling strength (γ ) between the oscillators
is determined by the ratio Rf 1/R3 and Rf 3/R11. Two
unit gain differential amplifiers (OA3 and OA6) were
imposed for mutual diffusive coupling. The magnitude
spectrum of the voltage drop across capacitorC1 is eval-
uated using the AGILENT (DSO-X-2006) oscilloscope
spectrum analyser. Initially, the response Q of the signal
is traced as a function of g for γ = 0.1 by keeping the
values of R3 = R11 = 1 M�. The control parameters
are fixed as ω/2π = 80 Hz, �/2π = 318 Hz and f =
50 mVp. By altering the value of g from 0.5 to 12 Vp, we
obtained resonance peak with gmax at 8.0 Vp. Figure 11a
compares the response of the low-frequency signal
with numerically simulated results and the outcomes
agree with each other. With the same set of parame-
ters and by reducing ω/2π = 24 Hz, we obtain the
antiresonant locus that can be affirmed from figure 11c.
Further, we are interested in larger coupling strength,
say γ = 1.0, which can be achieved by fixing the val-
ues of R3 = R11 = 100 k�. By following the same
procedure, we obtained three consecutive VR peaks
with enhanced response when compared to γ = 0.1.
Figure 11b portrays the perfect match between numer-
ically simulated and experimentally obtained multiple
VR peaks. However, a single antiresonant locus can be
found experimentally at ω/2π = 24 Hz and figure 11d
verifies the correlation of the values between experiment
and numerics. Moreover, from experimental heuris-
tics, we found that the accuracy of the experimental
outcome enhances when the measure of Q is pro-
nounced, that is when Q is measured in a scale of a
few volts.

4. Conclusion

Generally, in VR, biharmonic signals are deliberately
modulated to evince the resonance phenomenon. On the
contrary, here, efforts were made to prove that no super-
position of signals is required to achieve non-monotonic
variation in the system’s response. Rather, interacting
oscillators can induce resonance in one of the subsys-
tems in accordance with the high-frequency amplitude
variation. To establish the observation, we had chosen
two coupled anharmonic oscillators, each of which is
driven by distinct frequencies employing unidirectional
and bidirectional coupling. We had detected the non-
monotonic variation in the system’s response driven
by a low-frequency signal in both cases, classically

termed as VR. This sort of behaviour is the manifes-
tation of non-monotonic dependence of the model’s
effective stiffness on the amplitude of high-frequency
forcing. Interestingly, we found multiple VRs and anti-
resonance loci for the given choice of parameters in
both coupling schemes due to the multistability of the
chosen model. The response of the low-frequency com-
ponent is found to be influenced by the high-frequency
amplitude in a resonant way at harmonic frequencies.
We had effectively probed the influence of coupling
strength on the resonant interaction of coupled oscil-
lators, and it is found that stronger coupling will lead to
higher response amplitude. Even though unidirectional
coupling may induce larger responses, the mutual dif-
fusive coupling increases the probability of occurrence
of resonance in the model. In other words, bidirectional
diffusive coupling enhanced the interaction between the
coupled oscillators ensuring more spans of entrainment
domains. Moreover, it has been detected that the intra-
well motion between the potential wells is assimilated
as the mechanism of VR in mutual coupling. Upon cal-
culating the mean residence time spent by an orbit in
active potential wells, we found that at g = gmax, the
value of τMR is equal to integer multiples of the time
period of the low-frequency driving (T ) in mutually cou-
pled oscillators. Antiresonance locus as a counterpart of
resonance peaks can be used to identify the symmetry of
the coupled oscillators and the spot of perturbations in
the system. Critically, antiresonance is induced in the
model as a consequence of the excessive vibrational
energy transfer to an adjacent oscillator which reduces
the amplitude to a minimum value at particular frequen-
cies. The experimental substantiation of the remarked
phenomenon has also been accomplished by means of
analogue simulations and the results are in good agree-
ment with numerical computations. Since interacting
dynamical systems are ubiquitous in nature, we believe
that the results of the present investigation can find
significant applications in communication technologies,
neuronal dynamics and mechanical engineering.
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Appendix A. Unidirectionally coupled oscillators—
Theoretical approach

We have made an attempt to provide an empirical solu-
tion to the considered models. While solving eq. (1), the
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solution for ẋ is determined to be

x = g cos(�t − θ1)√
(1 + �2)

, (A1)

where θ1 = tan−1(�). Upon substituting the value of x ,
the standard method of variable decomposition y(t) =
Y (t, ωt)+ψ(t, �t) is applied to eq. (2), where Y (t, ωt)
and ψ(t, �t) correspond to slow and fast moving com-
ponents of the response, respectively [40]. Employing
the decomposition method and averaging the fast mov-
ing components, one gets

Ẏ = Y (1 − 3ψ̄2) − Y 3 + f cos(ωt), (A2)

ψ̇ = g1 cos(�t) (A3)

with g1 = γ g/(
√

1 + �2). Considering the value of ψ̄2

from eqs (A3), (A2) becomes

Ẏ − Yc1 + Y 3 = f cos(ωt), (A4)

where c1 = 1 − (3g2
1/2�2) and it is quite evident

from the above equation that the shape of the poten-
tial depends on the value of g, γ and �. When c1 > 0,
a double-well potential is obtained with its maxima and
minima located at Y ∗

1 = 0 and Y ∗
2,3 = ±√

c1, respec-
tively. On the other hand, when c1 < 0, the shape of the
potential becomes a single well with its minima located
at Y ∗

1 = 0. Also, from eq. (A4), it is evident that the
effective parameters of the system get affected due to
resonance.

The critical value of g at which the resonance is
observed can be deduced from the following relation:

gmax =
√

2�2(�2 + 1)

3γ 2 . (A5)

As the oscillators are one-way coupled, f and ω do
not affect gmax. As previously mentioned, if g <√

(2�2(�2 + 1))/3γ 2, there exist two minima in ±√
c1

and the deviation from the minimaY ∗
2,3 can be calculated

by substituting Z = Y −Y2,3 in eq. (A4). Upon substitu-
tion of z and using the linearisation, one gets a modified
equation as

ż = s1z + f cos ωt, (A6)

where s1 = 2c1. From the above equation, the response
amplitude and the phase shift are analytically calculated
to be

Q = 1√
ω2 + 4c2

1

, (A7)

θ2 = tan−1 ω

s1
. (A8)

Else when g >
√

(2�2(�2 + 1))/3γ 2, there exists
only one minimum at Y ∗

1 and the response amplitude

0

3

6

9

12
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Theory
Nmerics

g

Q

Figure 12. Comparison of numerical and analytical values
of Q for fixed values of f = 0.05, ω = 0.1 and � = 0.5
when the coupling strength γ = 1.0.

and phase shift now become

Q = 1√
ω2 + c2

1

, (A9)

θ2 = tan−1 ω

c1
. (A10)

The response amplitude is calculated using eq. (A9)
when ω = 0.1, � = 0.5, f = 0.05 and the outcomes
are compared in figure 12.

Appendix B. Mutually coupled oscillators—
Theoretical approach

Further, as the process of obtaining analytical solution
for mutually coupled oscillators is tedious, a highly
approximated method of solution is proposed here. It
starts with the addition of eqs (8) and (9) as

ẋ+ ẏ = (x+ y)−(x3+ y3)+ f cos ωt+g cos �t. (B1)

Replacing x = X(t, ωt)+ψ(t, �t) and y = Y(t, ωt)+
ψ(t, �t) and on resolving slow and fast components, we
obtain

Ẋ + Ẏ = (X + Y )[1 − 3ψ̄2] − (X3 + Y 3)+ f cos ωt,

(B2)

ψ̇ = g cos �t

2
. (B3)

After substituting the value of ψ using eq. (B3) and by
considering X + Y = A, the linearised form of equa-
tion will be obtained as Ȧ = c1A + f cos ωt . Then the
solution A is determined to be

A = f cos(ωt − φ)√
c2

1 + ω2
, (B4)

where c1 = [(3g2/4�2) − 1] and φ = tan−1(ω/c1).
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Figure 13. Variation of Q with g for ω = 0.1, � = 1.0,
γ = 1.0 and f = 0.001. Theoretical output has been appro-
priately scaled down for better fit.

Similarly, on subtracting eqs (8) and (9), we get

ẋ − ẏ = (x − y) − (x3 − y3) + 2γ (x − y)

+ f cos ωt − g cos �t. (B5)

Again by replacing x = X + ψ and y = Y − ψ and on
resolving slow and fast components, we obtain

Ẋ − Ẏ = (X − Y )[1 − 3ψ̄2 + 2γ ]
− (X3 − Y 3) + f cos ωt, (B6)

ψ̇ = − g cos �t

2
. (B7)

After substituting the value of ψ using eq. (B7) and by
having X − Y = B, the solution becomes

B = f cos(ωt − φ1)√
(c2

2 + ω2)

, (B8)

where c2 = (3g2/4�2)−1−2γ and φ1 = tan−1(ω/c2).
On solving A and B, the response amplitude of the cou-
pled system is found to be

Q = κ cos(ωt − θ)

2
, (B9)

where

κ =
√

α2 + β2 + 2αβ cos(φ − φ1),

θ = tan−1 α sin φ + β sin φ1

α cos φ + β cos φ1
.

The values of α and β are 1/(

√
c2

1 + ω2) and

1/(

√
c2

2 + ω2), respectively. The fitness of the theoreti-
cal model to numerical outcomes is shown in figure 13.
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